
Bringing great research ideas
into open source communities

The Baylor University professor
talks cross-cultural exchange,

microservice evolution, and
quality assurance

RH
RQ

Tomáš Černý

Can streaming data and machine
learning build better communities?

Lessons from an upstream
hypervisor fuzzer

Verification of a
Linux distribution

Volume 4:2 | August 2022 | ISSN 2691-5251

Red Hat
Research Quarterly

V O L U M E 4 : 2

RESEARCH
QUARTERLY

2research.redhat.com

Years to build the team.
Months to build the app.
One moment to see them launch.

This is what connecting your clouds feels like.

3research.redhat.com

V O L U M E 4 : 2

RESEARCH
QUARTERLY

Table of Contents
Departments

Features

ABOUT RED HAT Red Hat is the
world’s leading provider of open
source software solutions, using a
community-powered approach to

provide reliable and high-performing cloud,
Linux®, middleware, storage, and virtualization
technologies. Red Hat also offers award-winning
support, training, and consulting services. As a
connective hub in a global network of enterprises,
partners, and open source communities, Red Hat
helps create relevant, innovative technologies
that liberate resources for growth and prepare
customers for the future of IT.

23

07 10

NORTH AMERICA
1 888 REDHAT1

EUROPE, MIDDLE EAST,
AND AFRICA
00800 7334 2835
europe@redhat.com

ASIA PACIFIC
+65 6490 4200
apac@redhat.com

LATIN AMERICA
+54 11 4329 7300
info-latam@redhat.com

facebook.com/redhatinc
@redhatnews
linkedin.com/company/red-hat

05

07

18

23

26
32

35
09

37

10

News: Linux now includes a
real-time analysis toolset

News: Undergraduate
research projects at the
Red Hat Collaboratory

Can streaming data and
machine learning build
better communities?

How open data standards
make Brno a better city

Upstream hypervisor fuzzer

Verification of a
Linux distribution

Matchmaking for engineers

News: Publication highlights

Research project updates

From Brno to Waco:
an interview with
Tomáš Černý

04 From the director

https://twitter.com/redhatnews

V O L U M E 4 : 2

RESEARCH
QUARTERLY

4research.redhat.com

Working fuzzier,
not harder
by Hugh Brock

Ifirst met Boston University PhD student Alex
Bulekov at Red Hat’s Boston office in the fall of
2018. At the time, I had very little idea of what

a “fuzzer” was, let alone why building a better
one would be a useful and noteworthy thing.
(In case you, too, are ignorant on this topic, I
recommend you read Alex’s article, “Applying
lessons from our upstream hypervisor fuzzer
to improve kernel fuzzing,” to find out more.)
Alex, along with his Red Hat mentor Bandan
Das, gave me a complete and patient education
on the topic of fuzzers and their benefits. His
project then was to overcome the difficulties
of making a fuzzer that could successfully fuzz
DMA inputs to a process—in this case, the QEMU
virtual machine management tool. Today, he
has not only succeeded with his initial goal,
he has moved on to building a generic fuzzing
framework that may relieve the need to write
complex and precise descriptions of exactly
how to fuzz specific inputs to the Linux kernel.
If his project succeeds, it will be a significant
contribution to the security and testability of the
kernel, and I would count it a major achievement
both for Alex and for Red Hat Research.

Our focus on testing continues with our interview
with long-time Red Hat Research partner
Tomáš Černý. Currently a professor at Baylor
University, Tomáš began working with Red Hat
while he was still at ČVUT in Prague, in the area
of automated test development done by probing
the interfaces presented by microservices.
As with Bulekov’s fuzzing framework, Tomáš’s
interest is in relieving the burden of manual test

authoring from the developer while ensuring
greater test coverage and hence higher quality.
Tomáš is also our foremost cultural exchange
ambassador at Red Hat Research: every year, he
brings ten or so Baylor undergraduates to Prague
and Brno to work with Red Hat engineers and
researchers at Czech universities. The students
rave about the experience, and no wonder:
they get to meet great scientists and engineers
from a unique culture while sampling what is,
in my opinion, the best beer in the world.

Frequent readers will be aware that 2022 saw the
beginning of Red Hat Research’s expanded $4
million annual research agreement with Boston
University. Last issue, we featured the largest
single grant awarded from our 2021 RFP, the AI
for Cloud Ops project. In this issue, we feature
a similarly ambitious effort that also touches AI
but is otherwise completely different: the Smarta
Byar (“Smart Villages,” in English) project to build
a complete digital twin of a village in southern
Sweden called Veberöd. The project aims to
collect data on everything from bus movements to
barbeque smoke to see what kind of applications
can be built with such a large, continuous flow of
information. One of the first challenges, of course,
will be familiar to every data scientist: how do you
improve the quality of the incoming data while
reducing the quantity to a manageable level?
Event-driven algorithms are one possibility, but
there are others; have a look at Red Hatter Jim
Craig’s overview of the project to learn more.

As I write this, the whole Red Hat Research team
is frantically at work preparing for our first real
in-person event since January of 2020: Red Hat
Research Day is coming to Brno, Czech Republic,
on September 15 of this year! We are more
than a little excited about the ability to again
meet with our university and industry partners
in person and learn firsthand about where
research with open source impact will go next.
We hope you will be able to join us there— keep
an eye on research.redhat.com for details.

From the director

About the Author
Hugh Brock

is the Research
Director for

Red Hat, coordinating
Red Hat research
and collaboration
with universities,

governments, and
industry worldwide.
A Red Hatter since
2002, Hugh brings

intimate knowledge
of the complex

relationship between
upstream projects and

shippable products
to the task of finding
research to bring into

the open source world.

https://research.redhat.com

5research.redhat.com

V O L U M E 4 : 2

RESEARCH
QUARTERLY

capabilities of the system by simulating
typical real-time workloads. RTLA also
facilitates root-cause analysis of timing
failures via tracing, automating the most
common setup while enabling advanced
tracing features in a single tool.

Such analysis tools are becoming essential
to the development of Linux as a whole as
PREEMPT_RT becomes an integral part of
the operating system, meaning that more
new users—or busy developers—will have to
dedicate time to the analysis of Linux as a real-
time operating system (RTOS). RTLA gives
them an easy-to-use solution that doesn’t
require detailed knowledge of the system.

The initial implementation was substantial
enough to place Daniel among the top 20
contributors of the 5.17 kernel release, and
further developments are expected. RTLA
was designed with extensibility in mind.
It is expected to be extended with other
theoretical analysis tools, serving as the
starting point for researchers and practitioners
to develop tracing-based analysis tools.

Daniel was also a keynote speaker at the
17th Workshop on Virtualization in High-
Performance Cloud Computing, held in

Linux now includes a real-time
analysis toolset
Daniel Bristot de Oliveira’s research in real-time systems
led to the inclusion of the RTLA in Linux 5.17.

by Shaun Strohmer

Red Hat Research’s Dr. Daniel Bristot
de Oliveira presented the Real-Time
Linux Analysis Toolset (RTLA) at the

Red Hat Open Source Summit held June 21-
24, 2022, virtually and in Austin, TX, USA.

The result of several years of research, the
RTLA was one of the most significant changes
in the release of Linux 5.17. Over the last
decade, Daniel has been exploring methods
to improve the analysis of the real-time
properties of Linux. His research explores the
tracing features of Linux to derive fine-grained
properties of the kernel, overcoming a known
limitation of the usage of black-box testing by
developers while increasing confidence in Linux
usage on safety-critical real-time systems.

While the black-box method provides an
overview of the system, it fails to provide
a root-cause analysis for unexpected
values. Developers must use kernel trace
features to debug these cases, requiring
extensive knowledge about the system and
fastidious tracing setup and breakdown. The
RTLA is a user-space tool that addresses
these challenges. Part of the Linux kernel
toolset, RTLA provides a benchmark-like
interface for in-kernel tracers that extract
meaningful information about the timing

About the Author
Shaun Strohmer
is the editor of
Red Hat Research
Quarterly. She has
worked as a writer and
editor in academic
publishing for over
twenty years, and
since 2014 she has
focused on software
development,
cybersecurity, and
computer science.

News

Daniel’s research
was featured in a
series of articles for
RHRQ: “A threat
model for the real-
time Linux kernel”
(2:3), “Efficient
runtime verification
for the Linux kernel”
(2:4), “Demystifying
real-time Linux
scheduling
latency” (3:1).

https://www.kernel.org/doc/html/latest/tools/rtla/rtla.html
https://www.kernel.org/doc/html/latest/tools/rtla/rtla.html
https://research.redhat.com/blog/article/a-thread-model-for-the-real-time-linux-kernel/
https://research.redhat.com/blog/article/a-thread-model-for-the-real-time-linux-kernel/
https://research.redhat.com/blog/article/a-thread-model-for-the-real-time-linux-kernel/
https://research.redhat.com/blog/article/efficient-runtime-verification-for-the-linux-kernel/
https://research.redhat.com/blog/article/efficient-runtime-verification-for-the-linux-kernel/
https://research.redhat.com/blog/article/efficient-runtime-verification-for-the-linux-kernel/
https://research.redhat.com/blog/article/demystifying-real-time-linux-scheduling-latency/
https://research.redhat.com/blog/article/demystifying-real-time-linux-scheduling-latency/
https://research.redhat.com/blog/article/demystifying-real-time-linux-scheduling-latency/
https://research.redhat.com/blog/article/demystifying-real-time-linux-scheduling-latency/

V O L U M E 4 : 2

RESEARCH
QUARTERLY

6research.redhat.com

NEVER MISS AN ISSUE!

Start your subscription today

Subscribe to the Red Hat Research Quarterly for free
and keep up-to-date with the latest research in open source

in PDF as a printed copy

red.ht/rhrq

Hamburg, Germany, from May 29-
June 2, 2022. His paper “Operating
system noise in the Linux kernel,”
co-authored with Daniel Casini and
Tommaso Cucinotta, was recently
accepted for publication by IEEE
Transactions on Computers for a
special issue on real-time systems.

Daniel Bristot de Oliveira
has a joint PhD in Automation Engineering
from Universidade Federal de Santa
Catarina (Brazil) and Embedded Real-
Time systems from Scuola Superiore
Sant’Anna (Italy). Currently, he is a Senior
Principal Software Engineer at Red Hat,
working on developing the real-time
features of the Linux kernel. Daniel helps
in the maintenance of real-time related
tracers and toolings for the Linux kernel
and the SCHED_DEADLINE. He is an
affiliate researcher at the Retis Lab and
researches real-time and formal methods.
He is an active member of the real-time
academic community, participating
in the technical program committee
of academic conferences, such as the
Real-Time Systems Symposium, the
Real-Time Technology and Applications
Symposium, and the Euromicro
Conference on Real-Time Systems.

About Daniel

NEVER MISS AN ISSUE!

Start your subscription today

Subscribe to the Red Hat Research Quarterly for free
and keep up-to-date with the latest research in open source

in PDF as a printed copy

red.ht/rhrq

NEVER MISS AN ISSUE!

Start your subscription today

Subscribe to the Red Hat Research Quarterly for free
and keep up-to-date with the latest research in open source

in PDF as a printed copy

red.ht/rhrq

7research.redhat.com

V O L U M E 4 : 2

RESEARCH
QUARTERLY

News

Undergraduate research projects
advance the Red Hat Collaboratory’s
educational mission
by Shaun Strohmer

The Red Hat Collaboratory at Boston
University is supporting select
undergraduate student research

projects during Summer 2022, in keeping
with its mission of advancing education
in open source technologies. So far, six
projects have been chosen to receive
funding and supervision from BU computer
engineering professors active in their own
Collaboratory projects, with more expected.

