
MASARYKOVA UNIVERZITA
FAKULTA INFORMATIKY

}w��������
��������������� !"#$%&'()+,-./012345<yA|
Service Lifecycle Management

Application

DIPLOMA THESIS

Anton Giertli

Brno, autumn 2014



Declaration

Hereby, I declare that this paper is my original authorial work which
I have worked out on my own. All sources, references and literature
used or excerpted during elaboration of this work are properly cited
and listed in complete reference to the due source.

Advisor: doc. RNDr. Tomáš Pitner, Ph.D.

ii



Abstract

The main goal of this diploma thesis is to create a web based applica-
tion which will allow managing service lifecycle, a concept defined in
Service Oriented Architecture Governance (SOA Governance). The
application is also a practical demonstration of how can various JBoss
open-source projects integrate between themselves. The text of this
thesis describes the context, analysis and implementation of this ap-
plication and also shows how can the resultant application be used
by specific representatives in the SOA Governance environment.

iii



Keywords

Service Oriented Architecture, SOA Governance, JBoss Overlord, Busi-
ness Process Management, jBPM, Service Lifecycle

iv



Acknowledgement

I would like to thank Mgr. Štefan Bunčiak for his patient and profes-
sional guidance during the whole process of working on this thesis.
Next, I would like to thank Maciej Swiderski for his numerous ad-
vises regarding JBoss JBPM technology.
Finally, special thanks goes to my girlfriend Miška for willingly lis-
tening about SOA Governance so much.

v



Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Theoretical background . . . . . . . . . . . . . . . . . . . . . 5
2.1 Service Oriented Architecture . . . . . . . . . . . . . . . 5
2.2 SOA Governance . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Business Process Management . . . . . . . . . . . . . . 12

3 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.1 Overall architecture . . . . . . . . . . . . . . . . . . . . . 17

3.1.1 Server descriptions . . . . . . . . . . . . . . . . . 18
3.2 Use cases . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2.1 Use case diagram . . . . . . . . . . . . . . . . . . 21
3.2.2 Use case details . . . . . . . . . . . . . . . . . . . 23

3.3 Service Lifecycle Models . . . . . . . . . . . . . . . . . . 26
3.4 Service Lifecycle Ontology . . . . . . . . . . . . . . . . . 28
3.5 User Interface Mockup . . . . . . . . . . . . . . . . . . . 30

4 Technological stack . . . . . . . . . . . . . . . . . . . . . . . . 35
4.1 JBoss Enterprise Application Platform . . . . . . . . . . 35
4.2 jBPM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.3 Overlord S-RAMP . . . . . . . . . . . . . . . . . . . . . . 37
4.4 SwitchYard . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.5 Overlord Runtime Governance . . . . . . . . . . . . . . 38
4.6 Vaadin . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.7 Alternative - Overlord Design Time Governance . . . . 40

5 Selected implementation details . . . . . . . . . . . . . . . . 42
5.1 jBPM Integration with SLMA . . . . . . . . . . . . . . . 42
5.2 jBPM integration with S-RAMP . . . . . . . . . . . . . . 44
5.3 Overlord RTGov integration with SLMA . . . . . . . . . 46

6 Project testing . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
7 SLMA showcase . . . . . . . . . . . . . . . . . . . . . . . . . 49

7.1 Uploading SwitchyYard Service into S-RAMP . . . . . . 49
7.2 Execute Service Lifecycle on demand . . . . . . . . . . . 50
7.3 Work on the Service Lifecycle Task . . . . . . . . . . . . 50
7.4 Monitor Service Lifecycle Stage . . . . . . . . . . . . . . 52
7.5 Acknowledge Retired Service Invocation . . . . . . . . 53

8 Final word . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

1



8.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 59
8.2 Future enhancements . . . . . . . . . . . . . . . . . . . . 59

A Service Lifecycle Tasks . . . . . . . . . . . . . . . . . . . . . . 63
B Wireframes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
C Policy Lifecycle and Ontology . . . . . . . . . . . . . . . . . 74

C.1 Ontology for Policy classification . . . . . . . . . . . . . 74
C.2 Policy Lifecycle Model . . . . . . . . . . . . . . . . . . . 77

D Content of the CD . . . . . . . . . . . . . . . . . . . . . . . . 79

2



1 Introduction

In SOA environments, it is certainly beneficial to have an overview
of available or deployed services. This can be achieved by adopting a
service lifecycle which is a concept introduced in a SOA Governance.

SOA Governance is trying to maximize the added value of SOA
solutions and service lifecycle is an important concept in it. The Ser-
vice Lifecycle Management Application (SLMA) is built around this
concept, allowing users to execute specific use cases which aligns
with the service lifecycle definition as such.

Service Lifecycle is simply a workflow which every service has to
follow. End user of the SLMA is executing Tasks which are defined
in this workflow. By doing this, every service is going through same
steps with the desired output of achieving higher service quality.

This diploma thesis is describing the process of implementation
of the SLMA which was done by using JBoss open source technolo-
gies. Though the important part of this thesis is an executable output
in form of the web based application, there is a strong relationship
between this application and various management disciplines and
concepts such as Business Process Management, Service Oriented
Architecture, etc.

Service Lifecycle Management Application is a practical demon-
stration of how these various disciplines can come together and this
will be promoted throughout the whole thesis.

1.1 Objectives

The main objective of this thesis is to implement fully functional ap-
plication which will act as a service lifecycle manager. It needs to
allow to user to do the following:

• start a new instance of a lifecycle bound to a specific service

• execute tasks included in this lifecycle so a service can be moved
from stage to stage

• display status of a given service lifecycle instance and also dis-
play list of every lifecycle instance that ever entered the system

3



1. INTRODUCTION

• monitor specific policy during the service runtime - which is
displaying invocations of a service which is already retired

These functional requirements were not simply made up - they align
with the definition of the Service Lifecycle concept which is defined
in chapter 2.2.

Another objective was to achieve the implementation by using
specific JBoss open-source technologies. Majority of latest versions of
open-source community projects have been used (at the time of de-
veloping the application) and the application shows how these tech-
nologies can be successfully deployed on separate servers, and what
is even more important - how can these technologies communicate
remotely with each other. The architecture chosen for this application
was trying to copy real needs of users, adopting SOA Governance
approach and that is why multiple separate servers are used in the
design. Therefore, the successful integration between these servers is
crucial part of this diploma thesis.

To sum up, not only the final result (the application) is important,
but also the path taken in its implementation matters.

4



2 Theoretical background

Since the implementation of the Service Lifecycle Management Ap-
plication brings many technologies and disciplines together, it is nec-
essary to provide a reader with some background and contextual in-
formation in order to fully understand motivation and added value
behind this thesis. One could think that explaining SOA Governance
concept should be sufficient but that is not really possible without
bringing Service Oriented Architecture into the picture. Moreover,
the Service Lifecycle - key part of the SOA Governance is actually
implemented as the BPMN1 process, therefore some basic principles
of Business Process Management also have to be known.

