
Masarykova univerzita
Fakulta informatiky

}w��������
��������������� !"#$%&'()+,-./012345<yA|
Integration of JBoss

Undertow HTTP server with
Apache Camel project

Master’s thesis

Dávid Šimanský

Brno, Autumn 2014

Declaration

Hereby I declare, that this paper is my original authorial work, which
I have worked out by my own. All sources, references and literature
used or excerpted during elaboration of this work are properly cited
and listed in complete reference to the due source.

Dávid Šimanský

Advisor: Mgr. Marek Grác, PhD.

ii

Acknowledgement

I would like to thank to my supervisor Mgr. Marek Grác, Ph.D. and
my technical supervisor from Red Hat Czech, s.r.o, Mgr. Jiří Sedláček,
for providing constant feedback during the preparation of this master’s
thesis.

Many thanks goes to all my other colleagues from Red Hat that
expressed their valuable thoughts and helped to make this thesis better.

iii

Abstract

The purpose of this master’s thesis is to design and develop new Camel
component by integrating two open-source project Apache Camel and
JBoss Undertow. This new component will act as HTTP provider in
the Camel integration framework.

iv

Keywords

Apache Camel, Undertow, Java NIO, XNIO, integration framework,
web server, component

v

Contents

1 Introduction . 3
2 Technologies . 5

2.1 Apache Camel . 5
2.1.1 Fundamental principles of Camel 5
2.1.2 Message types . 8
2.1.3 Architecture overview 9

2.2 Component development 12
2.3 Integration in action . 14
2.4 Java NIO . 15
2.5 XNIO . 17
2.6 Undertow . 17

2.6.1 Embedded server 18
2.6.2 Performance benchmark 18

2.7 Similar HTTP components 19
2.7.1 Camel HTTP . 19
2.7.2 Camel Servlet . 19
2.7.3 Camel Netty and Netty HTTP 19
2.7.4 Camel Jetty . 20
2.7.5 Camel Undertow - motivation 20

3 Analysis and Design . 21
3.1 Requirements . 21

3.1.1 Consumer . 22
3.1.2 Producer . 22

3.2 Data flow diagram . 22
3.3 Use case diagram . 23
3.4 Design decisions . 23

4 Implementation . 25
4.1 Class diagram . 25
4.2 UndertowComponent class 25

4.2.1 UndertowRegistry 26
4.3 UndertowEndpoint class 27

4.3.1 Parameters . 27
4.4 UndertowConsumer class 29

4.4.1 HttpCamelHandler class 30
4.5 UndertowProducer class 30

1

4.6 UndertowHttpBinding 31
4.7 Miscellaneous classes . 32
4.8 Unit tests . 32
4.9 Simple performance comparison 33
4.10 Examples of usage . 33

5 Conclusion . 36
References . 38

A Appendix . 40
A.1 Contents of included CD 40
A.2 Class Diagram . 41

2

1 Introduction

We, the people of the Information Age, are surrounded with technolo-
gies providing us information or making our lives easier. We benefit
from machine-processed informations and in many areas we are totally
dependent on computers controlling the environment around. The IT
segment is fast paced and innovative. New technologies emerge every
day, but sometimes lifetime is as short as the development time. Nev-
ertheless, there are still many information systems based on various
programming languages up and running, containing numerous priceless
data. The improvements made in networking and the Internet over the
years changed the view we anticipate information systems. Nowadays
we see need for connecting them together to benefit from code already
created and running to provide input data or business logic. Although
not every system has the right interface to be interconnected and is
ready or designed to operate in complex environment. All of that creates
the base ground from which integration frameworks raise to satisfy
already existing demand.

The demand to enable interoperability across platforms, program-
ming languages, data formats and interfaces. Main goal of an integration
framework should be to simplify the complexity of integration and also
unify the management. Also it can not be hard to adopt to actually bring
benefits to users rather then discourage them with difficult learning
process.

Apache Camel project[1] is one of the integration frameworks used
for above mentioned purpose. It is open source based, developed under
Apache with a great help from community. The main advantage of
Camel is its modularity, for every new communication protocol just a
new component needs to be added. That enables Camel to keep the
core lightweight and stable to provide the right tools for every given
scenario.

The purpose of this thesis is to create new Camel component. It
should act as HTTP1 provider in Camel. This component should benefit
from yet another open source project JBoss Undertow[2]. Undertow is
web server, written in Java[3] from scratch and based on non-blocking
principles. This component was required through community process as

1. HTTP - Hypertext Transfer Protocol

3

1. Introduction

a new feature to incorporate into the distribution. The reasons might
not be clear at first as there already are several other HTTP components
available in the Camel distribution. Similarly to Camel, Undertow is
lightweight and easy to embed. It is also used in Wildfly application
server. The chapter 2.6.2 contains performance comparison of various
HTTP server implementations. From the result it can be seen that
among Java based web servers Undertow is constantly placing in the top
three. The Undertow is also gaining popularity inside the open source
community. It is still relatively young project that might have bright
future. The thesis creates base for the future cooperation of Camel and
Undertow projects.

Based on community given approach the new component is named
Camel Undertow.

The thesis itself is divided into five thematic parts. The first chapter
contains introduction and motivation with the overview of the following
chapters.

The second chapter introduces all the technologies used in imple-
mentation. The text is not detailed to provide just the most important
facts and link to detailed sources for further reading.

Analysis and design are summarized in the third chapter. It contains
diagrams and reasons to support design decisions.

The next chapter illustrates implementation of the new component
created for this thesis.

The last chapter is conclusion of the work.

4

2 Technologies

This chapter introduces technologies that are used for implementation of
Camel Undertow component. Every sub-chapter consists of description
and typical uses cases, where the specific technology excels.

2.1 Apache Camel

Apache Camel is open source rule-based mediation framework imple-
mented in Java. The core of the framework is formed around the theory
of EIPs1 by Gregor Hohpe and Bobby Wolf[4]. It creates base layer in
integration efforts across various applications, e.g. in stand alone routing,
communication of web services, enterprise messaging solutions or full
integration platforms (also known as ESB2) like Apache ServiceMix,
JBoss Fuse or JBoss Fuse Service Works. Based on previously mentioned
fact, Camel is not an enterprise service bus on its own, for instance it
does not provide container support or messaging broker. It aims to be
lightweight, easy to adopt and extendable for developers. There is also
no complex class hierarchy or APIs rather emphasizing the focus on
integration tasks[5].