The award recipients were selected from
a competitive pool of applications in
areas including cloud computing, systems
engineering infrastructure, and security:

•	 Nengneng Yu, “Fine-grained, automated
security detection via semi-supervised
learning,” in collaboration with PhD student
Yajie Zhou, supervised by Professor Alan
Liu. The project aims to detect and recover
attack stories behind security incidents using
natural language processing techniques.

•	 Julia Hua, “Network-accelerated in-memory
key-value store live migration,” in collaboration
with PhD student Zeying Zhu, supervised
by Professor Alan Liu. The project aims to
develop an efficient open source software
migration system to meet demands for high
throughput and low latency in the cloud.

•	 Quan Pham, “Real-time quality assurance,”
supervised by Professor Gianluca Stringhini.

The project aims to develop plugins for
the Jupyter Notebook environment that
will analyze code and provide real-time
feedback on software in development.

•	 Ethan Klein, “Red Hat unikernel Secrecy
project,” supervised by Professor Orran
Krieger. The project aims to develop a unikernel
implementation of Secrecy, a platform enabling
parties to perform shared computations on
private data without sharing their actual data.

•	 Xiteng Yao, “Practical programming of
FPGAs with open source tools: test-code
generation and guided search through
supervised learning,” supervised by Professor
Martin Herbordt. This project aims to improve
an open source programming tool flow known
as LLVM using reinforcement learning.

•	 Shun Zhang, “D-COLLECTIVE: democratized
data collection and collaborative training
for extreme-scale autonomous systems,”
supervised by Professor Eshed Ohn-Bar.
This project aims to develop technologies to
allow everyday people to participate in data
collection and model training for autonomous
systems, specifically self-driving cars.

Student award recipient Xiteng Yao heard about
the Red Hat Collaboratory from Professor
Herbordt, who has worked on multiple projects
as part of the Collaboratory. “I was excited to
see so many interesting projects in the Red Hat
Collaboratory,” Yao said. “It’s interesting to work

About Daniel

V O L U M E 4 : 2

RESEARCH
QUARTERLY

8research.redhat.com

in a team with academic and industry
members; it is an excellent opportunity
to learn from different types of people.”
Open source research was another
appealing aspect of working with
the Collaboratory: “What’s exciting
about open source research is that
your work can be reused by numerous
developers around the world. I’d like
to develop a robust solution to a real-
world problem that could help others.”

BU professor Ari Trachtenberg
was instrumental in developing the
program and says that undergraduate
researchers are essential to the long-
term viability of the Collaboratory’s
mission. “Not only can these students
make valuable contributions in their
own right,” Trachtenberg said, “but
they will also become the graduate
students, engineers, and professors
that will drive the computer systems
community going forward. It’s important
that these students experience practical
research mentorship to preserve the
cultural aspects of modern systems
research, such as properly establishing,
controlling, and analyzing large-scale
tests; determining convincing evidence
of improvement; and understanding
the subtleties involved with reading or
writing a technical systems paper.”

Systems research typically requires
significant manual and infrastructural
investments from a wide variety
of groups over a sustained period,
making it out of reach for most
undergraduate researchers.
The Red Hat Collaboratory and its
various partners, such as the MOC
Alliance, give researchers a ready-
made experimental environment
and a collection of interested
colleagues. This setting provides
the students and their mentors the
opportunity and the means to try
out new systems ideas without the
heavy lift of a national, multi-partner
grant. “I think the most important
feature of this program is that it
has enabled computer systems
research that may otherwise not
have occurred,” Trachtenberg said.

Undergraduate research projects
are generally projects that can be
completed within a shorter time frame,
such as a four-month summer session,
by a junior researcher with limited
experience. Some of the projects
are also extensions of projects that
the Collaboratory is already funding,
such as projects relating to unikernel
Linux, practical programming of
FPGAs, and security detection.

“I think the most
important feature of
this program is that it

has enabled computer
systems research that

may otherwise not
have occurred.”

—Prof. Ari

Trachtenberg

9research.redhat.com

V O L U M E 4 : 2

RESEARCH
QUARTERLY

“Beating the I/O bottleneck: a case for log-
structured virtual disks,” Mohammad Hossein
Hajkazemi (Northeastern University), Vojtech
Aschenbrenner (EPFL, Switzerland), Mania Abdi
(Northeastern University), Emine Ugur Kaynar
(Boston University), Amini Mossayebzadeh (Boston
University), Orran Kreiger (Boston University), Peter
Desnoyers (Northeastern University). The paper
was published in EuroSys 2022: Proceedings of the
17th European conference on computer systems.

“A Closer look at Intel Resource Director
Technology (RDT),” Parul Sohal (Boston
University), Michael Bechtel (University of Kansas),
Renato Mancuso (Boston University), Heechul
Yun (University of Kansas), Orran Krieger (Boston
University). The paper was published in RTNS
2022: Proceedings of the 30th international
conferences on real-time networks and systems.

“Design and analysis of microworlds and
puzzles for block-based programming,”
Radeck Pelánek (Masaryk University, Czech
Republic) and Prof. Tomáš Effenberger
(Masaryk). The paper was published in
Computer Science Education 32:1 (2022).

“DLACEP: a deep-learning-based framework for
approximate complex event processing,” Adar
Amir (Technion—Israel Institute of Technology), Ilya
Kolchinsky (Research Supervisor, Red Hat), Assaf
Schuster (Technion). The paper was selected for
presentation at the 2022 SIGMOD conference,
held June 12-17 in Philadelphia, PA, USA.

“HYPERSONIC: a hybrid parallelization
approach for scalable complex event
processing,” Maor Yankovitch (Technion),
Ilya Kolchinsky (Research Supervisor,
Red Hat), Assaf Schuster (Technion).
The paper was selected for presentation
at the 2022 SIGMOD conference, held
June 12-17 in Philadelphia, PA, USA.

“Operating system noise in the Linux
kernel,” Daniel Bristot de Oliveira (Senior
Principal Software Engineer, Red Hat),
Daniel Casini (Sant’Anna School of
Advanced Studies, Italy), Tommaso
Cuinotta (Sant’Anna School of Advanced
Studies). The paper is forthcoming in
IEEE Transactions on Computers.

“Profile-driven memory bandwidth
management for accelerators and CPUs in
QoS-enabled platforms,” Parul Sohal (Boston
University), Rohan Tabish (University of
Illinois at Urbana-Champaign), Ulrich Drepper
(Distinguished Engineer, Red Hat), Renato
Mancuso (Boston University). The paper
was published in Real-time systems (2022).

“RTLA: finding the source of OS noise on
Linux,” Daniel Bristot de Oliveira (Senior
Principal Software Engineer, Red Hat).
Daniel’s keynote speech was delivered at the
2022 Workshop on Virtualization in High-
Performance Cloud Computing (VHPC),
held June 2 in Hamburg, Germany.

News

Publication highlights
August 2022

Red Hat Research collaborates with universities and government agencies to
produce papers that bring open source contributions along with them. This
is a sampling of recent publications and conference presentations; to see
more visit the publications page on the Red Hat Research website.

https://research.redhat.com/publications/

From
Brno
to
Waco

On cross-cultural exchange,
microservice evolution, and
quality assurance

An interview with Tomáš Černý

conducted by Matej Hrušovský

and Pavel Tišnovský

11research.redhat.com

V O L U M E 4 : 2

RESEARCH
QUARTERLY

Matej Hrušovský: Let’s begin by introducing you.
Tell us about your position at Baylor University.

Tomáš Černý: This is my sixth year at Baylor. It’s
the hardest, because I have my tenure review.
I am also teaching software engineering, and
I’m active in software engineering research and
the software engineering doctoral program.
Currently, we are looking into code analysis of
microservices and cloud-native systems.

Baylor is one of the best schools in Texas. It is
an interesting school of about 20,000 students
that recently joined the R1 tier (a US classification
meaning “very high research activity”—Ed.), so we
have a lot of funds coming into research. We’re a
small computer science department; we have less
than 20 faculty members. Our graduate program
has grown significantly in the last few years, and we
now offer an online master’s program. The research
spans from software engineering, of course, to
machine learning, data science, and cybersecurity,
so there are significant investments in those areas.

Matej Hrušovský: Before Baylor, you were at
the Czech Technical University (Prague) in the
faculty of electrical engineering. Can you tell us a
bit more about your history, like how we met and
how your first cooperation with Red Hat started?

Tomáš Černý: Some of my students at CTU
reached out to me and said, “They teach such
cool classes in Brno with Red Hat. We would really
like to have those classes as well.” So it was a
student initiative. I reached out to Jiří Pechanec

RHRQ asked Brno research manager Matej Hrušovský and Red Hat engineer

Pavel Tišnovský to talk with long-time collaborator Tomáš Černý, a native of the

Czech Republic now teaching at Baylor University in Waco, Texas. Prof. Černý was

in Brno recently as part of his highly successful student research initiative, which brings

Baylor students to the Czech Republic to work with university researchers and Red Hat

engineers, a project funded in part by the National Science Foundation. They discuss

this project and his research on developing static analysis tools for microservices.

Interview

(an engineer in Brno-Ed.), who was teaching that
course, and asked, “Would it be possible to do
something similar in Prague?” Then the wheels
started to spin, we initiated multiple classes, and
it was amazing. The students really loved it. Then
we started doing other things: the grant we got
with colleagues in TAČR (Technology Agency
of the Czech Republic) and the Red Hat Lab in
Prague. But about that time, there was a new
position open at Baylor in software engineering.

And since I got my master’s from Baylor
University, I reached out, and they were as
excited as I was. So I ended up here, but the
collaboration with Red Hat continued, and I’m
extremely happy about that. At this point, we
have supported nearly 30 students who were
able to do research with Red Hat over the past
four years, and they’ve had a life-changing
experience. Anytime I reach out to one of those
students, they are responsive, they are excited,
and they don’t regret doing research with us.

Matej Hrušovský: I remember when you
moved to Baylor, you immediately reached out
and wanted to collaborate with Red Hat. At
the same time, I’m sure Red Hat was not your
only opportunity for industrial cooperation.
Is there a reason you chose Red Hat?

Tomáš Černý: I think your culture is unique—I
don’t think any other company has that. Presenting
open source software to funding agencies and
universities, versus proprietary closed software,
makes a significant difference. Open source

V O L U M E 4 : 2

RESEARCH
QUARTERLY

12research.redhat.com

research creates a direct path for
the student to make a contribution.
If they’re working on research and
their contribution is to a company
product, no one can ever see that.
Especially for students who are
maturing and learning how the industry
works, this is a fantastic experience
no other company can offer.

Matej Hrušovský: Eventually, you were
even able to get a National Science
Foundation Grant in cooperation
with Red Hat as an industrial partner.
Can you tell us how that began?

Tomáš Černý: I still have warm
feelings for the Czech Republic and
for Red Hat as well. So I thought, let’s
take the students from Texas to the
Czech Republic to do research. We
reached out to Red Hat, and now we
are in the fourth year of this project.
We have 40 publications out of this
collaboration, which is a giant number,
and I have broadened my current
research around all that. I’m really
amazed by what has happened.

Matej Hrušovský: What was the
first experience like? I know you spent
one month in Prague at CTU and the
second month at Red Hat in Brno.