This chapter’s intention is not to go too deep into these disciplines
and concepts - that is not the primary motivation of this thesis. Nev-
ertheless, this chapter will briefly introduce the most important con-
cepts and terms used in the context of this thesis with an emphasis
on the SOA Governance.

2.1 Service Oriented Architecture

This section will briefly introduce Service Oriented Architecture (SOA).
It will list few SOA advantages and since SOA is revolving around
the concept of the Service, there will also be a practical example
showed for easier understanding.

There are many definitions of SOA since this concept can be viewed
in many different contexts - Business, IT, technical, etc. For the pur-
pose of this thesis I have chosen the technical view:

Definition 1 Service Oriented Architecture Dirksen [2013, p. 4]
Service-oriented architecture (SOA) is a flexible set of design prin-
ciples used during phases of systems development and integration
in computing. A system based on a SOA architecture will provide
a loosely-coupled suite of services that can be used within multiple
separate systems from several business domains.

1. Business Process Model and Notation

5



2. THEORETICAL BACKGROUND

So far the term SOA has been already mentioned numerous times
without defining the key part of it - Service. Intuitively the meaning
can be clear - waiting in a restaurant is an example of service, cutting
hair in a hair salon is a service too. It can be said that the service is
basically any amount of work which has been done for others. Now
let us try to define this term more specifically in a technical context.
Thomas Erl defines Service in a very simple way as a:

Definition 2 Service Erl [2005, p. 32]
Small, distinct units of logic. Collectively, these units comprise a larger
piece of business automation logic.

Examples of services mentioned already are still perfectly valid. How-
ever, the definition above makes it easier to understand the term Ser-
vice in a technical context. This is an example of technical service
which could be used in a bank:

Listing 2.1: Example of the Service

Name: E l i g i b i l i t y C a l c u l a t o r s e r v i c e
Descr ipt ion : This s e r v i c e w i l l evaluate the

a p p l i c a n t and decide whether he i s e l i g i b l e
f o r approval or not based on the computed
score .

URI : { serviceURI }/ i s E l i g i b l e ? id ={ a p p l i c a n t I d }&
type ={ appl icat ionType }

Method : GET
Example : ht tp :// bigExampleBank . org/ i s E l i g i b l e ? id

=98&type=mortgage
Arguments : { a p p l i c a t i o n I d } i s an ID of an

a p p l i c a n t as s tored in the corporate Database ,
i t i s of type Long . { appl icat ionType }

argument i s a S t r i n g which can have these
values : mortgage , loan , newAccount .

Output : Resul t i s in format a p p l i c a t i o n / json with
two e n t r i e s − t rue/ f a l s e and score .

6



2. THEORETICAL BACKGROUND

True i f candidate i s e l i g i b l e and f a l s e i f not .
Score i s the value computed by t h i s s e r v i c e
based on which the d ec i s io n has been made . }

The example above could be considered as a real sample of a
REST2 based service. It can be used by various systems in a bank
- i.e. Mortgage application, Loan Application - effectively achiev-
ing reusability. Implementation details are completely hidden from
systems which will be invoking this service. The only thing which
is important is a well documented contract. The reason why the
{applicationType} argument is included is that every system us-
ing this service can have different conditions based on which evalu-
ation is made - age, history of late payments, monthly income, etc.
Also, since implementation details are not known, it is perfectly pos-
sible that for every application type, the different development team
could take care of the implementation - preferably the one who al-
ready has some knowledge in the desired field. It is also possible that
this service invokes other services - based on the applicationType.
Currently, it is hidden as an implementation detail but if this was the
case it would certainly achieve a business agility. If another appli-
cation type had to be added, there would not be so much overhead
- the whole structure is already up and running, the URI would not
change, and the documentation would remain the same only with
small changes - the only missing thing would be the support for a
new application type.

The example above demonstrate possible advantages of SOA. In
contrast with SOA, let us assume some other architectural approach,
for example client-server. The standard client-server approach usu-
ally means that client is tightly coupled to a server. Usually, the server
is implemented for a specific client. In SOA, a situation is exact op-
posite. Since Services are platform independent, they can be re-used
by any kind of clients who follow an agreed contract, regardless of
the underlying implementation. Every Service invocation is follow-
ing client-server principles but not every client-server process is fol-
lowing SOA principles. This allows us to recognize more advantages
of the SOA over the classical architectural approach. Many of these

2. Representational state transfer

7



2. THEORETICAL BACKGROUND

have been defined in Dirksen [2013, p. 6] as follows:

• Business agility/reduced time to market - With more agility,
a company can better respond to changes in the market and
quickly launch new products and services.

• Reduced costs - With SOA , businesses want to reduce costs by
reuse, standards-based development, and a clear view of what
services are available and the functionality they provide.

• Improved reuse of services - If services are better defined and
a clear inventory of the services is kept, it is s much easier to
start reusing existing services.

• Improved software quality - The SOA contains a set of defined
standards and best practices. It tells you how to build services,
what to do, and what not to do.

• Better interoperability - you have a well-defined contract based
on standards to help you in the interoperability area.

SOA certainly offers many advantages. The whole concept re-
volves around Services - in order to make sure that these Services
are well defined and efficient it is necessary to control the process
of their development from start to end. This is where the SOA Gov-
ernance comes useful - it helps to get the most of the added value
which SOA has to offer.

2.2 SOA Governance

Before diving into the definition of SOA Governance, it is necessary
to mention and define the term around which this discipline revolves
- policy. Intuitively, it can be understood as a constraint or condition
to which some entity must comply. SOA Governance understands
policy a bit more specifically - as a service policy. In addition to what
has already been said about the policy as such, the service policy has
been defined by OASIS in its SOA Reference Model as:

8



2. THEORETICAL BACKGROUND

Definition 3 Policy MacKenzie et al. [2006, p. 23]
Conceptually, there are three aspects of policies: the policy assertion,
the policy owner (sometimes referred to as the policy subject) and
policy enforcement.

To put this in an example, let us assume that the policy assertion is
"every service must pass integration tests before deployed in produc-
tion", the policy owner could be "Quality Assurance lead" and policy
enforcement could be done via several means, for example on a tech-
nical level or through some review.