2.1.1 Fundamental principles of Camel

The idea behind Camel is to get the maximum potential from the
theory of EIPs and to efficiently minimize the lines of source code
needed to implement integration scenarios. Therefore a convention over
configuration approach is used to describe the task in declarative way
by domain-specific language (DSL). The Camel’s DSL creates common
way for developers to integrate the applications which is easy to learn
and afterwards apply, regardless of transport protocols, delivery format,
payload encoding or endpoints connectors. There is no canonical format
or assumption of data format directly hardcoded in the framework. This
fact gives developers working on integration task no limiting condition,
literally any kind of system could be merged together.

1. EIP - Enterprise Integration Pattern
2. ESB - Enterprise Service Bus

5

2. Technologies

Routing and mediation engine

Routing engine enables users to define custom rules for routing messages,
acceptance strategy for sources sending to endpoint, also add processors
on the way to modify the payload and finally decide to which destination
message is delivered.

Domain-specific language

The format of DSL varies by the preference or experience of individual.
It is not bound to Java language only, whatever developer likes Java,
XML, Groovy, Ruby or even Scala.

Example 2.1: Java DSL definition of route

from("undertow://localhost:8888/myapp")
.to("file:log/access.log");

Example 2.2: XML definition of route

<route>
<from uri=’undertow://localhost:8888/myapp’/>
<to uri=’file:log/access.log’/>

</route>

Example 2.3: Scala definition of route

from "undertow://localhost:8888/" -> "file:log/access.log"

Modular implementation

The next key feature, that supports wide adoption of the framework in
integration world, is modularity. The Camel can be easily extended to
consume or to produce data to endpoint. Out of the box it comes with
handful of components to start with, called camel-core including bean,

6

2. Technologies

file, log, mock. Following the structure given by the framework and
extending core classes developers are able to provide solution to whatever
unique system you could imagine. On top of that, there are many more
developed by Apache community and third-parties3. The most common
integration scenarios can be served by already existing components to
integrate JMS4, web services (SOAP5 or REST6), database connections,
filesystem resources or mobile push services.

Automatic type converters

Built-in automatic type converter is able to work with more than
hundred and fifty class types out of the box. For most of the scenarios
the converter is available, but also custom ones can be implemented
easily. This feature is one of the most favorite in the community. It can
by easily triggered by the following example ?? which demonstrates
that method used to retrieve body takes as a parameter desired return
type, the converter is used without any further interaction from the
calling code.

Example 2.4: TypeConverter invocation

//direct use of TypeConverter
TypeConverter tc = consumer.getEndpoint()

.getCamelContext().getTypeConverter();
ByteBuffer bodyAsByteBuffer =

tc.convertTo(ByteBuffer.class, body);

//automatic trigger under the hood
ByteBuffer bodyAsBuffer =

message.getBody(ByteBuffer.class);

converter

3. List of components - http://camel.apache.org/components.html
4. JMS - Java Messaging Service
5. SOAP - Simple Object Access Protocol
6. REST - Representational State Transfer

7

2. Technologies

Convention over configuration

The ease of configuration is another fundamental principle to enable
developers focus on important tasks rather than learning number of
complicated configuration options. Endpoints can be configured directly
in route definitions with URI options as the example 2.5 demonstrates.

Example 2.5: URI options configurations

//pattern to follow
"undertow://{host}:{port}/{path}?[{uriOptions}]"

"undertow://localhost:8080/foo?matchOnUriPrefix=true"

Lightweight from the start

From the first line it is designed to be undemanding and resource friendly.
Core library of Camel has about 1.6 MB in total with minimum of
third party dependencies. Embedding the framework is straightforward
regardless of target platform, which can be web application, Spring
container, OSGi bundle or various cloud platforms.

2.1.2 Message types

Various kind of data types are transported in Camel’s routes as Mes-
sages. There are two main classes that create abstraction of messages,
Message7 and Exchange8.

Message object represents data carried in routes from sender to re-
ceiver in system’s communication. It consists of body, headers and
optional attachments. Every Message has unique identifier (UID). UID
format is not strictly given by Camel and is dependent on linking proto-
col. If the protocol doesn’t have UID scheme available, there is generic
generator provided by framework.

7. Class of org.apache.camel.Message
8. Class of org.apache.camle.Exchange

8

2. Technologies

Headers are pairs of key and value, based on very same principle as in
HTTP protocol. They contain identifying informations as UID, sender,
receiver, type of content, encoding and authentication information.

Body represents payload or content of the message. It has generic
Object type to store any kind of content. Acceptance of body type by
receiver has to be ensured by application embedding Camel, either by
transformation inside the route or by using of automatic type converter.

Exchange object is a message’s container for routing and encapsulates
Message. It supports message exchange patterns (MEPs). Property to
define messaging style can be set in exchange pattern, either one-way
or request-response. One-way is called InOnly and is used for example
in JMS, when sender does not require response. Request-response is
defined as InOut, most typical example is HTTP transport, when client
needs to receive reply. Overview of Exchange’s content:

• Exchange ID - unique identifier of Exchange

• MEP - type of messaging style

• Exception - in case of error exception is stored

• Properties - various Camel properties for routing, can be also
edited by developers

• In message - input request message

• Out message - output response message, only if the pattern is
InOut

2.1.3 Architecture overview

The following part will introduce core parts of Camel’s design starting
from the top. The figure 2.1 illustrates the overview to easier understands
the runtime of CamelContext.

Camel context

Camel context is commonly referenced as container, which keeps ev-
erything together and provides services during runtime. List of most
important services:

9

2. Technologies

Figure 2.1: Overview of CamelContext

• components - used in application, they can be added on the fly

• endpoints

• routes

• type converters

• data formats

• registry - for beans look up. Default is JNDI registry9. If Camel is
combined with Spring or OSGi container, it uses native registry
mechanism for the deployment

Routers and routing

Routes are one of the core concepts used in this framework. The route
holds definition of input source and output target. Simple route can
be defined as a chain of processors. Every route is absolutely identified
by its unique ID, has exactly one input source that is tied to input
endpoint and one or many targets.