Tomáš Černý: It was great. When
we were in Prague, one student said,
“Every building here looks important.“
You can imagine how the buildings
differ in Texas. You rarely have a
building more than 100 years old.
The students were very impressed.
Then, of course, they learned to do
research, and their research was very
successful. Very quickly, we got papers
published based on prototyping and
addressing practical problems.

Of course, there were some challenges
in getting used to research, and
we had to learn so much the first
year. Now when students come with
zero experience, we know exactly
where to start. The work must be
precise; we have to do a sufficient
survey of the literature and the
prototypes and directions for a given
research problem. We also need to
describe the problem very well.

Now, after COVID, we want to
collaborate with Masaryk University
(MU) as well. There are many
universities in the Czech Republic, but
MU is a great partner of Red Hat. We
could offer a double-degree program
with the university where students
would stay two years in the Czech
Republic and two years in the United
States or vice versa. They would have
two mentors, and they could research

practical topics that Red Hat could
transfer to practice. Especially being
a software engineer, where research is
not the core of our work, that’s exactly
where Red Hat fits in very well.

Matej Hrušovský: What has it been
like to combine the academic side at
CTU with the applied side at Red Hat?

Tomáš Černý: Having the perspective
of academia plus an industrial partner
is very important, especially for
inexperienced students. They might
question whether these things are purely
academic or also practical. Would the
students do the research without this
program? The difficulty is that they don’t
know how some simple things work, and
we can teach them that. They also don’t
have the motivation without the industry
perspective, so they might be thinking,
“Is this even necessary? Is this even

Baylor students socialize in Brno. From left: Stephanie Alvord, Schaeffer Duncan, Karel Frajtak (CTU),
Denton Wood, Tomáš Černý , Egle Uljas, Boba Mannova (CTU), Hugh Brock (Red Hat), Michael Coffey, Asher
Snavely, Andrew Walker, Jan Svacina, Jonathan Simmons

13research.redhat.com

V O L U M E 4 : 2

RESEARCH
QUARTERLY

useful?” When they see someone from
an industry who is actually interested in
the topic, they don’t question anymore.

Matej Hrušovský: Do you have any
particular projects already planned
out for the students? Are there
any technologies in mind? And I
would very much love it if Pavel, our
engineer, chimed in with his more
technical questions at this point.

Tomáš Černý: This year, the topics are
related to architectural visualization and
description languages. One very exciting
thing is architectural degradation, or
architectural decay. We build systems
that work very well, but over time they
suddenly stop working as anticipated.
How do we know what went wrong?
This is a very challenging question.
Maybe you’ve heard about technical
debt. We make small contributions to
a project by offering new features, but
we are building a debt by implementing

it quickly. Eventually, we have to
pay off this debt with interest when
something slows down, breaks down, or
is inefficient concerning maintenance.

The question we want to answer this
year is not necessarily how we can
solve this, but how we can visualize
the changes in the system. If we
can see the system from both the
dynamic and the static perspective as
it is now, is it very different from the
previous version? Can we highlight
the changes between the versions?

There are three aspects to this problem.
There’s the architectural description
language that maintains what should
be preserved within the system when
it evolves. There’s the visualization of
the dynamic and static perspectives of
a system. I know that Pavel’s interest is
in seeing how the data flows through
a log pipeline. Finally, my interest is
how we can visualize that the system

has changed and observe the impact
of the change. If something changed
recently, can we observe the impact
on other dependent systems? We
also want to trace the consequent
changes, just like we do with a Git tree.

Pavel Tišnovský: So we as DevOps
engineers need to comprehend
what’s going on because the world of
architectures based on microservices
is very, very large. From my experience,
almost nobody from the team
understands all the consequences
when something gets changed. It’s
vital to us to say, “When we change
this configuration, this path, or how the
data flows, what will be affected by it?”

Tomáš Černý: Yes, and this is typically
done by dynamic analysis and by
tracing. Dynamic analysis is certainly
a great direction that everyone has
taken so far, but when you apply
dynamic analysis, you apply it when
the system is in production. Isn’t it
too late if your customer is testing
something you should be aware of?

So, in our long-term project goals, we
are also looking into static analysis.
This is challenging because you have
systems coming from Python, Go, Java,
and C++, and you have to combine the
knowledge within them. We address this
by using intermediate representation.
There is one great approach that does
a similar thing, LLVM, but the problem
is that it’s a compiled-level intermediate
representation. We want to recognize
at a high level the components being
used in the system. We cannot compile
the code because we would lose this
information. Still, we would like to have
this intermediate representation of
the component level from different

The campus of Baylor University in Waco, TX

V O L U M E 4 : 2

RESEARCH
QUARTERLY

14research.redhat.com

languages. If you look at microservices,
they do recognize components.
Who would build microservices
without components, and why?

If a component is an element we
recognize, and the intermediate
representation model of the system is
based on components, then we don’t
care about the languages. We can start
to reason about those systems, whether
it’s architectural reasoning, security
reasoning, privacy reasoning, and so
on. Yes, we face many challenges, but
there are also many things already
answered from that perspective.

Pavel Tišnovský: Right now, it
seems the world is moving towards
microservices. My feeling is that
this trend arose from the pains of
monolithic architectures. But is there
any strong scientific background
on it? For example, we have some
scientific background for compilers.
There is some scientific background
for functional programming or object-
oriented programming. Would it be
possible to have something for the
microservices, mesh-based world?

Tomáš Černý: You are asking a great
question. Right now, microservices in
cloud-native systems are very much
driven by the industry. Industry is
much faster in implementing things
than academia. In the past, we were
building monolithic systems, and we
have been very comfortable with that.
But with microservices, we have to
think in a decentralized mindset, so
we lose the system-centric view. We
need to understand the holistic system
perspective so we can establish some
reasoning on whether an aspect of the
system has the right quality or not.

Over the years, we have established
evaluation criteria that allow users of
monolithic systems to say, “Is this the
right approach to build a system?”
For a distributed system, we have to
develop new metrics and patterns, and
we need the mechanisms to detect
these. If suddenly we are operating
at multiple codebases, the problem
is significantly harder. Can we do this
with dynamic analysis? Currently,
we can detect cyclic dependency,
coupling or structural coupling, and
similar measures. But if we have
access to the code and get the
entire perspective before something
gets published, we certainly have
much stronger quality assurance.

The development process
with decentralized systems is
complicated because you have
independent teams. They make

their own decisions, and something
that doesn’t cause a problem in
their microservice might have a
significant impact on the overall
system. Right now, we deploy it and
wait for DevOps to see it and say,
“Something went wrong. We have to
fix it.” That’s not the right approach.
The most efficient approach is to
get feedback immediately: “We
have committed something that
will have some implications.”

Right now, those tools are not there.
We need those tools because we
would like to have the comfort of
building decentralized systems with
a monolithic-like view, and there is
nothing like that at this point. To get
there, we need to determine what a
system-centric view of a decentralized
system looks like, so we can assess
the implications and impacts of

Visiting Baylor students working in the Red Hat offices in Brno, CZ

15research.redhat.com

V O L U M E 4 : 2

RESEARCH
QUARTERLY

Red Hat offices in Brno, CZ

a codebase change within one
microservice on the overall system.

Pavel Tišnovský: What about security?
Will it be possible in the future to have
some theory on how to make systems
that are secure? Or rather, to have
some patterns or rules, not just about
what not to make, but how to make the
system reliable and secure enough?

Tomáš Černý: First of all, there are
three perspectives. The systems have to
be deployed somewhere. We have the
operating systems and the containers,
and there is research on how easily,
if one container is compromised, it
can spread to the other containers.
Then we can look at the security within
the implemented system. Since it’s
decentralized, we have custom roles
for role-based security in one system
part and different ones in another

part. Do we enforce it in a similar way
across the holistic system? Right
now, we depend on code analysis
done manually, and no one is going to
check this regularly, right? The system
evolves very quickly, and one of your
microservices can end up having a
restriction, but another completely
avoids the restriction. You don’t even
know what data you are sending out;
maybe those data are private.

Then there is an entirely different area
of research: secure by design. But
are developers experts in security?
No. Are they going to understand
the policies and the guidelines for
security? No. So what do they end up
with? They end up with whatever they
have been doing until now. We need a
tool that will indicate, “Hey, something
is wrong.” The problem again is the
heterogeneity of those systems.

We need to
determine what a

system-centric view
of a decentralized
system looks like,
so we can assess
the implications

and impacts
of a codebase

change within one
microservice on the

overall system.

V O L U M E 4 : 2

RESEARCH
QUARTERLY

16research.redhat.com

About the Authors
Matej Hrušovský has been with Red Hat

for more than nine years, seven of which
have been spent managing the university
program in EMEA. Aside from attracting

new talent mainly from universities and
schools, the core of Matej’s job is to find

and put the right people from Red Hat and
academia in the same room together.

About the Authors
Pavel Tišnovský is famous for his in-

depth articles on various technical topics
for the Czech Linux magazine root.cz. He

taught computer graphics at Brno Technical
University and worked as a C, C++, and

Java developer in various companies before
he joined Red Hat as a quality assurance
engineer in the OpenJDK team. Now he
works as a software developer and tech
lead using Python and Go programming

languages to develop microservices
for OpenShift Insights. He also teaches

professional Java and Go training.

So for all these reasons, we need new
tools that will tell us what our system
looks like. Are those tools going to
be based on dynamic analysis with
tracing because it’s comfortable and
easy to add? I don’t know. I think
we should look for static analysis to
answer those questions. Are there
any tools that could do that? No, but I
believe there should be, because look
how many problems it would solve.

Matej Hrušovský: I think you’ve
answered all our questions. Is
there anything that you wish we
had asked that we didn’t?

Tomáš Černý: No, but I’ll add that
I’m excited to work with you guys!
There is a great opportunity to
look into the static analysis we are
currently researching. I talked at a
Europe RIG meeting about static
analysis used for microservices, which

I hope motivates others to get their
hands on it and contribute to it.

So if you are an academician, reach
out. If you are a technical person, reach
out. You can either test our tools or
share with us the challenges you are
facing but don’t have the resources to
solve, and we can develop a prototype.
We cannot promise a fully working tool,
but a prototype proof of concept could
solve some of your problems. Then
it could have the momentum of the
community to spin off a community-
based open source project.

Matej Hrušovský: That is the hope
of everything Red Hat Research is
doing: connecting the right people
and creating opportunities for people
to work together on interesting
research that may be useful
elsewhere. Thank you very much for
finding the time to talk with us.

Baylor students visit the Red Hat office. From left: Samuel Kim, Luka Lelovic, Michael Mathews, Mia
Gortney, Garrett Parker, Patrick Harris, Kate Burgess, Dante Hart, with Pavel Tišnovský (Red Hat)

http://root.cz/
https://research.redhat.com/rigs/europe-rig/

17research.redhat.com

V O L U M E 4 : 2

RESEARCH
QUARTERLY

 Join the MOC Alliance, as we create
 the world’s fi rst open cloud.

The Mass Open Cloud Alliance (MOC Alliance) is a
collaboration of industry, the open-source community,

and research IT staff and system researchers from
academic institutions across the Northeast that is

creating a production cloud for researchers. Of course,
a collaboration is only as good as its collaborators.

So, we invite you to check out the partners at massopen.cloud
and join us to create tomorrow’s open cloud.

To speak with someone, please call +1 617-353-4118
or email contact@massopen.cloud.