Governance is a term which does not necessarily needs to be ap-
plied within the IT business or SOA. More generally, it can be ap-
prehended as a set of rules, policies, laws which are applied within
some organization in order to make it run more efficient. In IT con-
text the main motivation behind Governance is to reduce risk of a
project failure. As shown in the next image Dirksen [2013, p. 8] pro-
duced by Standish Group International this risk is rather high:

To put the Governance into a SOA context, following definition is
very apposite as it talks about goals of this concept:

Definition 4 SOA Governance Dirksen [2013, p. 10]
The goal of applying governance to SOA is to get the most out of
your SOA . You do this by listening to stakeholders and, based on
that information, defining a number of policies. This requires taking

9



2. THEORETICAL BACKGROUND

the following steps:

• Define policies you want to apply.

• Apply these policies during design time.

• Monitor and enforce policies during runtime.

All of these three phases are equally important and omitting any of
them will radically reduce the positive outcome of the SOA Gover-
nance approach.

When it comes to defining policies, it is important that all stake-
holders comes together - e.g. CEO, Development Lead, Quality As-
surance Manager, Product Support supervisor, SOA Governance spe-
cialist, etc. Each stakeholder can have different goals which means
that each can consider different set of policies to be important. It is
vital that the common ground will be found and an agreement will
be made.

Once policies are defined, the next step is to apply them during
the design time - this is called Design Time Governance. This can
be done via various means but one very suitable support tool how to
achieve this is to implement Service Lifecycle.

Definition 5 Service Lifecycle Dirksen [2013, p. 213]
Service lifecycle defines the stages a service goes through during its
existence. A service lifecycle is important for the following reasons:

• It helps to identify which services need to be created or up-
dated, because it provides a complete overview of all the ser-
vices currently running in production.

• It helps to make sure all the necessary steps are taken before a
service is put in production or is made obsolete.

• It can be used to determine which policies need to be com-
plied with in each stage.

For example, if the policy assertion has been defined as "every
service must be linked to a documentation", then it is possible to

10



2. THEORETICAL BACKGROUND

model Service Lifecycle in a way that it is simply not possible to go
to another stage of the Lifecycle until the resource pointing to the
documentation will be entered.
Standard service lifecycle has usually these phases Dirksen [2013, p.
213]:

• model - identify the service based on the incoming require-
ments

• assemble - define contract, create service, test the service

• deploy - deploy service to a service container and make it avail-
able for service consumers

• manage - monitor how the service operates during runtime, if
some new requirements or changes has been discovered, then
start a new cycle from the model phase.

These four stages are not very fine grained, usually they serve more
as a general guideline and are quite enhanced and more detailed in
an actual Service Lifecycle model.

The (almost) final stage is to monitor and enforce policies during
runtime - this is called Runtime Governance. This is especially im-
portant, because how useful would it be to have a set of well defined
policies if there would be no way to make sure that these policies are
met during runtime? For example, if policy assertion is defined as
"All service invocations must be done by authenticated user" it will
be rather easy to solve this on a technical level. The enforcing part
could be achieved by putting a service behind some sort of authen-
tication mechanism - i.e. Basic authentication or Form based authen-
tication. The monitoring part could be achieved through logging all
attempts of service invocations which ended up with HTTP error 401
- and making these events accessible to respective authorities. Also
supporting technologies could be used in Runtime Governance such
as Business Activity Monitoring Kolár [2009, chapter 5].

In previous paragraph the word almost was mentioned purpose-
fully. Because once services are deployed in production it does not
mean that monitoring and enforcing policies during runtime is the

11



2. THEORETICAL BACKGROUND

last thing which needs to be done. Based on findings made in both,
design time and runtime, policies can be re-defined or new can be
added. Also, if Service Lifecycle is in place, it can be remodeled if
necessary. And finally, techniques for runtime monitoring and en-
forcing of policies can be enhanced too.

2.3 Business Process Management

The reason why is Business Process Management (BPM) included in
this chapter is because Service Lifecycle is actually implemented as
a Business Process. The reason for this is because it is very natural
for SOA and BPM to live within one ecosystem. For example, BPM
is often used in the context of service orchestration. However this
chapter will not focus on this part. For the purpose of this diploma
thesis it is sufficient to explain the basic BPM terminology in order to
understand why the BPM has been used as an approach for Service
Lifecycle implementation.

Term which needs to be defined as first is Process.

Definition 6 Process De Maio et al. [2014, p. 10]
In the broadest sense, a process is a series of steps or transforma-
tions to achieve a specific objective in a particular context. Like any
transformation, it needs to have something to transform and a well-
defined desired output of the transformation.

Building a house, shopping in a supermarket, writing a diploma the-
sis - these are all perfectly valid examples of processes. All of these
processes are following a sequence of steps with the desire to achieve
an objective.

In context of BPM it is necessary to enhance the process definition
with the context of "business".

Definition 7 Business Process De Maio et al. [2014, p. 11]
Business processes are a sequence of business activities done by busi-
ness users and business applications (company or third-party sys-
tems) to achieve a business goal for the purpose of a specific increase
in value from the business perspective.

12



2. THEORETICAL BACKGROUND

start

Interview
candidate

suitable candidate?

Send job
offer email

Send decline
email

end

end

y
e
s

n
o

Hiring Process v.1.0 (SimplifiedHiringProcess)

Figure 2.1: Simplified Hiring Process

The noticeable difference is that business process is trying to achieve
a business goal. Let us take a Hiring Process as shown in a figure 2.1.
Business goal is rather clear in this example - to hire a candidate.
This Business Process has been visualized by using Business Pro-
cess Model and Notation (BPMN)3 which is probably the most com-
monly used graphical representation for business process specifica-
tion nowadays.

Based on this very simple example of Business Process it is also
possible to derive some of BPM’s benefits.

For example, better change management - remodeling a specific
part of the business process already in place to fulfill a new require-
ment is usually far less expensive than implementing a new system
from scratch.

Effectiveness is another one - when monitoring a Business Pro-
cess it is possible to focus on finding bottlenecks - this allows con-
tinuous process improvement, thus achieving greater effectiveness
within the organization.

3. http://www.bpmn.org/

13



2. THEORETICAL BACKGROUND

Transparency of the Business Processes is another one - all pro-
cesses within the organization are known and documented. Every
role knows its duties within the process. And what is even more
important, if the Business Process has a graphical representation as
shown above, it is easily understandable by various parties. One
does not need to be a developer in order to understand business
process diagram which means that every relevant stakeholder can
understand and comment on the process.

Later in the text there are going to be many references to the "in-
stance" of the Service Lifecycle. Moreover, a model of the Service
Lifecycle will also be included. Therefore, it is necessary to define
these two terms and understand how they differ.

Definition 8 Process Model and Instance [Weske, 2007, p. 7]
A business process model consists of a set of activity models and execu-
tion constraints between them. A business process instance represents
a concrete case in the operational business of a company, consisting
of activity instances. Each business process model acts as a blueprint
for a set of business process instances, and each activity model acts
as a blueprint for a set of activity instances.

Similar relationship as between model and instance exists for exam-
ple between Class and Object in context of Object Oriented Program-
ming.