Routing works under the hood and is not visible to users. It ensures
proper routing from the sender to receiver without issues.

9. JNDI registry - Java Naming and Directory Interface
http://docs.oracle.com/javase/8/docs/technotes/guides/jndi/jndi-rmi.html

10

2. Technologies

Processor

The name is self explaining. Processor is responsible for processing
incoming exchange, creation, modification or removal of payload and
headers. Many processors can be chained together and are invoked by
the rules defined in route. Most of built-in processors are implementa-
tion of EIPs, as stated previously, Camel supports most of integration
patterns.10 Users has possibility to implement custom processors and
add them to the route.

Component

Components add modularity to Camel, they are main extension point.
Their task is to be factory of endpoints. The detailed overview of creating
new component will be given later in subchapter 2.2.

Endpoint

Endpoints represent sender or receiver on the one end of the message
channel. Endpoint is configured by URI, during runtime Camel looks
up an endpoint by its URI. Format of URI has three important parts:
scheme, context path and options. The scheme contains information
about component to be used. In this thesis our scheme is called undertow.
Context path identifies the location of endpoint, similarly to web page
address. Finally the options part is used to deliver specific configuration
for component.

One of the key tasks of endpoint is to be factory for creating consumer
(receiver) and producer (sender), that can be used in route to get the
data flowing.

Consumer

As already stated, consumers can be seen as receivers of messages. It is
the starting point of every route, where the message is sent, wrapped
with headers and added to exchange. Exchanges created by consumer
are afterwards processed in defined chain of processors.

There are two types of consumers, event-driven and polling con-
sumers. They could be also called passive and active consumer. Event-

10. EIPs in Camel - http://camel.apache.org/eip.html

11

2. Technologies

driven consumer is in EIP referred as asynchronous receiver, represents
client-server communication strategy. It listens on messaging channel
and waits for incoming message.

Polling consumer is active and synchronous, received message has
to be processed before polling for another one. Basically, it fetches
messages from the source. In Camel the scheduled polling consumer can
be defined to check for message in time interval.

Producer

Producer is used to create and send a message to an endpoint. It is
responsible for creating message and mapping the message content for
the endpoint. In this component it creates HTTP request and acts as
HTTP client.

2.2 Component development

Modularity feature is ensured by components as it was already mentioned.
They are used to extend Camel and adapt to new integration tasks
and add new protocols support without necessity to edit the core
implementation of the framework. This part contains the main principles
that should be followed to create custom component.

To speed up the development, it is recommended to use Maven
archetype as a base for the new component.11 The generated skeleton
is fully functional HelloWorld example, which is generating dummy
messages in intervals. The next step should be naming the component.
Component name must be unique among existing components, because
it is used in the first part of URI to identify it. List of components
distributed with Camel can be found on official web pages stated earlier.

The hierarchy of classes that need to be implemented is quiet simple.
There are four main classes that together create Camel component,
Component, Endpoint, Producer and Consumer. The names are of
course self explaining. The Component class is on top for creating and
managing the underlying Endpoint class. Moving to the Endpoint class,
it’s responsible for creating Producer or Consumer as needed. The
custom implementation can extend particular Default-prefixed classes

11. Maven archetypes - http://camel.apache.org/camel-maven-archetypes.html

12

2. Technologies

and leverage from the default framework code rather than writing
everything from scratch. Extending existing classes ensures following of
main principles[6].

Component class

This class acts as factory of endpoints. Therefore it must implement at
least createEndpoint() method. The best to achieve it is by extending
DefaultComponent. It also contains all parameters that can be set with
URI options. Parameters can be annotated with @UriParams and then
set through reflection by Camel.

Endpoint class

Endpoints are factored by Component class. Its purpose is to manage
Producers and Consumers. There should be creation method for both of
them. Not every component has to have Producer and Consumer, when
it is not needed. If the option is not supported appropriate exception
should be thrown to inform user.

Consumer class

Through Consumer the message enters the route. There are several
handy classes in default implementation for event-driven and polling
consumers. There are no major restriction how to implement this class.
In the code UndertowConsumer represents web server that is started by
the definition from route and waits for incoming HTTP request to send
them down to the route.

Producer class

To be able to send messages outside there has to be Producer class
implementation. It is used to establish connection, marshal the data
and send them to particular target. UndertowProducer in this thesis
acts as HTTP client for sending requests.

13

2. Technologies

2.3 Integration in action

DZone12 web site claims to be online community and collection of
resources for technology professionals. The web site is well know in com-
munity of IT professionals and has outstanding reputation for serving
the high quality content. The integration is one of the most promi-
nent topics that DZone focuses on. In 2014 they performed update to
its overview research among consumers of integration technologies. It
provided overview of usage the integration in practice, recommenda-
tions from the top engineers and solution architects and comprehensive
comparison of most used solutions. The findings were published in
free e-book called DZone Guide to Enterprise Integration[7]. This part
will summarize the key aspects from the research. The relevance of
this research is supported by the sample of respondents, most of them
have technical background, mainly developers and team leads. The
programming language used is Java in 94% of cases.

State of Integration

The integration scenarios are typically covered by integration framework
combined with message queues or ESB. In the beginning ESBs were
based on Messaging-Oriented Middleware or required Java EE containers
for runtime. They gained on popularity with the increased usage of
web services, which were quickly integrated. ESB focuses on covering
wide range of scenarios, supported with the tools out of the box. It ties
together multiple endpoints, where central broker does all the heavy
lifting of routing, transforming and managing[8].

On the other hand integration frameworks like Apache Camel or
Spring Integration benefit mainly from outstanding support of enterprise
integration patterns. They can be paired with message queues and other
frameworks to enrich with missing features to be comparable with full
ESBs.

Previously mentioned can be viewed as traditional well know and
verified approach. On the other hand new emerging trend supported
by innovative technological companies seems to be microservices. The
idea behind microservices is fundamentally different from ESBs. There
is no central point or smart mediator that routes communication, but

12. DZone - http://www.dzone.com/

14

2. Technologies

they rather emphasize smart endpoints and fast transfer channel with
minimum of features. Each microservice represents one logical or business
feature of the system, it shares common principle with processes in Unix-
like operating systems to do single thing right. The communication
channels are not tied to process, but they use web services or remote
calls.