MAKING THE
CLOUD LESS,

WELL, CLOUDY.

Hosted at

PROV_Research_RedHat_PrintAd_21_FINAL.indd 1PROV_Research_RedHat_PrintAd_21_FINAL.indd 1 6/1/22 11:14 AM6/1/22 11:14 AM

V O L U M E 4 : 2

RESEARCH
QUARTERLY

18research.redhat.com

that take advantage of the collaboration
between Boston University and Red Hat
Research. But this story begins much earlier.

PLATFORMS
Early in my tenure with Red Hat, I was introduced
to FIWARE, a not-for-profit foundation based
in Berlin, Germany, that had developed an open
source platform for smart solutions. Originally
funded by investment from the European
Union, and now through membership fees and
engaging in public sector funded projects,
FIWARE developed a context broker able to
ingest data in many different formats, from
many different sources. After normalization,
this data is available for developers to build
applications to deliver value to citizens, city
officials, and their partners and stakeholders.

With over 400 members at the time of writing,
FIWARE has curated a framework of partners able
to deliver data across a range of domains, from
cities to utilities, manufacturing, and agrifood,
with more being added all the time. Bringing
this data together can have a powerful impact.
For example, a street lamp and a bus have two
very different contexts, yet if the street lamp
“knows” where the bus is, it can switch on as the

Can streaming data and machine learning
build better communities?
An open source powered smart village project underway
at the Red Hat Collaboratory may have the potential to
change the world—or at least a town near you.

by Jim Craig

For as long as I can remember—and
after almost 40 years in the IT industry,
that’s quite a while now—every year for

the last 20 years or so has been “the year
of the smart city.’’ It’s like when groupware
was new and promised the paperless
office, prompting the amusing response,
“We are more likely to see the paperless
toilet before the paperless office.”

Fortunately, only one of these predictions
has recently come to pass, and there
are now numerous examples of smart
cities, from Malaga to Montevideo. These
smart cities are increasingly driven by
open source, open standards, open data,
and open APIs that, when combined to
create a platform, make the design and
deployment so much easier and quicker.

That is the foundation of a project now in
process, “Creating a global open research
platform to better understand social
sustainability using data from a real-life
smart village.” In December 2021, the
project was one of the recipients of the
inaugural Red Hat Collaboratory Research
Incubation Awards, awarded to projects

Feature

About the Author
Jim Craig

is a product manager
in Red Hat’s global

public sector team.
He helps define

solutions to customer
challenges using

Red Hat technology
and services as well

as services from the
partner community.

https://research.redhat.com/blog/research_project/creating-a-global-open-research-platform-to-better-understand-social-sustainability-using-data-from-a-real-life-smart-village/
https://research.redhat.com/blog/research_project/creating-a-global-open-research-platform-to-better-understand-social-sustainability-using-data-from-a-real-life-smart-village/
https://research.redhat.com/blog/research_project/creating-a-global-open-research-platform-to-better-understand-social-sustainability-using-data-from-a-real-life-smart-village/
https://research.redhat.com/blog/research_project/creating-a-global-open-research-platform-to-better-understand-social-sustainability-using-data-from-a-real-life-smart-village/

19research.redhat.com

V O L U M E 4 : 2

RESEARCH
QUARTERLY

bus arrives, allowing passengers to see
better as they alight. The lamppost
could provide direction information,
local news and events, and a WiFi
hotspot, remaining illuminated until all
the passengers have left its coverage
zone, switching off to save energy.

Figure 1 indicates the extensibility
of the FIWARE architecture.

SMARTA BYAR AND SENSATIVE
During a webinar on smart cities hosted
by Red Hat with OpenForum Europe
in March 2021, Peter Geršak, State
Secretary for Public Administration

of the Government of Slovenia, said
something that really struck a chord.
Mr. Geršak pointed out that Slovenia
has only one large city; it is a mostly
rural country. He wanted to ensure that
rural communities would benefit from
these new developments and therefore
used the term smart communities,
which I like and have since adopted.
After all, communities of all sizes can
be more sustainable and efficient
for their citizens, not just cities.

About a week later, completely by
coincidence, Jan Malmgren contacted
me with an idea to scale up the

work he has been doing in Veberöd,
Sweden, called Smarta Byar, which
translates to smart villages in English.
The village of Veberöd is in the Lund
municipality in southern Sweden; it has
a population of just over 5,000 people
and is expected to almost double
in the next few years. Malmgren, a
resident of Veberöd since his childhood,
decided to use technology to improve
the lives of his fellow villagers.

Armed with a drone camera,
Malmgren took around 50,000
aerial photographs of the village.
The local university at Lund used

Figure 1: An example of the possible data collection and analytics sources for a smart village using the FIWARE context broker. Image source: FIWARE

https://openforumeurope.org/event/open-smart-cities/

V O L U M E 4 : 2

RESEARCH
QUARTERLY

20research.redhat.com

a supercomputer to stitch them
together (Figure 2) and create a 3D
model of the village (Figure 3).

To take his idea to the next step,
Malmgren needed some Internet of

Things (IoT) devices, a platform to
capture and make sense of the data,
and—most importantly—some smart
people to make it all work. Enter local
FIWARE partner Sensative, based
in Lund. Sensative developed Yggio

(pronounced ig-yu), a digitalization
infrastructure management system
(DiMS). Yggio is an open, unifying,
and massively scalable IoT platform.

At the time of writing, the Unity
game engine is the platform for the
digital twin, which is being replaced
by a platform from another Swedish
organization, Smart Visualizer. (Smart
Visualizer is based on Unity.)

EARLY USE CASES
With its rural location, the Veberöd area
is frequented by summertime walkers
who also like to barbecue. Using humidity
and temperature-monitoring sensors,
the Veberöd municipality can determine
which barbecue areas are in use. Veberöd
also lies in the primary agricultural
region of Sweden. To ensure that pumps
delivering water to cattle troughs are
working, humidity sensors were installed
and connected to Sensative’s Yggio
platform to detect any lack of water.

In collaboration with Telia, another
IoT operator in the region, and
through NB-IoT, bikes are tracked
in the village. If someone moves
a bike without the owner’s phone
being geolocated nearby, the system
sends an alarm to the owner and
the police. The bike is also GPS-
tracked so that it can be more
easily recovered. School gates are
monitored for whether they are open
or closed to help with child safety.
Finally, water quality and use are
monitored in collaboration with the
local water utility company VA Syd.

SCALABILITY THROUGH
DATA SCIENCE
Almost immediately after meeting Jan
Malmgren, I shared the project idea

Figure 2: Veberöd high-level digital twin. Image source: Jan Malmgren

Figure 3: Veberöd 3D digital twin. Image source: Jan Malmgren

https://smartvisualizer.com/

21research.redhat.com

V O L U M E 4 : 2

RESEARCH
QUARTERLY

with my colleague Alexandra Machado,
who leads Red Hat’s Social Innovation
Program. The Social Innovation
Program works with not-for-profits
to help them realize a benefit to
their operations using Red Hat open
source technology. Past engagements
have included the World Health
Organization, Greenpeace, UNICEF,
and Curriki. Machado suggested
I approach the Red Hat Research
team and submit a proposal for a
Collaboratory Research Incubation
Award with Boston University. Adding
Boston University (BU) to the ongoing
collaboration between Red Hat and
Smarta Byar has provided a real
injection of energy, intellectual rigor,
and a focus on new use cases.

Distinguished Professor of Engineering
at BU Christos G. Cassandras, our
Principal Investigator (PI), helped with
our successful bid for the incubation
award. Cassandras is also head of the
Division of Systems Engineering and
Professor of Electrical and Computer
Engineering at the Center for
Information and Systems Engineering
(CISE) at BU, and he brought with
him a talented team of academics and
students to work on the next phase of
the project, including co-PIs Vasiliki
Kalavri, John Liagouris, and Mayank
Varia. I asked Cassandras how the
project would scale up and out and
what part data science plays in scaling.

Professor Cassandras explained:
“There are two aspects of scalability
that apply to our project and the
question of how we can take what
we develop from a small village
like Veberöd to large mega-cities
worldwide. First, there’s the software
platform side of scalability. Can we

transfer a smart city app in Veberöd
to a large city? I believe this is what
the Red Hat OpenShift Container
Platform can accomplish. For example,
suppose our primary use case at the
end of this project were an adaptive
traffic light control (TLC) app for
the main—and possibly only—major
intersection in Veberöd. This would
automatically adapt green-red cycle
times based on the traffic sensed,
including the arrival of pedestrians.

“Now, suppose we want the same app
to scale up to a big city intersection
with multiple traffic flows and much
higher traffic volumes. If our software
platform is properly designed, any
tweaking we do in Veberöd (where
we can continue to study the app’s
operation with the luxury of less traffic)
can be readily transferred to the big city
traffic light even though its operating
conditions are seemingly very different.

“The other aspect is the system side
of scalability. This aspect is a bit more

subtle, but one I can better explain in
terms of data science, and potentially
one with broader implications for
modern technology. Take the same
example of an adaptive TLC app first
developed in Veberöd’s lone main
intersection. In a large smart city,
we first want to scale our ability for
adaptive TLC to multiple intersections
interconnected in a large network.
The ability to do that would allow
traffic lights to communicate with
each other—and with smart vehicles—
and potentially create green waves,
or cascading green lights that keep
traffic flowing continuously.

“As a result, vehicles seldom stop,
thus drastically reducing congestion,
energy consumption, and, in the
case of fossil-fueled vehicles, toxic
gas emissions. The difficulty with
this is the curse of dimensionality, a
term coined by Richard Bellman, the
inventor of the dynamic programming
optimization algorithm. In other
words, the complexity of extending

https://www.redhat.com/en/red-hat-community-and-social-responsibility-social-innovation
https://www.redhat.com/en/red-hat-community-and-social-responsibility-social-innovation
https://www.redhat.com/en/success-stories/world-health-organization
https://www.redhat.com/en/success-stories/world-health-organization
https://www.redhat.com/en/engage/open-invitation-to-help-the-planet
https://www.redhat.com/en/proof-of-concept-series
https://www.redhat.com/en/success-stories/curriki

V O L U M E 4 : 2

RESEARCH
QUARTERLY

22research.redhat.com

what works in one node of a network to
multiple nodes increases exponentially
with the size of the network. Things
just don’t scale using one particular
approach, but there is an alternative.

“However, the curse of dimensionality
starts with the premise that the
algorithms we develop with data
science are based on data collected
through the traditional time-driven
paradigm: With every tick of some
underlying clock, the algorithm is
updated. This approach is extremely
computationally expensive and
often unnecessary, since the specific
information an algorithm needs to
operate may not have changed from
one clock tick to the next. Not to
mention that if the algorithm operates
in an energy-constrained wireless
environment, communication with
every clock tick wastes battery life
(especially crucial for IoT devices!).
And, from a security standpoint, every
clock tick becomes an opportunity
for data to be jammed or stolen.

“Fortunately, we now have the new
event-driven paradigm at our disposal:
the algorithm is based on events
of interest to its specific operation,
so it is triggered only when relevant
data are detected. In this mode of
operation, computations are fewer,
communication is drastically reduced,
and security is tighter. There are
fewer instances of information
exchange, and while clock ticks are
predictable to a malicious agent,
events are generally not predictable.
In the adaptive TLC example, the
algorithm that adjusts green-red
cycles does not need to be updated
in a time-driven fashion. The only
events that matter are the IoT sensors’

detections of vehicles or pedestrians—
and, of course, the light-changing
events, which we control directly.