Several resources are defining lifecycle of a Business Process in
a different way. However, in most cases it includes five stages as
shown in figure 2.2. Always have in mind that Service Lifecycle -
the concept around which is the Service Lifecycle Management Ap-
plication built is a Business Process. Therefore the figure 2.2 is very
much applicable to the Service Lifecycle. It shows how the iterative
approach is being applied - once the Service Lifecycle is deployed,
it does not mean that it is the last step. On the contrary, it is always
possible, based on the monitoring, to discover new areas for opti-
mization which triggers another round of iteration.

Since all the supporting terminology has been defined, it is now
possible to define the term Business Process Management as a man-

14



2. THEORETICAL BACKGROUND

Figure 2.2: Business Process Lifecycle

15



2. THEORETICAL BACKGROUND

agement discipline.

Definition 9 Business process management Weske [2007, p. 5]
Management discipline which includes concepts, methods and tech-
niques to support the design, administration, configuration, enact-
ment, and analysis of business processes.

Finally, if an organization wants to adopt BPM there are many
systems which can help.

Definition 10 Business Process Management System (BPMS) Weske
[2007, p. 6]
Generic software system that is driven by explicit process represen-
tations to coordinate the enactment of business processes.

BPMS is usually tightly bound to the Business Process Lifecycle. Com-
mon BPMS supports most of the stages of this lifecycle. By support it
is meant that it provides the necessary tooling for design and mod-
eling phase as well as the runtime environment for execution of the
process. Sometimes, less mature BPMS are missing support for Mon-
itoring phase.

jBPM 64, Bizagi5, IBM BPM6 are all examples of commonly used
Business Process Management Systems.

This chapter defined the terminology which is practically used in
the Service Lifecycle Management Application. It introduced Service
Lifecycle as a key part of Design Time Governance and its benefits. It
also explained the relationship between Service Lifecycle and Busi-
ness Process management. The basic version of Service Lifecycle has
been also mentioned - the enhanced version will be introduced later
in the text. The next chapter will set many of these terms in the prac-
tical context so it will be clear how this theoretical background can
be applied in the context of SLMA.

4. http://jbpm.org/
5. http://www.bizagi.com/
6. http://www-03.ibm.com/software/products/en/business-process-manager-
family

16



3 Analysis

In order to successfully implement any application with extent big-
ger than hello world it is necessary to spend some time on the
analysis. This chapter will discuss all analytic steps which had to be
performed before the actual programming can begin. Many support-
ing resources such as diagrams, drafts, models will be included in
order to make this chapter as much comprehensible for a reader as
possible.

3.1 Overall architecture

Firstly, the overall architecture of the project had to be determined.
This includes more than the SLMA itself as SLMA uses many sup-
porting technologies which had to be taken into consideration when
designing the architecture. The final proposal is shown in the fig-
ure 3.1.

The overall idea was to try to design the architecture as loosely
coupled in order to achieve re-usability and ease of maintenance.

As shown in the architecture diagram servers communicate with
each other via REST API1. SOA Server and BPM Server does not re-
ally depend on Application Server; they can be used independently.
This architecture resembles client-server approach where Applica-
tion Server can be understood as Client and remaining two as servers.
End user of the SLMA will not have to care about remaining servers.
Every communication will be done transparently and he will be pre-
sented only with the result data.
SOA Server and BPM Server could be used also by other clients - be-
sides SLMA. This can be beneficial if organizations adopt also BPM
as such (in addition to SOA Governance). Then this server could be
utilized also for execution of other processes - not only for execution
of Service Lifecycle. It also means that most of the libraries necessary
for process execution are packaged in the BPM Server which makes
the SLMA application rather lightweight because it only needs to use
libraries necessary for remote communication and for graphical in-

1. http://en.wikipedia.org/wiki/Representational_state_transfer

17



3. ANALYSIS

Figure 3.1: High level project architecture

terface.
Finally, this architecture - when the BPM execution server is de-

ployed separately and the client communicates with it remotely is
rather common in real organizations. I do not have any hard evi-
dence supporting this statement but as a middleware Support Engi-
neer I have observed this to be a very common practice. Therefore
this architecture is trying to address real needs of customers adopt-
ing SOA Governance and also trying to prove that it is possible to
achieve it by using JBoss open-source technologies.

3.1.1 Server descriptions

This section describes servers used in the project architecture. Each
one of them is used specifically for selected components, usually
hosting one or more JBoss open source technologies.

18



3. ANALYSIS

SOA Server includes SOA related components. Service container
serves as an execution environment for a Service - this is necessary if
the service is intended to be executable. The SLMA needs services to
be executable for displaying invocations of retired services which is
one of the use cases of the SLMA and will be discussed later.

Next, there is a SOA Repository Artifact Model and Protocol (S-
RAMP) component, which is defined by OASIS as follows:

Definition 11 S-RAMP Stam and Wittmann [2013, chap. 1]
The "SOA - Repository Artifact Model and Protocol" (S-RAMP) spec-
ification defines a common data model for SOA repositories to facil-
itate the use of common tooling and sharing of data

SLMA needs S-RAMP as a storage for relevant SOA artifacts - such as
Ontologies and Services (their deployable binary version). Ontology
is a standard defined by OpenGroup as follows:

Definition 12 Ontology Ope [2010]
The ontology is designed for use by:

• Business people, to give them a deeper understanding of SOA
concepts and how they are used in the enterprise and its envi-
ronment

• Architects, as metadata for architectural artifacts

• Architecture methodologists, as a component of SOA meta-
models

• System and software designers for guidance in terminology
and structure

Ontology can be used for Classifying artifacts as explained in Stam
and Wittmann [2013, chap. 3]. To make it even more specific, Ontol-
ogy includes classes which will be applied from the Service Lifecycle
to the Service artifact based on the current stage of the service - i.e.

19



3. ANALYSIS

InTest, Retired, etc.
Finally, there is also a Runtime Governance component which

serves for monitoring the Service execution environment during run-
time.

BPM Server This server includes BPM execution server and re-
lated database which is necessary if business processes are supposed
to be persistent. Once again, it should be noted that the Service Life-
cycle is actually a Business Process. Which means that Service Life-
cycle will be deployed in this server and this Server will take care
of its execution based on the incoming request from the Application
Server.

Application Server Finally, the Application Server will host the
SLMA itself. End user of the application will only access this server
and does not need to be concerned with the rest. Due to the architec-
tural design the SLMA can be deployed as rather lightweight since its
dependencies consist merely of UI libraries and libraries necessary
for remote invocation. Based on different use cases user will perform
the corresponding REST request will be sent to the BPM Server - for
example Start Service Lifecycle or Move to the next stage of the
Service Lifecycle. BPM Server will handle these incoming requests
and delegate them to the BPM execution server. Some incoming re-
quests may trigger others, for example, when there is a need to set a
Classification on the Artifact deployed in the SOA Server - however,
this will all be happening transparently to the end user. For one spe-
cific use case which SLMA includes, there also has to be a database
deployed on the same server.