In conclusion there might be an upcoming shift to more decentralized
solutions called microservices. Although most of the scenarios can be
still well served with the integration frameworks and ESBs.

Leader Board

The DZone’s research provides interesting statistics on usage of tech-
nologies. The most popular technology among respondents is Spring
Integration13 (42%), closely followed by the Camel framework (38%).
In the category of ESBs, the winner is Mule ESB14 (16%), then Web-
Sphere ESB15 (15%) and Oracle ESB16 (13%). In conclusion, lightweight
integration frameworks are more popular taking 63%.

When ESBs and message queues are compared it ends slightly better
for the ESBs. The most popular messaging is ActiveMQ17 (46%) that
beats low-latency providers like ZeroMQ18 or IronMQ19.

The conclusion based on the above mentioned numbers can be made
that developers tend to choose lightweight modular solutions rather
than the full stack of unnecessary features.

2.4 Java NIO

Java NIO represents New IO, an alternative implementation to the
standard IO API used in the Java language. The key differences include
reading data from channels into buffers or vice versa, whenever the
standard API uses streams of bytes or chars. The other are non-blocking

13. Spring Integration - http://projects.spring.io/spring-integration/
14. Mule ESB - http://www.mulesoft.org/what-mule-esb
15. WebSphere - http://www-03.ibm.com/software/products/en/wsesb
16. Oracle ESB - http://www.oracle.com/technetwork/middleware/service-bus/
17. Apache ActiveMQ - http://activemq.apache.org/
18. ZeroMQ - http://zeromq.org
19. IronMQ - http://www.iron.io/mq

15

2. Technologies

IO instead of typical blocking IO, when thread is blocked until read or
write is completed[9].

Non-blocking approach means that the execution thread is not
blocked, therefore is not waiting for completion of read or write operation,
instead it redirects it to channel and buffer and continues to operate.
Afterwards if the data are available in the buffer even partially, the
thread can process it. The write operation acts the same way, data are
stored in buffered and written to channel, in the meantime the executing
thread can handle some other operation.

The idea is that a single thread can manage multiple input and
output operations. The thread is not blocked by reading from one
stream, nevertheless do something useful during meantime.

The Channels are similar to Stream approach with some differences.
Data are read or written to Buffer. They are also bi-direction in contrast
to Stream which can be used just for reading or writing. Operations
performed on Channels are asynchronous. All those differences come
from the usage of Buffer where data are stored from Channel and not
processed directly as in Stream.

The Buffers are used for storing data from Channels as mentioned
above. In simple, Buffers are wrappers for blocks of memory with
methods to access the memory easier.

The Selector is a kind of object monitoring multiple channels for
events to further extend capability of single thread. The usage of Selector
gives a possibility to use one IO thread to process data from multiple
Channels, every time the Channel is ready to be read or written Selector
will notify the working thread.

Emphasizing NIO approach developers are able to lower the resource
consumption of the application, especially thread pools to handle mul-
tiple IO connections and memory usage, because every new thread is
associated with some portions of belonging memory. There is ongoing
discussion if the multithread or the single thread is better approach. The
single thread has benefit of less overhead, meaningful resource allocation
and overall lowering the complexity of application, where the thread
synchronization and possible deadlocks are not present anymore.

16

2. Technologies

2.5 XNIO

XNIO is community project developed under JBoss, which provides
framework abstraction over low level Java NIO and brings simplification
over working with Channels, Buffers and Selectors. It extends NIO
to support multicast socket and non-socket IO. The project web page
claims that XNIO also opens the door to non-obvious optimizations.

One of the most important features of XNIO framework is its unique
API, that combines both IO approaches, blocking and non-blocking to
bring the best to users. The benefits of low latency of blocking IO with
throughput and performance of non-blocking.

Undertow web server is fully based on XNIO framework under the
hood, that is one of the reason why developers embedding Undertow can
easily switch between blocking and non-blocking processing of incoming
requests[10].

2.6 Undertow

Undertow is a flexible performant web server written in Java, providing
both blocking and non-blocking API, which are based on XNIO, the
abstraction over Java NIO introduced in previous subchapter.

Undertow has a composition based architecture that allows you to
build a web server by combining small single purpose handlers. That
gives you the flexibility to choose between a full Java EE servlet 3.1
container, or a low level non-blocking handler, to anything in between.

Undertow is designed to be fully embeddable, with easy to use
fluent builder APIs. Undertow’s lifecycle is completely controlled by the
embedding application[11].

Overview of key features:

• Lightweight - the core jar is under 1 MB, runtime taking up
about 4 MB of heap

• HTTP upgrade support - multiple protocols over HTTP

• Web Socket - full support, including JSR-356

• Servlet 3.1 support

• Embeddable - fully runnable from inside the application

17

2. Technologies

• Flexible - just the right amount of functionality for the task can
be used by chaining handler’s together

2.6.1 Embedded server

As stated above, Undertow is fully embeddable. There are two ways
how to achieve it. The more simple way is to use builder API and set
various properties as handlers, listeners, context paths and listening
ports. The second approach is to manually assemble the whole server
using XNIO and listener classes directly. Using builder API is sufficient
for the purpose of this thesis.

There is no container, that is required to start. Embedded web
server is managed by embedding application, also usage and chaining of
handlers is under control of the application.

2.6.2 Performance benchmark

The web development company, TechEmpower, regularly updates bench-
mark results of popular web servers and frameworks. By the results
presented on the web pages filtered by language, Undertow is listed as
the fastest amongs Java based web servers, in the underlying figure 2.2
is presented the example from results. For the full chart, metrics and
enviroment setup follow the link on the company web pages.20

Figure 2.2: Performance comparison of web servers[12].

20. Web server benchmarks - http://www.techempower.com/benchmarks/

18

2. Technologies

2.7 Similar HTTP components

The official Camel distribution already provides several components that
have very similar functionality in comparison to Camel Undertow and
are considered as HTTP provider components. The following part will
summarize the main differences between Camel HTTP, Camel Servlet,
Camel Netty, Camel Netty HTTP and Camel Jetty. The last subsection
will discuss the motivation for developing Camel Undertow components.
Those lines are author’s subjective through and summaries.