“How does this affect scalability
as defined above, extending from
one node in a network to multiple
potentially interacting nodes? If a
data-driven algorithm operates in
an event-driven manner, it scales
with the size of the events involved,
not the size of the network. Going
back to the TLC example: in a single
intersection, the TLC algorithm is
triggered only when one of a small
number of possible events occurs.
Therefore, as nodes are added, the
additional TLC algorithms also depend
on a small number of events that
occur at the associated intersection.

In this mode of

operation, computations

are fewer, communication

is drastically reduced, and

security is tighter.

“If we want to extend our TLC app
from a single intersection in Veberöd
to hundreds of intersections in
Stockholm or Boston, this effort is
scalable—that is, it increases linearly—
with the number of events at each
intersection. If it scaled with the
number of nodes in the network, the
effort would increase exponentially.”

At this stage of the project, there are
so many interesting and innovative

ideas flying around, it’s like being a kid
in a candy store. One of these ideas
is what Malmgren has termed social
sustainability: checking on the health
and mental well-being of his fellow
villagers using a simple app combined
with machine learning and AI models
to understand if there is a correlation
between water consumption,
happiness, and well-being.

Or could it be speeding cars, light
pollution, or air quality impacting the
well-being of the villagers? Another
exciting example discussed recently is
reducing or possibly eliminating cars
from the village through the use of on-
demand, autonomous electric vehicles.

Whatever use case(s) we arrive at,
there is confidence it will have been
determined with the highest level
of citizen engagement, intellectual
rigor, and eye to the future. Malmgren
is very clear in his goal: He would
like this smart village platform to go
global, being adapted, tweaked, and
tuned for different environments and
use cases. Stay tuned to Red Hat
Research to see what happens next!

See Robert Spal’s article
“How open data standards
make Brno a better city”
on the next page for an
example of smart community
concepts in action.

23research.redhat.com

V O L U M E 4 : 2

RESEARCH
QUARTERLY

Feature

How open data standards make
Brno a better city
by Robert Spal

To flourish in an ever-changing world,
cities need to increase their use of
urban data. Municipalities all across

the globe are following this trend, and the
city of Brno is no exception. Geographic
information systems (GIS) and spatial data
help form the backbone of our city’s decision
making and policy planning. Additionally,
our urban open data platform allows the
city and the general public to use the data.
Without these components, we would not
be able to deliver the high-quality services
and great quality of life Brno is famous for.

Our city collects and maintains millions of
data entries each day. They vary widely,
ranging from greenery to traffic data
to population data. Most of the data
collected have a spatial dimension and are
best maintained in the GIS, which we use
throughout the urban environment. The city
itself, city companies, city districts, and all
publicly funded entities use a single GIS.
This allows for efficient data sharing across
the organizations and robust utilization of
the data for both day-to-day management
and strategic planning and policymaking.

About the Author
Robert Spal
is a GIS Specialist in
the data and analytics
department of the city
of Brno. He manages
the technical
and functional
development of
the data.brno.cz
urban datastore
to ensure that the
content, functionality,
operation, and user
experience meet the
needs of its users.
He is also responsible
for data acquisition,
processing, and in-
depth spatial analysis.
When not working,
Robert likes to swim
and travel and is an
enthusiastic cyclist.

Brno, Czech Republic, is home to the world’s largest Red Hat technology center,
and it was the birthplace of the university-industry relationship model that became
Red Hat Research. Here’s how the smart city concept has been implemented in one of
our hometowns. The article stems from a presentation at DevConf.cz 2022.—Ed.

On top of the GIS sits the urban open data
platform data.brno.cz, which serves as an entry
point for anyone from the public to download
or incorporate city data into their projects or
systems. As part of promoting transparency and
openness, we have also begun to emphasize
publishing data using open data standards.

Open data is one of the fundamental

pillars of our smart city concept.

This means that data is published in a machine-
readable format, free of license restrictions, and
easily accessible. Most of them are continuously
updated, and all have complete metadata.
We provide around 150 datasets this way.

TRANSIT
One of the use cases we are most proud of is
an app that creates accessibility models of our
region by public transit using general transit
feed specification (GTFS) data. The application
is used primarily by traffic planners to identify

http://data.brno.cz/
https://data.brno.cz/
https://gis.brno.cz/ags/dopravni-dostupnost-mhd/?org=mestobrno
https://www.google.com/url?q=http://data.brno.cz&sa=D&source=docs&ust=1659540705524625&usg=AOvVaw32_V_EAbki27IX_yNfPLLz

V O L U M E 4 : 2

RESEARCH
QUARTERLY

24research.redhat.com

how different parts of a city or region
are doing in terms of accessibility.
They can detect areas with better or
worse accessibility by public transit
and get a quick and easy comparison
with other areas. This insight is then
used in planning to ensure better
accessibility, connectivity, and
efficiency for the whole system.

However, the application is also
accessible to the general public. It can
be used, for example, to select locations
when looking for new housing so that it
is possible to get to work or school in a
specific time interval. The application
can also serve private companies
who need to better understand the
transportation context of a location

and compare the connectivity of
different parts of the city or region.

CLIMATE CHANGE
Another app built with the help of
our data is the map of photovoltaic
potential, which visualizes how much
sunlight falls across the whole city.
The detailed map allows citizens to
identify their rooftops’ potential for
installing photovoltaic panels.

Brno has a comprehensive plan to build
solar panels on city-owned buildings,
and the app allows the environmental
department to identify and assess where
they would deliver the best returns.

Together with a thermal map used
for better tree planting, it is one
of the supporting tools we use
to combat climate change.

RECYCLING AND WASTE
MANAGEMENT
We have also developed a walking
accessibility model that visualizes
how long it takes to get to the nearest
container for recyclables. The model
contains three zones (for one, two,
or three minutes of walking) and is
constructed for each type of recyclable,
such as paper or plastic. The model is
updated daily, allowing our colleagues
in the environmental department to
assess the efficiency of the complete
network and propose changes. Our goal
is to get to a state where no one need
walk more than three minutes to get to
the needed container; later, we would
like to reduce that to two minutes.

TRAFFIC
Whether for bikes, cars, or any other
type of vehicle, we collect traffic data
and use it extensively. For example,

In this visualization of public transit accessibility, each color represents
a 15-minute zone from the city center by public transit.

A map visualizing bike traffic intensity data through different colors also shows the number of bike accidents.

https://data.brno.cz/apps/mapa-osvitu/explore
https://data.brno.cz/apps/mapa-osvitu/explore

25research.redhat.com

V O L U M E 4 : 2

RESEARCH
QUARTERLY

every major intersection in our city
collects the number of cars in real time.
This way, we know what will happen if
we close some streets and can prevent
or at least mitigate traffic jams. The
model is enhanced by Waze near-real-
time data feeds, including current road
events or traffic speeds, which we get
as a partner of the Waze for Cities
program. We also collect the public
transit positional data, which, for example,
allows transit vehicles to get preferential
access at traffic lights. We expect heavy
utilization of this data by the public,
as we’ve received many requests.

Our transportation department also
collects the bike traffic intensity data
from several sources. We have bike
traffic intensity sensors on the major
cycling thoroughfares and get the data
from a “Bike to work” event, where
thousands of people record their daily
trips to work for the entire month of May.
The Strava app provides recreational
biking data, and we also survey the
streets every two years. All this biking
data is then used to plan new cycle
lanes and paths and assess the current
ones. Most of this data can be found
in the bike traffic intensity data app.

Parking data is a vital part of traffic data.
We maintain huge swaths of parking
data, ranging from specific allocated
parking spots through parking meters
to real-time car park capacity data. The
data is used in policy planning for the
regulated parking system that covers
almost the whole of the city. We recently
opened the data to the general public,
and several companies already utilize it
in their navigational apps or systems.

In the very near future, we plan to publish
the positional data of our garbage trucks

Each color change represents a one-minute walking distance to the nearest
container for recyclables, from green (one minute) to red (three minutes).

so that navigation companies such as
Waze or Garmin can display them in
their systems. This will help drivers save
time by avoiding streets with traffic jams
caused by garbage trucks, as many of our
streets are exceptionally long and narrow.

PUBLIC DATA ACCESS
These are only some of the ways data is
used to make Brno a healthier, happier
city. There is a wide range of valuable
applications that can be built on top of
city data to improve the environments we
live in. Publishing those data using high-
quality open data standards can further
their impact and will eventually introduce
new tools or apps that make the lives of
citizens easier and more sustainable.

Although the examples given here
reflect the Brno region at a very local
level, all of the results are replicable in
other cities as well since we use only

worldwide standards and software
solutions. The best part is that if you
would like to test and try out some of
your ideas and your city doesn’t provide
the data you are looking for, you can
always try ours! Everything discussed
above is published in an open format on
data.brno.cz, and it is also in English.

https://www.waze.com/wazeforcities
https://www.waze.com/wazeforcities
https://datahub.brno.cz/apps/bike-traffic-intensity/explore
https://data.brno.cz/

V O L U M E 4 : 2

RESEARCH
QUARTERLY

26research.redhat.com

Applying lessons from our
upstream hypervisor fuzzer to
improve kernel fuzzing
Could a grammarless approach increase its effectiveness?

Feature

by Alexander Bulekov and Bandan Das

Low-level systems such as Linux kernels
and hypervisors form the foundation of
cloud systems today. The virtual machines

(VMs) provided by hypervisors are attractive
targets for attackers. Bugs in hypervisors
create the risk of an attacker in a malicious VM,
compromising the isolation guarantees provided
by the hypervisor, the underlying system. and
the neighboring VMs. Similarly, OS kernels
continue to be targets for attackers, as they are
often tasked with managing access to hardware
and enforcing separation of privileges between
processes. A kernel compromised in a VM can
place the entire physical system at risk, since an
attacker with a VM kernel has complete access
to the hypervisor’s virtual-device attack surface.

Fuzz testing has recently become popular as a
proactive measure to identify bugs in software
before they are exploited. Fuzz testing (or
fuzzing) is an automated technique for generating
software input and detecting bugs in its execution.
Fuzzing has been applied to both hypervisors
and kernels; however, the state-of-the-art
techniques require extensive manually written
grammars to fuzz each individual interface. These
grammars create a potential scalability problem,
as hypervisors and kernels grow rapidly and
outpace manual efforts to create descriptions.

About the Author
Alexander Bulekov

is a Computer
Engineering PhD

Candidate at Boston
University and an
intern at Red Hat
Research. Alex is

advised by Professor
Manuel Egele and is

interested in systems
security topics

including fuzzing, web
security, and OS/

Virtualization security.

In RHRQ 2:1, we introduced Morphuzz, a technique
to fuzz hypervisors (“Fuzzing hypervisor virtual
devices”). Since then, our Morphuzz conference
paper has been accepted and will appear at Usenix
Security ’22. We fully upstreamed Morphuzz into
the QEMU (Quick EMUlator) hypervisor and
found dozens of bugs. Additionally, we leveraged
the lessons learned while developing Morphuzz to
create a novel technique for fuzzing OS kernels.
This article will describe the improvements
we made to Morphuzz that made it successful
upstream. We will also briefly delve into how we are
applying Morphuzz’ concepts to kernel fuzzing.