Even though the overall architecture may seem a bit complicated
it is weighed by its advantages - loose coupling, lightweight, trans-
parency to the end user, simple maintenance.

3.2 Use cases

The use cases implemented in SLMA are derived from the official
assignment. For a quick summary this is what the assignment says:

Final application should be able to:

• search S-RAMP repository for SwitchYard Services

20



3. ANALYSIS

• execute custom lifecycle for those services on demand

• monitor service lifecycle stage

• support executing notification actions once a depre-
cated service is used

These requirements were put together based on the Service Lifecycle
definition as shown in chapter 1.

3.2.1 Use case diagram

The SLMA use cases are designed in a way that they fulfill all re-
quirements defined in previous paragraph. The final version of the
use case diagram is displayed in the figure 3.2.

Figure 3.2: Use Case Diagram

21



3. ANALYSIS

Requirement execute custom lifecycle for services on demand is di-
rectly covered by these use cases:

• Complete Task in Lifecycle

• Start the Lifecycle Process - for new Service

• Start the Lifecycle process - for existing Services

These use cases are allowing user to spawn new instance of the Ser-
vice Lifecycle process and work on it - by completing defined tasks
in the lifecycle. The "on-demand" requirement is simply achieved by
the fact that user decides when and for what services the Service
Lifecycle will be activated.

Requirement support executing notification actions once a dep-
recated service is used is covered by use case "Acknowledge Retired
Service Invocation".

Requirement monitor service lifecycle stage is included in "View
Lifecycle Details" which displays the detailed information about the
selected Lifecycle instance including the metadata, variables bound
to the selected instance and also graphical process diagram which
shows what is the current stage of a given instance of a Service Life-
cycle.

Finally, the requirement search S-RAMP repository for Switch-
Yard Services is not modeled directly in the use case diagram. The
reason for this is that it has been integrated directly into the process
model of a Service Lifecycle and it will be discussed in the next chap-
ter.

The use case diagram showed in 3.2 introduces also actors of the
SLMA. Only the most basics ones were introduced but should be
sufficient in most SOA Governance environments. The differentia-
tion between them is simple.

Role SOA Governance Specialist is able to execute every use case
of the application.

Remaining roles are only able to work on the Service Lifecycle
task which has been directly assigned to them.

22



3. ANALYSIS

3.2.2 Use case details

Use cases defined in this application has been showed in the fig-
ure 3.2. This section will provide details of selected use cases which
which will show how can the user of the SLMA interact with the ap-
plication.
Start the Lifecycle Process - for new Service

Use case specification Start the Lifecycle Process - for new Service
Description This use case describes how the user can start new in-

stance of the Service Lifecycle, specifically for a new
(not yet created) Service

Actors SOA Governance Specialist
Pre conditions User is logged into the application
Basic Flow of Events User clicks on the button labeled with "Start the Life-

cycle Process - for new Service"
Post Conditions New instance of Service Lifecycle process is created

and user is redirected to a page which displays the
first available task of the Lifecycle Process instance
which he has just started

View lifecycle details

Use case specification View lifecycle details
Description This use case describes how can the user display de-

tails of a specific Service Lifecycle instance
Actors SOA Governance Specialist
Pre conditions User is logged into the application
Basic Flow of Events

1. User clicks on "Lifecycle Instances" button
which displays the list of ACTIVE (by default)
instances formatted in a table

2. User clicks on "Show Details" button which is lo-
cated in every row of this table

23



3. ANALYSIS

Post Conditions User is redirected to a page which displays the Ser-
vice Lifecycle details of a selected instance. These de-
tails includes instance metadata, variables bound to
this instance and process diagram which displays the
current stage of the Service Lifecycle

Complete Task in Lifecycle

Use case specification Complete Task in Lifecycle
Description This use case describes how can the user complete

specific task in a given instance of a Service Lifecycle
Actors SOA Governance Specialist, QA Specialist, Service

Developer, Service Analyst
Pre conditions User is logged into the application
Basic Flow of Events

1. User clicks on "Lifecycle Tasks" button which
displays the list of available Tasks for a logged
user formatted in a table

2. User clicks on "Work on Task" button of a de-
sired Task

3. User will be redirected to a Form where he needs
to proceed according to the Task description

4. Once all required outputs are correctly filled in,
user can click on "Complete Task" button

Post Conditions Task is completed and user will be redirected to the
"Lifecycle Tasks" page so he can choose another task
to work on

Alternative Flows If user clicked on "Complete Tasks" and some of the
output fields had wrong / forbidden values he will
be redirect to the same page and asked for correcting
these output fields

Acknowledge retired service invocation

24



3. ANALYSIS

Use case specification Acknowledge retired service invocation
Description This use case describes how can the user acknowledge

retired service invocation
Actors SOA Governance Specialist
Pre conditions User is logged into the application
Basic Flow of Events

1. User clicks on "Retired Services" button which
displays the list of invocations of a retired ser-
vices (for which instance of Service Lifecycle has
been created) formatted in a table

2. User clicks on "send notification" button of a de-
sired Invocation

3. User will be redirected to a another page which
displays the Form with additional details of se-
lected invocation

4. User clicks on "Process Notification" button
which will "Acknowledge" retired service invo-
cation. This specific invocation will not be dis-
played in the table displayed in "Retired Ser-
vices" page anymore

Post Conditions Retired Service invocation is processed and user is
redirected to the remaining list of (unprocessed) re-
tired service invocations

Alternative Flows If user checked "Send Email" checkbox in step 3 he will
be able to send email notification about this specific
retired service invocation

This section talked about use cases of SLMA. It explained how
they are linked to the official assignment of the thesis which actually
supports the definition of the Service Lifecycle. Moreover, selected
use cases were described more in depth.

25



3. ANALYSIS

3.3 Service Lifecycle Models

It has been mentioned numerous times that Service Lifecycle is actu-
ally a Business Process. Basic stages of the Service Lifecycle has been
defined in chapter 2.2. The final model of a Service Lifecycle busi-
ness process has used these basic stages and enhanced them signifi-
cantly by adding more fine-grained steps. Two models are executable
within the SLMA. One for a "new service" and the other one for "Ex-
isting Service".

The final model of Service Lifecycle - for new Service is dis-
played in the figure 3.3.