2.7.1 Camel HTTP

Camel HTTP is one of the core components. It supports only usage
of producer, which acts like HTTP client. Therefore it cannot be used
as input in the route definition. The implementation leverages Apache
HttpClient library21 to produce requests. When there is no special
requirement for producing HTTP request, this component should be
absolutely sufficient for most basic scenarios.

2.7.2 Camel Servlet

Camel Servlet on the other hand provides support for input message,
which is sent to Java servlet published by the endpoint. As the servlet
container Tomcat web server is used in the implementation. The full
route with consumer and producer endpoints can be achieved by com-
bining Servlet and HTTP components.

2.7.3 Camel Netty and Netty HTTP

This component is implemented on top of Netty framework. The Netty
project is also NIO based and should enable quick development of net-
work application. Both blocking and non-blocking sockets are supported.
It provides capability for both types of endpoint bind to TCP22 or
UDP23 protocol. This component should be used if the direct access to
above mentioned protocols is needed.

21. Apache HttpClient - http://hc.apache.org/httpclient-3.x/
22. TCP - Transmission Control Protocol
23. UDP - User Datagram Protocol

19

2. Technologies

Netty HTTP is extending the parent Netty component and add
HTTP transport support.

2.7.4 Camel Jetty

Another HTTP provider component that is based on Jetty server im-
plementation. The Jetty library contains also client support. Therefore
both types of endpoint are also supported. Jetty itself is popular as a
servlet container and component leverages this fact. The Consumer is
implemented in similar fashion and exposes CamelServlet object, which
creates input for a route.

2.7.5 Camel Undertow - motivation

It may be confusing why we need another HTTP component, when
there are so many already implemented and capable to satisfy user’s
needs. The easiest answer is, because we can. If there is another web
server implementation, why don’t create yet another Camel component
for it.

Certainly the answer is not so simple. The Camel user’s community
is wide and divergent. Some of them are satisfied with components
coming from distribution. Another group might prefer writing its own
component for specific task.

Camel Undertow is based on non-blocking approach to IO operations.
It is written from scratch, performance numbers are also quiet promising.
It is emerging new technology. There is no high demand for Camel
Undertow component yet, but in few years the story may be completely
different. Undertow might become very popular and dominant among
Java web server implementations. Right now it is more a possibility
than a necessity.

20

3 Analysis and Design

This part of the thesis will benefit from all the facts written in previous
chapters and provide software analysis for new component. Not every
part of software analysis is needed for the purpose of this thesis. De-
velopment of components is restricted and follows the skeleton given
by the framework. The analysis starts with identifying of requirements
which this new component should support. Data flow diagram (DFD)
is used to illustrate the context of incoming and outgoing messages and
processing inside Camel. Afterwards the design decisions made on the
analysis follows.

3.1 Requirements

The main purpose of the thesis defined by the assignment is to integrate
JBoss Undertow project with Apache Camel project. The outcome of the
integration should be new component that could be used as a web server
(HTTP provider). This new component is also required by community
in the Apache’s Jira.1

As already mentioned in previous chapter, there is plenty of other
components available that can server to the same purpose as Camel
Undertow. Why to develop another one? The answer is pretty simple
to provide diversity to end users. Undertow is an emerging technology
in the community of Java developers. So far it looks very promising
as high performance and super lightweight web server. The world of
HTTP servers is mainly focused on performance numbers and results of
Undertow are in many ways impressive in regard that it is still pure Java
implementation. Also it’s gaining on popularity due to the fact that it
is used in Wildfly2 application server since version 8.0. In conclusion
the fundamental features of Camel and Undertow seem very coherent
to tie them together.

The thesis assignment does not provide any detailed listing of require-
ments. Therefore the following requirements are based upon analysis of
similar components acting as HTTP providers and default features for

1. Camel Undertow - https://issues.apache.org/jira/browse/CAMEL-6577
2. Wildfly - http://www.wildfly.org/

21

3. Analysis and Design

every component:

3.1.1 Consumer

• ability to create Consumer as HTTP web server

• user defined context path and listening port

• define allowed request methods

• secured access options through HTTPS

• DSL and Spring support

3.1.2 Producer

• send HTTP requests to defined target

• DSL and Spring support

3.2 Data flow diagram

DFD is used to depict the data flow incoming to Consumer and outgoing
from Producer.

The figure 3.1 shows Consumer message flow. It is needed to map
the incoming HTTP request to Exchange object. Every part of HTTP
request should be copied to Exchanges (payload, headers, method type,
etc.) to provide users with additional information they could benefit
from.

Figure 3.1: DFD illustrates Consumer receiving message.

Producer message flow is shown in figure 3.2. The process is reverse
to Consumer part. From the Exchange back to HTTP request.

22

3. Analysis and Design

Figure 3.2: DFD illustrates Producer sending message

3.3 Use case diagram

The Use case diagram does not depict the user actors, because Camel
Endpoints mainly communicate with applications or APIs.

Figure 3.3: Use case depicts communication through component.

3.4 Design decisions

The design of the component has to follow guidelines given by the Camel
framework mentioned in chapter 2.2. Therefore the class hierarchy and
structure is already clear.

Undertow will be embedded through builder API and the whole
server lifecycle will be controlled by the component. During the research

23

3. Analysis and Design

of client capabilities it was found out that client classes are not suitable
for general HTTP client. It was designed to be used in reverse proxy.
This fact was confirmed by the lead developer, Stuart Douglas.3 In his
response, he mentioned that the client is 100% non-blocking and not
thread safe. There was discussion in the community about adding a
thread safe wrapper, but it is not implemented yet. For the completeness
of the component the client classes in the Producer will be used. The
implementation will follow points given by Stuart in the email.

Although, users should be warned in the documentation that Pro-
ducer part is not ideal and should be used with caution. The Producer
is exchangeable to other HTTP Producers from components mentioned
in chapter 2.6 to ensure proper behavior.