MORPHUZZ UPSTREAM
The Morphuzz fuzzer permits fuzzing virtual
devices across all three major input/output (I/O)
interfaces—port I/O (PIO), memory-mapped
I/O (MMIO), and direct memory access (DMA)—
without any specific harnesses or grammars
for individual virtual devices. One of Morphuzz’
key benefits is its ability to transparently fuzz
complex DMA-based data structures by reshaping
the input space. Typically, DMA transfers are
performed asynchronously by the device, making
DMA fuzzing difficult for a fuzzer operating from
the perspective of a CPU. However, Morphuzz
applies hooks to the hypervisor to transform
DMA into a synchronous operation. This allows

https://research.redhat.com/wp-content/uploads/2019/12/RRQ-Vol2-1.pdf
https://research.redhat.com/wp-content/uploads/2019/12/RRQ-Vol2-1.pdf

27research.redhat.com

V O L U M E 4 : 2

RESEARCH
QUARTERLY

About the Author
Bandan Das
is an engineer in
the Virtualization
group at Red Hat.
He spends most of
his time on KVM,
QEMU, and, more
recently, containers.
His research
interests are in the
areas of systems
performance and
hardware partitioning.
As part of Red Hat
Research, he is
involved in the fuzzing
project, teaching,
and mentoring.

the fuzzer to populate data accessed by DMA
on demand, just before it is read by the device.

Continuous fuzzing has become an integral part
of the software development process for many
projects, as it can rapidly catch bugs before they
make it into releases. Thus once our original
prototype implementation of Morphuzz for
QEMU was successful, we were enthusiastic
about integrating it into upstream QEMU to
enable continuous open source fuzzing.

During the upstreaming process, we developed:

•	 Documentation for using Morphuzz

•	 Scripts to fuzz QEMU on the OSS-Fuzz platform,
which provides resources to fuzz security-
sensitive open source projects continuously

•	 Tools to unbend and minimize crashes detected
by Morphuzz, as well as a script to convert
crashes into copy-pasteable reproducers
and upstreamable QEMU test cases

The tools, in particular, are important for end
users. At its core, Morphuzz uses a simple opcode
interpreter to convert inputs received from the
fuzzing engine (libFuzzer) into sequences of
I/O operations. When Morphuzz finds a crash,
it is easily reproduced by simply providing
the crashing input to the Morphuzz opcode
interpreter. However, QEMU is maintained by
close to 200 developers, most of whom may
not be familiar with the fuzzing infrastructure.
Simply providing binary Morphuzz crashes
creates additional work for the developer, who
will need to build QEMU with fuzzing support
and understand Morphuzz’ essential inner
workings. For our upstream integration, it was
necessary to provide a mechanism for converting
Morphuzz crashes into standard QEMU QTest
test cases that developers are familiar with.

QEMU features a simple facility called QTest for
creating virtual-device test cases. QTest allows
developers to easily create readable unit tests for

virtual devices. Morphuzz unbends each crash into
a standalone QTest reproducer. It then replays
the crashing input through the opcode interpreter
and logs the resulting linear sequence of MMIO/
PIO and DMA-related device I/O commands in
the order they were issued. Since real VMs do
not populate DMA buffers on demand, Morphuzz
annotates all I/O commands used to fulfill DMA
accesses in the log with a prefix. Then, Morphuzz
simply rearranges the logged I/O commands so
that each command filling a DMA request precedes
the direct PIO/MMIO command that triggered it.

The result is a linear QTest API trace, which
can be piped into a standard QEMU process to
reproduce the crash. We also provide a facility
to minimize these QTest traces by removing
operations (or parts of operations) unnecessary
to reproduce a crash. As a result, we can often
reduce several-megabyte-sized QTest traces
into several hundred bytes. The QTest trace can
be sent to virtual-device developers along with
the command line used to specify the connected
virtual devices, as a simple, self-contained,
straightforward way to reproduce crashes.

We also provide a lightweight tool that can
convert Morphuzz’ automatically generated
QTest traces into C code that can be committed
upstream for regression testing new changes.
OSS-Fuzz is continuously running Morphuzz for
over 40 virtual device configurations. Due to
Morphuzz’ generic design, it usually takes just
seconds to add support for fuzzing additional
devices. Combining OSS-Fuzz reports with
the infrastructure for creating reproducers has
led to over 100 bugs reported and 15+ CVEs
(common vulnerabilities and exposures) to date.

FUZZING THE LINUX KERNEL
The Linux kernel continues to serve as one of
the most security-critical building blocks in
modern computing. The kernel’s fundamental
role in managing resources and enforcing
isolation between applications makes it an
attractive target for attackers. Recognizing

V O L U M E 4 : 2

RESEARCH
QUARTERLY

28research.redhat.com

the critical nature of OS security,
many fuzzers have targeted OS
kernels. Most OS fuzzers focus on the
critical system-call interface, which
enables user-space applications to
request services from the kernel.
The state-of-the-art kernel fuzzer,
Syzkaller, has reported thousands
of Linux kernel bugs. Thanks to its
accessibility and automation, Syzkaller
has become an integral component
of the kernel-development process.
However, Syzkaller relies heavily on
manually written descriptions for
every kernel interface. For example,
it features 2,013 lines of hand-written
descriptions of the kernel’s KVM
interface (used to provide access to
hardware-accelerated virtualization).
Syzkaller contains tens of thousands
of interface descriptions, with many
interfaces still missing support.

While developing Morphuzz, we
noticed key similarities between
the virtual-device input space on
hypervisors and the system-call
input space exposed by kernels.
Hypervisors can asynchronously
read DMA inputs from any location in

One of Morphuzz’
key benefits

is its ability to
transparently fuzz

complex DMA-based
data structures

by reshaping the
input space.

Invalid System-Calls

syscall()

Valid System-Calls

Non-existent
File-Descriptors

Invalid
Pointers

Memory-Access
Hooking

File-Descriptor
Hooking

By default, randomly generated system-calls cannot reach deep kernel-code paths, as the arguments quickly
trigger error conditions. Our fuzzer avoids this by reshaping the memory and file-descriptor input spaces.

guest memory. Likewise, kernels can
access data in user-space process
memory while handling system calls.
Thus, we identified that Morphuzz’
model for fuzzing virtual devices
could likely be replicated in the
kernel. However, the Linux kernel is
a significantly more complex target
than most hypervisors. While QEMU
has a sizeable 2 million lines of code,
Linux has close to 30 million lines.
Additionally, unlike hypervisor fuzzing,
kernel fuzzing has been an active
area of development for decades.

A simple grammarless fuzzer could
pass fuzzer-provided integers as
arguments to system calls. However,
such a fuzzer is quickly rendered
useless by the effectively boundless
system-call input space induced by
pointer and file-descriptor arguments.
Fuzzers such as Syzkaller require
annotations of struct types, flag fields,
enumerations (enums), and constants
passed as system-call arguments. Our
fuzzer is based on the core insight
that instead of relying on extensive
system-call descriptions, the system-
call input space can be reshaped

29research.redhat.com

V O L U M E 4 : 2

RESEARCH
QUARTERLY

Overview of our kernel fuzzer featuring a combination of snapshot-fuzzing, kernel-hooking, and test-case execution components.

Our grammarless approach achieves coverage that is competitive with
Syzkaller, at a small fraction of the configuration cost.

(much like Morphuzz’ reshaping of
the DMA space) to make it conducive
to fuzzing. That is, we leverage the
APIs used by kernel code to handle
system calls to reduce the input
spaces associated with memory and
files. By reshaping the input space,
we can essentially rely on a general-
purpose fuzzer (e.g., libFuzzer)
to produce complex system-call
behaviors. This technique eliminates
the need for detailed descriptions and
harnesses for individual system calls.

Harnessing the kernel is more difficult
than harnessing QEMU (a user-
space application). As such, we relied
on emerging full VM snapshotting
to execute kernel fuzzer test cases
in individual VMs, which are rapidly
restored from a snapshot after each
input. As we mentioned above, file
descriptors pose a challenge for
kernel fuzzing. File descriptors are
passed through system calls as simple
integers. A typical process only has a
handful of files open. As a result, the
semi-random mutations of a fuzzer are
highly unlikely to generate an integer
system-call argument associated

with a valid (i.e., open) file. Even if the
fuzzer guesses a valid file-descriptor
integer, it would simultaneously need
to pick a system call and arguments
that are valid for that type of file.

Our fuzzer reshapes the file-
descriptor space by hooking the
internal APIs used by the Linux kernel
to associated file-descriptor numbers
with the underlying resources. Then,

using the dup2 system call, we
associate the fuzzer-provided integers
with valid files. This ensures that any
fuzzer-provided value interpreted as a
file descriptor by the kernel is mapped
to a valid open file. Our strategy
for user-space memory accesses is
similar; we hook the major APIs used
by system calls to copy data from user
space. However, the kernel provides
additional mechanisms to access data

AgentLinux VM

Kernel Under Test

User-Memory
Access API

Fuzzer FD Table

Userspace Memory
CFU Thread

Input
Canonicalized Input

UFFD Thread
Input Interpreter

Target Component

Agent-Config

KCOV Coverage

fget

alloc_fd

Syscalls

Direct Memory
Accesses

dup2
Check for new coverage

Store Interesting
Canonicalized Inputs

Reset VM State

Generate New Input

Copy Input Into VM
QEMU-Fuzz

Module

1

2

3

Component Syzkaller Grammarless Fuzzer
Edge Count Syzlang LoC Edge Count Conf g LoC

bpf 3623 864 3242 (89.48%) 1 (0.12%)
video4linux 595 381 540 (90.76%) 4 (1.05%)

rdma 545 1474 503 (92.29%) 5 (0.34%)
binder 339 272 342 (100.88%) 6 (2.21%)
cdrom 136 351 139 (102.21%) 5 (1.42%)

kvm 7802 891 7986 (102.36%) 7 (0.79%)
vhost net 218 157 225 (103.21%) 9 (5.73%)

drm 1832 745 1962 (107.10%) 7 (0.94%)
io uring 960 343 1115 (116.15%) 6 (1.75%)

tty 1408 381 1845 (131.04%) 9 (2.36%)
Average 103.55% 1.67%

V O L U M E 4 : 2

RESEARCH
QUARTERLY

30research.redhat.com

in user space, some of which cannot
be hooked through a centralized API.
To work around this, we applied the
Linux kernel’s userfaultfd feature
to detect access attempts to user-
space memory at the MMU level.

Thus we have two layers of hooks for
user-space memory: the centralized
API hooks and the userfaultfd
hooks. Similar to Morphuzz, at
its core, our kernel fuzzer simply
interprets binary inputs from a
general-purpose fuzzing engine
(libFuzzer) into sequences of system
calls. Hooks transparently allow the
fuzzer to populate file descriptors
and complex data structures just in
time for the kernel to access them.

We found that even though our
kernel fuzzer does not feature
detailed system-call descriptions,
it achieves competitive coverage
compared to Syzkaller. Furthermore,
we found new issues in code already
covered by Syzkaller, highlighting
that manually written descriptions
can often underfit or overfit the
interface in question. Our prototype
implementation requires only
a few lines to add support for
fuzzing additional kernel interfaces
(1.7% as many lines as Syzkaller’s
descriptions) while achieving
103.5% of Syzkaller’s coverage.