The main idea of this process is that the Service is not yet created.
Lifecycle starts from the very beginning - by identifying the new ser-
vice and then the service goes through different stages such as Servi-
ceIdentification, InitialService, Registered, InTest, Available, Depre-
cated, Retired. Whenever service enters a different stage of lifecycle
there is a Task which has to be completed by the user before mov-
ing to another. This task forces user to enter essential information
regarding service - these information are always specific for the cur-
rent Task. All tasks with their corresponding outputs which needs to
be entered by the user are documented in the attachment A.

In figure 3.3 there are also some nodes with the "+" sign in the
bottom. These nodes are actually representing sub process. The rea-
son why all the logic is not included in the one single model is better
readability of the diagram and also the re-usability - many sub pro-
cesses are actually used by both models. The example of such sub
process is displayed in figure 3.4

Most of sub processes has the same structure as the one shown in
the figure 3.4. First, there is a Script Task used for setting a process
variable with the actual stage of the Service.

Definition 13 Script Task De Maio et al. [2014, p. 76]
This Task allows us to execute a script that can be specified in various
languages. A script basically represents a set of actions that we can
code using a scripting language.

Then there is a Service task which includes a custom logic - in this

26



3. ANALYSIS

case it includes logic for setting the classification of an artifact stored
in the S-RAMP repository based on the Service state.

Definition 14 Service Task De Maio et al. [2014, p. 75]
This task allows us to represent interactions with external automated
systems. Each time our business process needs to interact with a ser-
vice or procedure, we will use a service task. The service task element
defines an attribute called implementation, which is used to specify
the underlying implementation of the service that we are calling.

Finally, there is a User Task which will be executed by the user of
the SLMA.

Definition 15 User Task De Maio et al. [2014, p. 75]
This task represents a human interaction. Each time we want to rep-
resent a person doing an activity, we use a User task to model this
situation. Because User tasks represent a human interaction, we need
to provide a way to assist the performer during this interaction.

This process model shows different paths which can the Service
take. The "happy path" is the one where service will pass tests - the
final stage of the Service Lifecycle is the retirement of the service.
Once Service hits this stage it should not be invoked anymore - this
policy will be controlled during runtime.

The other version of Service Lifecycle is called Service Lifecycle
- for existing Service. The main difference of this version of the life-
cycle is, that it allows user to work with the Service which has been
already loaded into the S-RAMP repository. When this process is be-
ing instantiated, first the user has to fill in some service description
and current service state, then he can bind this lifecycle to some spe-
cific service artifact stored in S-RAMP repository - once done, the
process will continue with a corresponding branch which will be de-
termined based on the Status entered by the user. The final version
of this Lifecycle is displayed in a figure 3.5.

27



3. ANALYSIS

3.4 Service Lifecycle Ontology

As explained in definition 12 the ontology can be used for specifying
some additional metadata. SLMA uses ontology for Classification of
the Service artifact stored in S-RAMP repository. To be even more
specific - the classifier represents the Stage of the service. This is the
ontology used by the SLMA:

Listing 3.1: Ontology used for setting the Service state
<?xml vers ion=" 1 . 0 " encoding="UTF−8" ?>
<rdf:RDF xmlns : rdfs=" h t t p : //
www. w3 . org /2000/01/ rdf−schema# "

xmlns :rdf=" h t t p : //
www. w3 . org/1999/02/22− rdf−syntax−ns# "
xmlns:owl=" h t t p : //

www. w3 . org /2002/07/owl# "
xmlns :xs i=" h t t p : //

www. w3 . org /2001/XMLSchema−i n s t a n c e "
xml:base=" h t t p : //

www. j b o s s . org/overlord/serv ice− l i f e c y c l e . owl ">

<owl:Ontology r d f : I D =" S e r v i c e L i f e c y c l e S t a t u s ">
< r d f s : l a b e l > S e r v i c e L i f e c y c l e S t a t u s
</ r d f s : l a b e l >
<rdfs:comment> S e r v i c e L i f e c y c l e S t a t u s
Ontology
</rdfs:comment>

</owl:Ontology>

<owl :Class r d f : I D =" S e r v i c e L i f e c y c l e ">
< r d f s : l a b e l > S e r v i c e l i f e c y c l e </ r d f s : l a b e l >
<rdfs:comment>Root s t a t u s −
p a r t i c i p a t i n g in S e r v i c e L i f e c y c l e Workflow
</rdfs:comment>

</owl :Class>

< !−− B a s i c s e t o f p o s s i b l e s e r v i c e s t a t e s −−>

28



3. ANALYSIS

<owl :Class r d f : I D =" S e r v i c e I d e n t i f i c a t i o n ">
<rdfs : subClassOf r d f : r e s o u r c e =" h t t p : //
www. j b o s s . org/overlord/serv ice− l i f e c y c l e . owl
# S e r v i c e L i f e c y c l e " />
< r d f s : l a b e l > S e r v i c e I d e n t i f i c a t i o n
</ r d f s : l a b e l >
<rdfs:comment> S e r v i c e I d e n t i f i c a t i o n
</rdfs:comment>

</owl :Class>
<owl :Class r d f : I D =" I n i t i a l S e r v i c e ">

<rdfs : subClassOf r d f : r e s o u r c e =" h t t p : //
www. j b o s s . org/overlord/serv ice− l i f e c y c l e . owl
# S e r v i c e L i f e c y c l e " />
< r d f s : l a b e l > I n i t i a l s t a t e of s e r v i c e
</ r d f s : l a b e l >
<rdfs:comment> I n i t i a l s t a t e of s e r v i c e
</rdfs:comment>

</owl :Class>
<owl :Class r d f : I D =" Regis tered ">

<rdfs : subClassOf r d f : r e s o u r c e =" h t t p : //
www. j b o s s . org/overlord/serv ice− l i f e c y c l e . owl
# S e r v i c e L i f e c y c l e " />
< r d f s : l a b e l >Regis tered</ r d f s : l a b e l >
<rdfs:comment>Regis tered
</rdfs:comment>

</owl :Class>

<owl :Class r d f : I D =" InTes t ">
<rdfs : subClassOf r d f : r e s o u r c e =" h t t p : //
www. j b o s s . org/overlord/serv ice− l i f e c y c l e . owl
# S e r v i c e L i f e c y c l e " />
< r d f s : l a b e l >In Test</ r d f s : l a b e l >
<rdfs:comment>In Test
</rdfs:comment>

</owl :Class>

<owl :Class r d f : I D=" Avai lable ">

29



3. ANALYSIS

<rdfs : subClassOf r d f : r e s o u r c e =" h t t p : //
www. j b o s s . org/overlord/serv ice− l i f e c y c l e . owl
# S e r v i c e L i f e c y c l e " />
< r d f s : l a b e l >Avai lable</ r d f s : l a b e l >
<rdfs:comment>Avai lable
</rdfs:comment>

</owl :Class>

<owl :Class r d f : I D =" Deprecated ">
<rdfs : subClassOf r d f : r e s o u r c e =" h t t p : //
www. j b o s s . org/overlord/serv ice− l i f e c y c l e . owl
# S e r v i c e L i f e c y c l e " />
< r d f s : l a b e l >Deprecated</ r d f s : l a b e l >
<rdfs:comment>Deprecated
</rdfs:comment>

</owl :Class>

<owl :Class r d f : I D=" Ret i red ">
<rdfs : subClassOf r d f : r e s o u r c e =" h t t p : //
www. j b o s s . org/overlord/serv ice− l i f e c y c l e . owl
# S e r v i c e L i f e c y c l e " />
< r d f s : l a b e l >Ret i red</ r d f s : l a b e l >
<rdfs:comment>Ret i red
</rdfs:comment>

</owl :Class>

</rdf:RDF>

The usage is pretty straightforward - as Service moves through
different states, corresponding subClass of the ontology above is
set to the Service artifact.