3. Undertow-dev mailing list - http://lists.jboss.org/pipermail/undertow-dev/2014-
December/001072.html

24

4 Implementation

The goal of this thesis is to integrate Apache Camel and JBoss Undertow
to create new Camel Undertow component. This chapter summarizes
the source code and implementation of Camel Undertow component.

The source code for was implemented in Java programming language
with regard to restriction of components development mentioned in
previous chapters. During the development coding conventions and
best practices gained in various courses at Faculty of Informatics were
leveraged.

Listing of version used in the source code:

• Java 1.7

• Apache Camel 2.14.0

• Undertow 1.1.1.Final

4.1 Class diagram

The full exported class diagram can be found in appendix A.2. In the
following sections partial diagrams to depict single class will be used.

4.2 UndertowComponent class

This class is a starting point of the implemented component. It extends
HttpComponent to build on the core of Camel code. Its purpose is to
be factory of endpoints. Therefore createEndpoint() method is the most
important one.

This method is straightforward. First it reads all the configuration
URI parameters and removes them to prevent mismatching them as
query parameters. After the incoming URI is cleaned, the Endpoint
URI is parsed from the rest.

There is also support for RestConsumerFactory to extend configura-
tion of routes and options in REST-style DSL. 1 For this purpose only

1. Camel REST DSL - http://camel.apache.org/rest-dsl.html

25

4. Implementation

Figure 4.1: UndertowComponent class in more detailed vies.

one new method has to be added, createConsumer(). In this method
the REST configuration is parsed and belonging endpoint is created.

The class also holds configuration of running web server. This fact
enables usage of multiple Endpoints with different paths on the same
port, but sharing same base configuration. By the base configuration
is meant host, port and SSL support. If those three conditions are not
satisfied and therefore route is considered misconfigured another route
on the same port cannot be started.

4.2.1 UndertowRegistry

The ’UndertowRegistry class represents registry of running web servers
and belonging Consumers. This utility class is only used inside of
UndertowComponent class. Through the registry Component is able
to access server instance, register and unregister new Consumers. It
provides handful of methods to provide convenient access.

This class was added due to the fact that workflow of Builder API
is not suitable for runtime modifications. Once the server is built, the
Builder instance can not be retrieved anymore from server instance.
Although dynamic modification of server configuration was needed,
either by storing object of Undertow.Builder or by adding configuration
object from which the Builder can be created. That is the reason to

26

4. Implementation

Figure 4.2: UndertowRegistry class in more detailed vies.

implement UndertowRegistry class. As mentioned previously the ability
to modify server runtime brings benefit of sharing port across Endpoints.

4.3 UndertowEndpoint class

The Endpoint represents a factory for creating Consumers and Producers.
This class holds configuration parameters parsed in UndertowCompo-
nent.createEndpoint(). Primitive types parameters are annotated with
@UriParam to allow setting through Java Reflection API.

The methods createProducer() and createConsumer() are self explain-
ing. Another important one is createExchange() which takes HttpEx-
change from web server as input and converts it to Camel Exchange.
The main part of this logic is done in toCamel() from class DefaultUn-
dertowHttpBinding. The binding class provides support for converting
incoming HTTP messages to Camel messages and vise versa.

4.3.1 Parameters

Most of the configuration parameters are self explaining. Although in the
underlying listing the basic description is given to avoid any confusion.

List of parameters:

27

4. Implementation

Figure 4.3: UndertowEnpoint class in more detailed view.

• httpUri - holds the full URI as defined in route

• undertowHttpBinding - the instance of actual binding tied to
the Endpoint

• httpMethodRestrict - list of comma separated HTTP methods
that can be used to access Consumer

• matchOnUriPrefix - boolean value which determines if exact or
prefix matching of path should be used

• headerFilterStrategy - the instance of HeaderFilterStrategy, by
default the strategy from HTTP component is used

• sslContext - provides configuration for the web server

• throwExceptionOnFailure - boolean value whether the exception
should be thrown

• transferException - boolean value if the exception should be send
back in response

28

4. Implementation

4.4 UndertowConsumer class

Figure 4.4: UndertowConsumer class in more detailed view.

Essential classes for the component functionality. This class itself
starts the Undertow web server and allows it to be used as entry to the
Camel route.

There are two possible approaches how to handle incoming request.
Java servlet, in particular CamelServlet or its extension, can be exposed
to process the incoming messages and send them to route. First pro-
totype was implemented in that fashion. Although it was discarded
later due to the fact that Undertow doesn’t provide straight way to
access servlet instance once deployed to the server. The instance is need
during processing to retrieve the request and create particular Exchange.
This approach didn’t provided the desired amount of control over the
processing of incoming request.

On the other hand Undertow is easily extensible with custom han-
dlers. Therefore all the logic of processing the HTTP request is moved
to HttpCamelHandler, but it still might be considered as a part of
Consumer.

The web server is started through methods in UndertowCompo-
nent class as already mentioned in section 4.2. When new Consumer
needs to be added UndertowComponent.registerConsumer() is invoked
and afterwards UndertowComponent.rebuildServer() to reflect change
in configuration. Configuration of running server is rebuilt and server
instance restarted. Upon doStop() invocation the Consumer is unregis-
tered from UndertowRegistry, the method also checks if there are any
other Consumers left to shutdown whole server and release allocated
port.

29

4. Implementation

4.4.1 HttpCamelHandler class

Implementing of custom handlers for Undertow is straightforward. The
custom handler needs to implement HttpHandler interface which con-
tains only one method handleRequest(). Through this method the han-
dler gets to HttpExchange object which contains request and response
channels, headers and request method type.

The processing of request has few partial conditions to meet to finally
proceed to Camel Exchange. If the OPTIONS method is received, the
handler returns allowed methods. It checks for restricted methods from
configuration and rejects all requests that do not follow the given
restriction. If the request method can contain payload (POST, PUT),
the request channel is opened to retrieve the body of message, otherwise
payload is ignored for other methods.[13]

The Exchange is created through createExchange() method in End-
point implementation. The whole HttpExchange is used as input. During
the Exchange creation toCamelMessage() is invoked from the default
HTTP binding to copy and filter required headers. The default HTTP
binding is provided by class DefaultUndertowHttpBinding which im-
plement UndertowHttpBinding interface. Conversion of HTTP request
to Message benefits from automatic type converter feature. The body
is extracted as array of bytes and directly set to Message object, the
type converter works under the hood without direct invocation in the
binding method. The binding can be changed to custom implementation
specified in URI option to modify the behavior, copied headers, etc.
When the Exchange is created the Processor can kick off and process it.