Currently, our grammarless solution
is completely separate from the
kernel’s existing extensive fuzzing
infrastructure (based mainly on
Syzkaller). Syzkaller benefits from
years of contributions by dozens
of developers. As such, we hope to
integrate our grammarless methods
into existing kernel fuzzing code,

which provides extensive facilities
for creating reproducers, identifying
commits that introduced bugs, and
detecting regressions. Furthermore,
Syzkaller can simultaneously fuzz an
entire kernel, while each instance of
our grammarless fuzzer focuses on
an individual kernel component. Since
bugs often lie at the intersection
of a complex combination of kernel
features, we are actively investigating
ways our grammarless approach can
be improved to fuzz all system calls
without negatively impacting fuzzing
performance. We are also working
towards integrating a VM-snapshot-
based fuzzer into upstream QEMU
(this is the subject of a Google
Summer of Code 2022 Project).

The Linux kernel is growing rapidly,
and security efforts need to advance
just as quickly. We found that it is
possible to decrease the reliance of
kernel fuzzers on manually written
descriptions while maintaining
competitive coverage and bug-
finding performance. We are excited
to see the potential of grammarless
approaches when combined with
modern fuzzing techniques, and
we are actively investigating ways
to upstream parts of our kernel
fuzzer so that it may serve the Linux
community for years to come.

The kernel’s
fundamental role in
managing resources

and enforcing isolation
between applications
makes it an attractive
target for attackers.

When this issue went to press,
the 31st USENIX Security
Symposium had not yet occurred.
Visit usenix.com/conferences to
find and view media from this event.

31research.redhat.com

V O L U M E 4 : 2

RESEARCH
QUARTERLY

THE UNIVERSAL AI SYSTEM FOR
HIGHER EDUCATION AND RESEARCH

NVIDIA DGX A100
Higher education and research institutions are the pioneers of innovation, entrusted to train future
academics, faculty, and researchers on emerging technologies like AI, data analytics, scientific
simulation, and visualization. These technologies require powerful compute infrastructure,
enabling the fastest time to scientific exploration and insights. NVIDIA® DGX™ A100 unifies all
workloads with top performance, simplifies infrastructure deployment, delivers cost savings,
and equips the next generation with a powerful, state-of-the art GPU infrastructure.

Learn More About DGX @ nvda.ws/dgx-pod
Learn More About DGX on OpenShift @ nvda.ws/dgx-openshift

© 2020 NVIDIA Corporation. All rights reserved. NVIDIA, the NVIDIA logo, and DGX are trademarks and/or registered trademarks
of NVIDIA Corporation in the U.S. and/or other countries. Other company and product names may be trademarks of the respective
companies with which they are associated.

partner-print-red-hat-ad-research-publication-1520004-r3.indd 1 12/7/20 10:24 AM

V O L U M E 4 : 2

RESEARCH
QUARTERLY

32research.redhat.com

Verification of a Linux distribution
While research on formal verification continues, fully
automatic dynamic analysis of RPM packages is now
available for Fedora users.

Feature

by Kamil Dudka

In 2019, Red Hat joined the AUFOVER
(Automation of Formal Verification) project,
which focused on fully automatic detection of
bugs in complex software products based on
formal verification. The project was driven by
Honeywell and supported by the Technology
Agency of the Czech Republic. At that time,
Masaryk University and Brno University of
Technology were developing formal verification
tools primarily intended for research. The industrial
partners Honeywell and Red Hat were working
to make the research tools practically useful and
integrate them into their business workflow.

Red Hat collaborated primarily with Masaryk
University because they were developing the tools
we were interested in, namely Divine, which uses
explicit-state model checking, and Symbiotic,
which combines instrumentation, slicing, and
symbolic execution. Our task was to integrate
the formal verification tools into our environment
and use them to formally verify the software that
we distribute in our Linux distributions (Fedora
and Red Hat Enterprise Linux). Thanks to the
AUFOVER project, these tools are now available
in Fedora through a simple user interface.

Our Linux distributions consist of RPM packages.
The RPM package manager is used to install and

remove software components of the system.
We took advantage of this packaging system
and built the automation of formal verification
on top of it. In addition to RPM packages that
can be installed on the target system, there are
so-called source RPM packages, which contain
source code and machine-readable metadata
describing how to build the software from source.

The source RPM packages can be processed by
tools like rpmbuild and mock in a fully automatic
way to produce binary RPM packages. We have
developed RPM-based automation of formal
verification that takes advantage of the machine-
readable metadata as well as the existing tools for
automatic builds of RPM packages. We run the
tools in a modified run-time environment, however.

The formal verification tools Symbiotic and Divine
perform formal verification of C programs. The
C language ecosystem does not come with any
native framework for a fully automatic build from
source code. The presence of the metadata in
source RPM packages was crucial for the success
of the solution we developed. On the other
hand, the RPM packaging was initially developed
for the build and installation of programs. The
inventors of the RPM packaging format did
not take fully automatic formal verification of

About the Author
Kamil Dudka

joined Red Hat as
an intern in 2008
while finishing his

master’s degree in
Intelligent Systems

at Brno University of
Technology. In 2009,
he started to work on

a formal verification
tool named Predator,

which has won
several gold medals
in the International

Competition on
Software Verification

(SV-COMP). Since
2011, Kamil has

been developing
open source tools
for fully automatic

static analysis of
RPM packages. In
2019 he joined the
AUFOVER project,

where he worked on
the automation of

formal verification in
open source Linux

distributions.

33research.redhat.com

V O L U M E 4 : 2

RESEARCH
QUARTERLY

For an earlier report
on AUFOVER, see
“Automated Formal
Verification,” RHRQ
2:2 (August 2020).

SRPM list of bugscsmock

divinesymbioticcmbcclanggcc

 Figure 1. Integration of formal verification tools as csmock plugins

programs into account. To succeed with our task,
we had to overcome a few technical obstacles.

The tools Symbiotic and Divine operate on
the intermediate code of the LLVM compiler
(so-called bitcode) rather than binary code
for a specific architecture. However, we need
to build the architecture-specific code, too,
in order not to break the native build process.
The binary files created by the compiler are
often executed during the build, and the results
they produce have a significant impact on the
further build process. To address this problem,
we modified the build environment such that the
intermediate code is captured during the build
and embedded directly into the resulting binaries.
The intermediate code is later extracted from the
binaries when the formal verification tools need it.

Another problem we needed to solve is how to
automatically trigger the formal verification tools
on the captured intermediate code. The RPM
packaging format does not include any metadata
describing which binaries should be given which
parameters upon execution. The situation is even
worse with RPM packages that install dynamically
linked libraries only. The dynamically linked libraries
cannot be executed on their own. They need to
be linked to binary executables at run time.

Luckily, modern RPM packages contain test suites
that run during the build. The entry point for
these tests is a shell script that may, in theory, do
anything. In addition to executing the programs
produced by the build of an RPM package, the
script may use external testing frameworks
and other programs installed on the system.

Our goal was to trigger formal verification tools
only for the programs produced by the build of the
given RPM package. To achieve this goal, we used
an innovative solution, csexec, based on wrapping
the system dynamic linker. We also experimented
with an alternative solution, ldpwrap, based on
instrumentation of the main() function, as the
commonly used entry point of C programs.

In both cases, the formal verification tool
automatically launched upon each execution of a
binary produced by the build of an RPM package,
and the verification tool was given the original
command-line arguments passed by the testing
framework. In some cases, RPM packages contain
a single test that executes multiple binaries
in parallel, possibly communicating with each
other, for example, through a pipe. Moreover,
the tests themselves are often executed in
parallel to deliver results faster. In such cases, the
automatically triggered formal verification tools
also run in parallel. Their results are being captured
while the tools are running and subsequently
serialized in a single file that contains all relevant
results of the formal verification tools.

Thanks to the csmock tool, which we originally
developed for static analysis of RPM packages,
we were able to hide all the technical details
mentioned above and offer our solution through
a simple user interface. We have developed
experimental csmock plugins (see Figure 1)
for Symbiotic and Divine. Fedora users can
just install a csmock plugin, run csmock with
the plugin enabled, and wait for the results. Of

https://research.redhat.com/blog/article/automated-formal-verification/
https://research.redhat.com/blog/article/automated-formal-verification/
https://github.com/csutils/cswrap/wiki/csexec
https://github.com/aufover/ldpwrap

V O L U M E 4 : 2

RESEARCH
QUARTERLY

34research.redhat.com

practically useful. Thanks to our
dynamic linker wrapper (csexec),
we could extend covscan, our
internal service for static analysis
of RPM packages, to support fully
automatic dynamic analysis with
the tools Valgrind and strace.

Based on our experiments with
bigger software projects, the
developers of Symbiotic decided
to work further on improving
the tool so that it handles more
practical use cases. The automation
we developed will help us to
monitor progress on this effort.

course, csmock does not remove any
limitations of the verification tools,
like memory and time complexity
or annotation requirements. Still,
csmock makes it much easier to
evaluate formal verification tools on
RPM packages and, consequently,
on a Linux distribution.

The formal verification did not finish
successfully in the vast majority of
RPM packages we tried. Instead,
we optimized the automation to
deliver at least partial results in
a predictable amount of time.
This is achieved by specifying a
timeout for a single run of a formal
verification tool. By default, the
timeout is set to 30 seconds. For
more complex RPM packages with
higher test coverage, we needed to
decrease the timeout value to get
the results in a reasonable time.

Our most expensive experiment
was the formal verification of
coreutils-8.32-31.fc35 with Symbiotic,
where the formal verification job
took approximately eight hours on
a machine with 16 CPU cores, even
though the timeout was set to only
eight seconds. This was primarily
caused by the fact that, during the
formal verification of a single RPM
package, Symbiotic was triggered
24,470 times in total. To increase
the search depth, we would need
to increase the timeout value—at
the cost of waiting longer for the
results—or use more powerful
hardware. As initially expected, we
hit the obstacle of the excessive time
complexity of formal verification.

All the interesting results of our
experiments with formal verification of

RPM packages are publicly available
on GitHub, including an evaluation
framework that can be used to
reproduce our results on any Fedora
system with sufficient performance.
I would also like to highlight that
Symbiotic was successful at the 11th
Competition on Software Verification
(SV-COMP 2022), winning three
gold medals and one bronze. This
success confirms that we selected
the right tools to experiment with.

While the formal verification tools are
still under research, the tooling we
developed for automation is already

Learn more about the event at
red.ht/research-day-europe-22

In-person event showcasing research cooperation
between Red Hat and academic institutions worldwide

September 15th
Brno, Czech Republic

Red Hat Research Day
Europe 2022

https://github.com/aufover/aufover-benchmark

35research.redhat.com

V O L U M E 4 : 2

RESEARCH
QUARTERLY

Matchmaking for engineers: how we
learned to bring research and industry
together in a way that works
by Ilya Kolchinsky

As a research supervisor, one of my most
important tasks is finding a good fit between
engineers with a problem and academicians
who can collaborate with them on a project
to explore some aspect of that problem.

Not every engineering problem is a good match
for research—and not all professors are interested
in topics immediately relevant to industry. Finding
the right people and building a bridge between
them is a process that has taken time to develop.

STARTING UP AS A RESEARCH SUPERVISOR
When I began work at the Red Hat Research
site in Israel, we did not have someone in
a research supervisor role. Although this
role existed at other sites, every region has
different relationships among academic,
industry, government, and related entities;
we needed to create our own processes.