3.5 User Interface Mockup

Final part of the analysis was the visual side of the SLMA. The SLMA
is implemented as a web application and user can access it through
his Web Browser.

30



3. ANALYSIS

The mockup of the user interface was achieved through wire-
frames. Wireframe is simply a visual guide representing the skeleton
of the specific Web Page. Wireframe should be simple but complete.
The focus of the final design was to achieve as much simplicity as
possible. User Interface of the SLMA has very simple requirement -
it has to support all of the use cases as listed in section 3.2. The listing
of all wireframes which together create the User Interface mockup
can be found in the attachment B. These wireframes has been used
heavily in the development of the visual side of the Application but
it is possible that the final version of the application has some differ-
ences.

31



3. ANALYSIS

Service Analyst

Id
e
n
ti

fy
 S

e
rv

ic
e

SOA Governance specialist

In
it

ia
liz

e
 S

e
rv

ic
e

S
e
le

ct
 s

e
rv

ic
e

fr
o
m

 S
-R

A
M

P
D

e
p
re

ca
te

se
rv

ic
e

R
e
ti

re
 s

e
rv

ic
e

e
n
d

se
rv

ic
e
 r

e
ti

re
d

re
fr

e
sh

Service Developer

R
e
g
is

te
r 

S
e
rv

ic
e

Service Lifecycle
Management Application

Q
u
e
ry

 S
-R

A
M

P
Fo

r 
S
e
rv

ic
e
s

Te
st

s 
O

K
?

S
e
n
d
 e

m
a
il?

S
e
t 

S
ta

tu
s 

-
N

e
w

st
a
rt

S
e
n
d
 t

e
st

re
su

lt
s

re
te

st
?

e
n
d
 -

 t
e
st

s 
fa

ile
d

re
te

st
?

e
n
d
 -

 t
e
st

s 
fa

ile
d

QA Specialist

Te
st

 S
e
rv

ic
e

E
v
a
lu

a
te

 t
e
st

s
re

su
lt

yes no

y
e
s

n
o

yes

no

n
o

y
e
s

Figure 3.3: Process model of "Service Lifecycle - for new Service"
32



3. ANALYSIS

Set Status -
In Test Apply ontology Test the Service

Figure 3.4: Sub Process - Test the Service

33



3. ANALYSIS

SOA Governance specialist

S
e
le

ct
 s

e
rv

ic
e

fr
o
m

 S
-R

A
M

P
D

e
p
re

ca
te

se
rv

ic
e

R
e
ti

re
 s

e
rv

ic
e

re
fr

e
sh

Service Developer

R
e
g
is

te
r

E
x
is

ti
n
g
 S

e
rv

ic
e

Service Lifecycle
Management Application

Q
u
e
ry

 S
-R

A
M

P
Fo

r 
S
e
rv

ic
e
s

Te
st

s 
O

K
?

S
e
n
d
 e

m
a
il?

S
e
rv

ic
e
 S

ta
tu

s?

re
te

st
?

S
e
n
d
 t

e
st

s
re

su
lt

s

re
te

st
?

QA Specialist

Te
st

 S
e
rv

ic
e

E
v
a
lu

a
te

 t
e
st

s
re

su
lt

te
st

yes no

InTest

Availa
ble

Deprecated

n
o

yes

y
e
s

no

n
o

yes

Figure 3.5: Process model of "Service Lifecycle - for existing Service"
34



4 Technological stack

So far, specific technologies were not really relevant. The concept of
this thesis, the application design and analysis covered so far, are
really technological agnostic. However, one of the objective of this
thesis, as explained in section 1.1 was to achieve implementation of
SLMA by using JBoss open source technologies. This chapter will in-
troduce in few lines every technology and project used in the imple-
mentation of the SLMA and also show the role of the selected tech-
nology within the application. These technologies will also be linked
to the servers defined in section 3.1.

4.1 JBoss Enterprise Application Platform

JBoss Enterprise Application Platform (JBoss EAP) is a key technol-
ogy used in this diploma thesis. JBoss EAP in version 6 is used in the
SLMA.

Definition 16 JBoss EAP EAP [2014, chap. 1]
Red Hat JBoss Enterprise Application Platform 6 (JBoss EAP 6) is a
middleware platform built on open standards and compliant with
the Java Enterprise Edition 6 specification. It integrates JBoss Ap-
plication Server 7 with high-availability clustering, messaging, dis-
tributed caching, and other technologies.

In figure 3.1 there are multiple servers showed. These servers are
actually instances of JBoss EAP with something extra deployed on
top of it (depending on a server). JBoss EAP 6 is a JavaEE 6 compli-
ant application server which is used as an underlying platform for
deployment throughout the whole project.

4.2 jBPM

jBPM is another open source project from the JBoss family focused
on Business Process Management. jBPM in version 6 is used in the
SLMA.

35



4. TECHNOLOGICAL STACK

Definition 17 jBPM
jBPM is an open source Business Process Management System. It
supports creating, validating, simulating, deploying and executing
Business Processes and rules.

The overall architecture of the jBPM project is displayed in the
figure 4.1 jBP [2014, chap. 1]. As shown in the architecture, jBPM in-

Figure 4.1: jBPM Overall architecture

cludes components for process modeling but also for their execution
and monitoring. REST interface is also showed in this figure. This is
exactly the integration point used by the SLMA.

jBPM has been used in many places in this diploma thesis. For
example, business processes were modeled with tooling provided
by jBPM - results of this modeling were included in the figure 3.3
and 3.5. Moreover jBPM is actually used as the execution environ-
ment for business processes - in this case, for execution of the Service
Lifecycle itself. This is achieved by the REST API which jBPM exe-
cution server provides. SLMA sends requests to endpoints exposed

36



4. TECHNOLOGICAL STACK

by jBPM execution server and by that effectively achieving the exe-
cution of the Service Lifecycle instance. jBPM is deployed on BPM
Server.