Finally after processing of Exchange, the response can be retrieved
and send back to requesting client. The standard return code is 200
and body from Camel Message is included, if there is any. In case of
error, the return code is 500 and the exception is transferred, if the
option parameter is not set to false. The response is created by method
toHttpResponse() that copies headers and returns body as Object. The
body is afterwards converted to ByteBuffer and sent to requesting client.

4.5 UndertowProducer class

The implementation of Producer can be considered experimental and
is not recommended for usage. The Undertow client classes are not

30

4. Implementation

designed to be used as general HTTP client. As mentioned in previous
chapter, they are not thread safe and provides bridge in reverse proxy.

For end users it is recommended to use Camel HTTP or Camel
Netty HTTP component as Producer provider.

The actual source code benefits from the recommendations given by
Stuart Douglas. It is capable of creating HTTP request from the Message
and sending it to target, afterwards receive and read the response. The
conversion from HTTP to Camel Message is provided by another handy
methods from binding class DefaultUndertowHttpBinding.

Figure 4.5: UndertowProducer class in more detailed vies.

4.6 UndertowHttpBinding

The binding interface and its implementation DefaultUndertowHttp-
Binding represent the key aspect of how the Messages are created from
HTTP requests and vice versa. It is used in Producer and Consumer
classes.

It is capable of processing HTTP request in a manner that all headers
are extracted and stored in Camel Message, filtered by the given strategy.
It is also responsible for reading payload if the requesting method is
allowed to have one. Finally the incoming Message is returned to be
used in the route.

After processing of the Message is done the binding also maps
the response back to HTTP response through the similar process as
described above.

The reverse steps are done for the creation of HTTP request in

31

4. Implementation

Producer’s code. The Camel message is transformed to request and
send, when the HTTP response is received, it is stored back to Camel
Message.

Figure 4.6: UndertowHttpBinding interface in more detailed vies.

4.7 Miscellaneous classes

There are two additional classes that provides support methods.
ExchangeHeaders is a copy of Exchange class fields that contains

header names. Instead of returning them as String, this class returns
HttpString for Undertow to minimize conversion of header names on
various places.

UndertowUtil contains just method for simple appending headers to
map.

4.8 Unit tests

The unit tests leverage CamelTestSupport classes that provides lot of
useful method and mock Endpoints to properly test components. The
structure of unit tests follow convention used in Camel project. Every
test class represents scenario and has descriptive self-explaining name
to be clear for the outside user.

32

4. Implementation

4.9 Simple performance comparison

The newly created component was compared in simple test with two
other components. The comparison was performed between Undertow,
Jetty and Netty HTTP. The results supports the conclusion the Under-
tow is built to be fast and outperform the opponents.

Figure 4.7: Execution time graph for 1000 and 10 000 requests.

The metric used was simple to demonstrate the possible testing
approach. For more comprehensive results a special tool could be used
to generates requests and measure numbers, for example PerfCake2

The scenario was run ten times and average execution time value was
calculated afterwards. Test scenario class is called UndertowPerfCom-
parisonTest and can be found in unit tests subdirectory. During the first
cycle thousand of request was sent, the next cycle the number of request
was increased to ten thousand. To further improve the comparison and
relevance of results dedicated performance hardware or lab should be
used as this simple comparison was performed just on standard laptop.

No. of requests Undertow Jetty Netty
1000 3141 ms 4045 ms 4892 ms

10 000 29 755 ms 37 792 ms 64 532 ms

Table 4.1: Results in numbers.

2. PerfCake - https://www.perfcake.org/

33

4. Implementation

4.10 Examples of usage

There are two examples of route definition included in the attachment.
They demonstrates the configuration and usage in Java DSL and Spring
API. The whole example project can be run by Camel Maven plugin3.
This plugin simply runs the Camel context defined in a project. The
instructions to run this particular project:

• First it is needed to build the component code in camel-undertow
directory mvn clean install

• Navigate to camel-example-undertow directory and compile the
example itself mvn compile

• The last step mvn camel:run
The above mentioned steps are also included in ReadMe file with

the example source code.

Example 4.1: Java DSL

public void configure() {
from("undertow://http://localhost:8080/dsl/hello")
.transform(simple("Camel Undertow response"

+" from Java DSL route."));
}

Example 4.2: Spring API

<route id="undertow-route">
<from uri="undertow:http://localhost:

8080/spring/hello"/>
<transform>

<simple>
Camel Undertow response from Spring route.
</simple>

</transform>
</route>

3. Camel Maven plugin - http://camel.apache.org/camel-run-maven-goal.html

34

5 Conclusion

The primary goal of this master’s thesis was to integrate JBoss Un-
dertow HTTP server and Apache Camel project. Under integration is
meant design and development of a new Camel component. This new
component should be used as a web server (HTTP provider) in the
integration framework. As part of this thesis unit test and example of
usage in DSL and Spring API should be delivered. Furthermore author
should cooperate with community, study Camel component development
process and investigate the Undertow implementation.

The outcome of this master’s thesis is Camel Undertow component.
The new component can be used as HTTP provider to act as Consumer
in the route.

As an attachment the source code of the component is included. This
component was requested by the community, it will be submitted to
Apache Camel project as pull request for the review. The latest source
code is hosted on GitHub1. The computer software in general is never
absolutely perfect. Therefore there is a possibility that issues and bugs
will be found in future during usage or code reviews. All the found
issues can be reported through GitHub tools or even be fixed by pull
request from the community. The previous also applies for enhancement
requests.

The implementation part of this thesis includes the whole source
code of the new component. The skeleton was generated by Maven
archetype. The main part of work is represented by embedding the
Undertow to the Camel. The mechanism for the managing lifecycle
and storing configuration of the web server was created. The server
is started by Camel itself. Furthermore, the binding between HTTP
messages and messages transferred inside the Camel routes was needed.
The component provides both Endpoint types, Consumer and Producer
with the limitation illustrated in following paragraph. The detailed
description of implemented classes can be found in chapter 4.