Idan Levi (Research Director of Red Hat
Research in Israel) and I knew that the research
supervisor would function as the person between
the academic and the industry sides of a
project. What we needed to determine through
experience was all the different elements of
bringing engineers and academics together.
For example, when a professor speaks to
someone from industry, they may be using the
same words but mean very different things. For
successful industry-academia collaboration, you

About the Author
Ilya Kolchinsky
is a research scientist
and research
supervisor with
Red Hat Research
and Technion—
Israel Institute of
Technology. He
has a PhD and
BSc in computer
science, both from
the Technion. Ilya’s
research interests
span a wide range
of topics in big data
processing, such as
distributed event-
based systems,
data stream mining,
and applications
of AI and machine
learning in stream
processing engines.

need someone who can translate. But the work
goes well beyond that. In fact, it starts before
a project even exists and then continues all the
way to successful publication and upstreaming.

THE LIFECYCLE OF A RESEARCH PROJECT
My first responsibility is to find unsolved
problems: is there a challenge an engineer
or team is facing that could be solved with
science? For example, is there a problem
that an engineer is trying to overcome with
a lot of compute resources that an efficient
algorithm could address instead so the cost
of resources and run time is not so high? My
background (a PhD in Computer Science
from the Technion University in Haifa, Israel,
and a history of publishing) is very helpful
here, because a research supervisor needs to
understand both how an engineer thinks and
what constitutes a good research problem.

Then I need to identify the relevant party in
academia who would be a good fit for creating a
collaborative project. To do this, I’m working all
the time on expanding our network of academic
connections, finding researchers who work in the
technical fields relevant to Red Hat Research.
I build a list of problem-solving engineers
on the industry side and a list of researchers
on the academic side, and then I can do the
magic of matching the right people together.
And that’s all before the project begins.

Column

V O L U M E 4 : 2

RESEARCH
QUARTERLY

36research.redhat.com

At that point, I bring the parties
together for a conversation, or
sometimes several conversations,
and help mediate to ensure that
we can establish a research-worthy
challenge and a common goal.

Typically, academics and

industry have different

priorities: professors want

to publish a paper, and

engineers are thinking

about products. At Red Hat

Research, we have a unique

position that helps us bring

the two groups together.

More and more academics are becoming
aware of the advantages of open
research and want to contribute to open
source projects. Red Hat is easy to
collaborate with: we don’t want to claim
any intellectual property (IP), so we
encourage researchers to publish freely.
However, we also implement solutions
in a practical way by upstreaming them
as high-quality code. It does take
some discussion to get the problem
defined in a way that all can agree on,
but it’s essential to do that in advance
so the project stays on track.

After the collaborators shake hands and
start work, the research supervisor’s
role combines advanced project

management and participating in
the actual research, for example, by
attending brainstorming sessions or
supervising students on the technical
aspects of the project. It’s my
responsibility to monitor the project
for the entire lifecycle and make sure
that it doesn’t get frozen at some
point. If a problem arises, I’m in charge
of solving it. Here again, the research
supervisor needs to see things from
multiple perspectives. I need to
understand the technical aspects of
the project and academic process,
and if someone is not satisfied, I need
to understand why so I can resolve it
and make sure everyone is happy with
the results at the end of the day.

When the project is finished, I help
see that it gets upstreamed. At some
point, we will promote the innovation
in hopes it will become part of a
product that can benefit the masses,
but that’s not our role. Our goal is to
push the innovation’s boundaries.

CREATING HIGH-
QUALITY PROJECTS
Because this way of working is still
relatively new for us, I can’t point
to a project that completed the
full cycle—yet. However, a good
example of the process comes from
an engineering team based partially
in Israel that is working on low-level
network visualization. In this case,
we were approached by the team,
which is the reverse of how it usually
happens. This team wanted to begin
a research project but didn’t have the
academic connections to do so.

I connected them with a professor
from one of the universities we work
with, and they have been in regular,

active brainstorming sessions every
two weeks or so for about the past
five months. As of this writing, they
have not entirely determined a final
proposal, but that in itself is quite
instructive. Although it has been
difficult for them to find common
ground and define a project that
satisfies the needs of both sides,
they really liked each other from
the very beginning and are eager
to work together. That suggests to
me that they are a good match, so
the project they eventually create
will be something worthwhile.

That’s one of the most valuable
things about the research supervisor
role. Having a person to make
these matches and facilitate these
conversations leads to higher quality
projects. And they are high-value
projects because they are based
on an understanding of where the
industry is going, what the leading
research topics are, and where
the potential for overlap is.

After taking the time to develop our
processes for research supervision
at Red Hat Israel, we are also sharing
them. For example, in Brno at
Red Hat Czech, Martin Ukrop
has begun working as a research
supervisor using what we’ve learned.
This model has been successful
here and in Brno, and I hope we can
keep spreading this success to many
locations over the coming years.

37research.redhat.com

V O L U M E 4 : 2

RESEARCH
QUARTERLY

PROJECT: Interpersonal
conflicts in code review

ACADEMIC INVESTIGATORS:
Prof. Alberto Bacchelli and Pavlina Wurzel
Gonçalves (University of Zurich)

RED HAT INVESTIGATORS:
Cali Dolfi and Martin Ukrop

Code reviews benefit from generating alternative
ideas and obtaining diverse feedback. However, this
makes code review a place in which communication
is difficult and interpersonal conflicts can
arise. These can influence the quality of team
cooperation in both positive and negative ways.

Research project updates
Each quarter, Red Hat Research Quarterly highlights new and
ongoing research collaborations from around the world.

This quarter we highlight collaborative projects in Europe at Karlstad University
(Karlstad, SE), Masaryk University (Brno, CZ), and the University of Zurich.

The Zurich Empirical Software Engineering
Team (ZEST) from the University of Zurich has
recently started cooperating with Red Hat to
investigate interpersonal conflicts in code review.
After a successful qualitative study on the topic,
the group has contacted Red Hat Research to
conduct a more broad quantitative study focusing
on selected Red Hat’s open source projects. The
research will compare objective data from the
publicly available repository metadata with the
self-reported experience of Red Hatters and
other community developers. If you are interested
in gaining more insights into your project’s
code review health and code review conflicts,
contact Martin Ukrop at mukrop@redhat.com.

Project updates

Contact academic@
redhat.com for more
information on any
project described
here, or explore
more research
projects at research.
redhat.com.

http://mukrop@redhat.com
http://academic@redhat.com
http://academic@redhat.com
https://research.redhat.com/
https://research.redhat.com/

V O L U M E 4 : 2

RESEARCH
QUARTERLY

38research.redhat.com

PROJECT: Vega project

ACADEMIC INVESTIGATOR:
Gabriel Szasz (Masaryk University)

RED HAT INVESTIGATORS:
Nikolaos Moraitis, Zdeněk
Švécar, and Filip Hubík

Our curiosity constantly pushes
technology towards higher goals,
unveiling the secrets of distant
realms far beyond our imagination.
Astrophysicists at the Department of
Theoretical Physics and Astrophysics
(DTPA) at the Faculty of Science,
Masaryk University, are among world-
leading experts in stellar astrophysics.
In this field, researchers tend to neglect
the effects of stellar rotation to avoid
the complexity of the problem, claiming
these effects are too subtle to play an
important role. The research group led
by Ernst Paunzen has already collected
some intriguing evidence that rotation
significantly impacts the parameters
and evolution of stars. They now need to
prove their findings on a larger scale to
convince a broad scientific community.

To achieve this goal, DTPA has started
to build the new model atmosphere grid
for the rotating main-sequence stars.
In the end, this new model grid will help
prove the case; at the same time, it will
give astrophysicists a powerful online
tool to study the effects of rotation
on the parameters of stars and their
evolution. This work has the potential
to redefine what we know about the
stars in our area of the universe.

Calculating such an extensive model
grid is a highly demanding effort
requiring high-performance computing
to be feasible within a human lifetime.
Conventional proprietary HPC
solutions turned out to be too inflexible
to fit the project requirements. The
Vega Project team at Red Hat came
up with an idea to harness the power
of Kubernetes to provide the next-
generation open source tool for high-
performance computing. The project
is well past the design phase, and the
team is already working on the proof-
of-concept implementation using the
Red Hat OpenShift Container Platform.

The team’s March 2022 presentation
for Red Hat Research Days can be
found on the Vega Project’s research
webpage at research.redhat.com/
blog/research_project/vega_project.

PROJECT: Building the next
generation of programmable
networking—powered by Linux

ACADEMIC INVESTIGATORS:
Prof. Anna Brunstrom and Dr. Per
Hurtig (Karlstad University)

RED HAT INVESTIGATOR:
Toke Høiland-Jørgensen

The eXpress Data Path (XDP) is a
high-performance programmable data
plane that runs in line with the regular
data path in the Linux kernel. Powered
by BPF, this technology allows flexible
high-performance programmable
networking to function in concert with
the regular networking stack. This
research project aims to explore how
this capability can be leveraged to turn
Linux into a first-class platform for next-
generation programmable networking.

http://research.redhat.com/blog/research_project/vega_project
http://research.redhat.com/blog/research_project/vega_project

39research.redhat.com

V O L U M E 4 : 2

RESEARCH
QUARTERLY

applications and (trusted) kernel
code, affecting threat modeling for
both applications and the kernel.

This project aims to look broadly at
the various security issues related
to BPF, the Linux kernel, and hybrid
applications, hopefully improving the
overall trust in the technology. The
project is still in an early exploratory
stage, but possible directions include:

•	 Defining a coherent framework
for threat modeling of BPF
applications, as no such
model exists today

•	 Exploring the limitations of the
existing in-kernel BPF verifier,
in an effort to build more
confidence in its capabilities

•	 Analyzing kernel resource
constraint mechanisms
and memory safety issues
in relation to BPF

•	 Exploring the use of cryptographic
signatures for improving the
security of BPF programs

Thus far, the project has focused
on two areas of inquiry: designing a
programmable queueing interface
for XDP, and using XDP and BPF for
always-on passive network monitoring
and analysis. For the queueing track,
we have developed a programmable
packet scheduling extension for the
XDP framework, leveraging schemes
for programmable queues recently
proposed in the literature. This extension
allows programmers to define their
packet schedulers using BPF while
benefiting from the XDP fast data
path. This work aims to add an API for
packet queueing in XDP to the upstream
Linux kernel and use this to implement
various queueing algorithms for XDP.

For the passive network monitoring
track, we are investigating using the
programmable network capabilities of
BPF to enable an always-on passive
network monitoring application, based
on the existing “passive ping” (pping)
utility. This can be used to extract
latency measurements from any point
in the network without injecting any

traffic into the network, making it very
lightweight and thus enabling continuous
monitoring of latency in network flows.

PROJECT: Security and safety of
Linux systems in a BPF-powered
hybrid user space/kernel world

ACADEMIC INVESTIGATORS:
Prof. Anna Brunstrom and Dr. Tobias
Pulls (Karlstad University)

RED HAT INVESTIGATOR:
Toke Høiland-Jørgensen

With the introduction of BPF into
the Linux kernel, we are seeing a sea
change in the traditional application
model. With BPF, it is now possible to
execute parts of the application logic
in kernel space, leading to a novel
hybrid userspace/kernel model. This
exciting development brings with it
many opportunities, but also some
challenges, especially in the area of
security. The new hybrid application
model presented by BPF means that
the kernel/userspace barrier is no
longer the demarcation point between

V O L U M E 4 : 2

RESEARCH
QUARTERLY

40research.redhat.com

Learn more at ai.intel.com

© Intel Corporation. All rights reserved. Intel, the Intel logo, Xeon and other Intel marks are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries. Copyright © Intel Corporation 2020.