During the research work it was found out that Undertow client
libraries are not suitable for implementing a general purpose HTTP
client. There was already a discussion in the community about this
topic as mention in chapter 3. It should be merged to this component

1. GitHub repo - https://github.com/dsimansk/camel-undertow

35

5. Conclusion

to harden the Producer implementation. The following fact implies that
Producer implementation is not stable and should not be used outside of
tech preview scope. It can be replaced by any other provider mentioned
in this thesis. Although for the completeness purpose the Producer code
is included. The actual implementation will probably vary in future
based on the code changes inside Undertow.

For the future development, the main goal is to harden the Pro-
ducer part once the Undertow client is done by the community. Other
requirements submitted from users and community will be added after
consideration. Bug fixes should be done as soon as possible, it is highly
dependent on current situation and capacity.

New component implementation is well documented in various
sources online and offline. The Camel community has vital and extensive
community that provides many examples, answers on StackOverflow2

and comprehensive documentation. As mentioned in chapter 2 there are
also other very similar components to look for. The Undertow commu-
nity is definitely much smaller. There is not so many materials available
as for Camel definitely. Although almost all questions are answered by
the authors of code themselves. The Undertow project is still finding its
place under the Sun, the number of users and adopters raises. In a few
years it might be dominant web server among Java based implemen-
tations. With the increasing interest will also the number of resources
available grow significantly.

2. StackOverflow - http://stackoverflow.com/questions/tagged/apache-camel

36

References

[1] APACHE. Apache Camel [online]. 2004- [cite 2014-12-12]. Available
at: http://camel.apache.org/

[2] JBOSS. JBoss Undertow [online]. 2014- [cite 2014-12-12]. Available
at: http://undertow.io/index.html

[3] ORACLE. Java [online]. c© 2004- [cite 2014-12-12]. Available at:
http://www.java.com/

[4] HOHPE, Gregor and WOLF, Bobby. Enterprise integration patterns.
Boston: Addison-Wesley, c2003, li, ISBN 978-0321200686.

[5] IBSEN, Claus and ANSTEY,Jonathan. Camel in Action. Greenwich,
Conn.: Manning, c2011, xxxi, ISBN 19-351-8236-6.

[6] CRANTON, Scott and KORAB, Jakub. Apache Camel De-
veloper’s Cookbook. Birmingham: Packt publishing, c2013, ISBN
9781782170303.

[7] DZONE RESEARCH. Guide to Enterprise Integration [online]. 2014-
[cite 2014-12-14]. Available at: http://www.dzone.com/research/
guide-to-enterprise-integration

[8] THOMAS, Anne. https://www.gartner.com/doc/1405237/enterprise-
service-bus-definition [online]. 2007 - [cite 2014-12-14].
Available at: https://www.gartner.com/doc/1405237/
enterprise-service-bus-definition

[9] ORACLE. Java NIO [online]. 2014- [cite 2014-12-12]. Avail-
able at: http://docs.oracle.com/javase/7/docs/api/java/nio/
package-summary.html

[10] JBOSS. XNIO Documentation Developer’s Guide [online]. 2014-
[cite 2014-12-12]. Available at: https://docs.jboss.org/author/
display/XNIO/Developer%27s+Guide

[11] JBOSS. JBoss Undertow Documentation [online]. 2014- [cite 2014-
12-12]. Available at: http://undertow.io/documentation/

37

http://camel.apache.org/
http://undertow.io/index.html
http://www.java.com/
http://www.dzone.com/research/guide-to-enterprise-integration
http://www.dzone.com/research/guide-to-enterprise-integration
https://www.gartner.com/doc/1405237/enterprise-service-bus-definition
https://www.gartner.com/doc/1405237/enterprise-service-bus-definition
http://docs.oracle.com/javase/7/docs/api/java/nio/package-summary.html
http://docs.oracle.com/javase/7/docs/api/java/nio/package-summary.html
https://docs.jboss.org/author/display/XNIO/Developer%27s+Guide
https://docs.jboss.org/author/display/XNIO/Developer%27s+Guide
http://undertow.io/documentation/

References

[12] TECH EMPOWER. Web Framework Benchmarks - Round 9.
2014- [cite 2014-12-16]. Available at: http://www.techempower.com/
benchmarks/#section=data-r9&hw=peak&test=json&l=3k

[13] NETWORK WORKING GROUP. Hypertext Transfer Protocol –
HTTP/1.1 [online]. 1999- [cite 2014-12-03]. Available at : https:
//www.ietf.org/rfc/rfc2616

38

http://www.techempower.com/benchmarks/#section=data-r9&hw=peak&test=json&l=3k
http://www.techempower.com/benchmarks/#section=data-r9&hw=peak&test=json&l=3k
https://www.ietf.org/rfc/rfc2616
https://www.ietf.org/rfc/rfc2616

A Appendix

A.1 Contents of included CD

• master’s thesis in PDF

• source code of the thesis in LATEX

• source code of Camel Undertow component

• examples

39

A. Appendix

A.2 Class Diagram

40

	Introduction
	Technologies
	 Apache Camel
	 Fundamental principles of Camel
	 Message types
	 Architecture overview

	 Component development
	 Integration in action
	 Java NIO
	 XNIO
	 Undertow
	 Embedded server
	 Performance benchmark

	 Similar HTTP components
	 Camel HTTP
	 Camel Servlet
	 Camel Netty and Netty HTTP
	 Camel Jetty
	 Camel Undertow - motivation

	Analysis and Design
	 Requirements
	 Consumer
	 Producer

	 Data flow diagram
	 Use case diagram
	 Design decisions

	Implementation
	 Class diagram
	 UndertowComponent class
	 UndertowRegistry

	 UndertowEndpoint class
	 Parameters

	 UndertowConsumer class
	 HttpCamelHandler class

	 UndertowProducer class
	 UndertowHttpBinding
	 Miscellaneous classes
	 Unit tests
	 Simple performance comparison
	 Examples of usage

	Conclusion
	References
	Appendix
	 Contents of included CD
	 Class Diagram