4.3 Overlord S-RAMP

Overlord S-RAMP is the implementation of the S-RAMP specifica-
tion as explained in definition 11. Overlord S-RAMP in version 0.6 is
used in the SLMA.

Definition 18 Overlord S-RAMP SRA
Overlord S-RAMP is an artifact repository comprised of a common
data model, multiple interfaces, and powerful tools. It implements
the OASIS S-RAMP specification which defines the data model, query
language, and an Atom REST binding.

Overlord S-RAMP is one of the SOA components used in this project.
It is utilized as a Service Artifact storage - binary version of Service
are being stored here. Moreover, the Ontology file which defines sev-
eral classifications is also stored in here. SLMA communicates indi-
rectly with the Overlord S-RAMP deployed on SOA Server in order
to set the specific classification of the Service Artifact based on its
current state.

4.4 SwitchYard

SwitchYard is another SOA component used in this diploma thesis.
It is deployed on SOA Server and it serves as a Service Container.

Definition 19 SwitchYard Swi
A lightweight service delivery framework providing full lifecycle
support for developing, deploying, and managing service-oriented
applications.

SwitchYard is not directly used by the SLMA. However, it plays an
important role in the project since all the Services used for demon-

37



4. TECHNOLOGICAL STACK

stration purposes are actually SwitchYard services. Moreover, there
is a Use Case as defined in section 3.2.2 which allows user to monitor
all retired service invocations. In order to actually invoke a service
it has to be deployed in some Service container - which is another
purpose of SwitchYard.

4.5 Overlord Runtime Governance

Overlord Runtime Governance (Overlord RTGov) is a component
which can be directly used in implementing the SOA Governance
solution, which SLMA is. Overlord RTGov in version 2 is used in
this project.

Definition 20 Overlord RTGov
Overlord RTGov is a framework which monitors the service execu-
tion environment and stores the activity related information from the
run time.

The overall architecture mainly focused on collection and reporting
features of RTGov is displayed in the figure 4.2

Overlord RTGov in context of SLMA is used for enforcing Ser-
vice Policy during runtime. The one policy which is being enforced
and monitored has been actually defined in the very beginning in
section 1.1. RTGov is storing information regarding service invoca-
tions. As displayed in the figure 4.2 these information are exposed
through the REST. SLMA is querying this API and checking whether
retired service by any chance was not invoked. If so, this invocation
is presented to the end user of the SLMA and he can deal with this in-
vocation as explained in the Use Case specification defined in section
3.2.2.

4.6 Vaadin

Vaadin was selected as a framework for building the User Interface
of the SLMA. It is an open source project and version 7.3.2 was used
in the SLMA.

38



4. TECHNOLOGICAL STACK

Figure 4.2: Collection and reporting architecture

Definition 21 Vaadin Grönroos [2014]
Vaadin is an AJAX web application development framework that en-
ables developers to build high-quality user interfaces with Java, both
on the server- and client-side. It provides a set of libraries of ready-
to-use user interface components and a clean framework for creating
your own components.The focus is on ease-of-use, re-usability, ex-
tensibility, and meeting the requirements of large enterprise applica-
tions.

Vaadin is used as the framework for front-end development of
the SLMA. It could be said that the User Interface Mockup as de-
fined in section 3.5 is implemented by Vaadin. In Vaadin respective
web pages are implemented as java classes. From these java classes
additional logic is being invoked. In case of SLMA this logic mostly
represents REST API invocation - REST requests are being sent from

39



4. TECHNOLOGICAL STACK

the Vaadin application (SLMA) to the remote BPM Server and re-
sponse is then presented to the end user.

4.7 Alternative - Overlord Design Time Governance

There was not much space for alternative technologies which could
be used in this project. The main reason behind this is that the of-
ficial assignment of this thesis clearly stated that JBoss open source
technologies are supposed to be used, and the selected ones are sim-
ply the most suitable for usage in SOA Governance solution, which
SLMA is.

However, there is one other community project, Overlord Design
Time Governance (Overlord DTGov) which could be used for imple-
menting the SLMA - mainly for the execution of the Service Lifecycle.

Definition 22 Overlord DTGov DTG [2014, chap. 1]
The DTGov project layers Design Time Governance functionality on
top of an S-RAMP repository. These two projects work together to
provide the following:

• Store and Govern artifacts

• Custom Governance Workflows

• Integrated Governance Human Task Management

For executing Governance Workflows DTGov also uses jBPM frame-
work.

The main reason why Overlord DTGov was not used, but instead
a similar output was achieved through custom integration between
jBPM and S-RAMP is due to one of the requirement from the official
assignment.

As stated in section 3.2 the SLMA should execute Service Life-
cycle on demand. This is not possible using Overlord DTGov as the
lifecycle in DTGov is triggered every time an artifact is stored in the
S-RAMP repository.

40



4. TECHNOLOGICAL STACK

Moreover, Overlord DTGov bundles jBPM libraries for the lifecy-
cle execution and it can happen that they might be outdated. There-
fore, if one wants to use the latest jBPM libraries it is really more
suitable to use jBPM as a separate execution server - just the way
SLMA uses it.

41



5 Selected implementation details

It is not so interesting to describe the whole implementation of the
SLMA. For example, the signification portion of the application’s
source codes consists of classes representing specific web pages which
are presented to the end user. From the developer’s perspective this
area of the program may not appear so interesting. What is more
interesting are the integration points which are implemented in the
SLMA. For exampleApplication Server communicates with BPM
Server - this is implemented by integrating these two servers using
REST.

This chapter will briefly describe selected implementation details
- focused on the integration parts. When suitable, code examples will
be shared too. As already stated, not every aspect will be described
and therefore it may be useful to inspect the application source codes
directly for further implementation details.

5.1 jBPM Integration with SLMA

This is probably the most important integration point throughout the
whole project. As showed in the figure 3.1 the SLMA and the jBPM
execution server are deployed on separate servers. SLMA has to in-
form the jBPM server whenever user performs some action - such as
"Start the process" or "Complete Task". This is achieved via integra-
tion over REST API which is exposed by the jBPM execution server.

jBPM provides library called kie-remote-client1 which serves as
a native java client for remote communication. This library is pack-
aged within the SLMA. For example, if end user of SLMA press "Start
new Service Lifecycle - for new Service" button, code displayed in the
listing 5.1 will be executed.

Listing 5.1: Code which starts the process deployed in jBPM execu-
tion Server

/ / S t a r t t h e s e r v i c e l i f e c y c l e i n s t a n c e

1. http://mvnrepository.com/artifact/org.kie.remote/kie-remote-client

42



5. SELECTED IMPLEMENTATION DETAILS

RuntimeEngineWrapper runtimeEngine ;

P ro c es s I n s t a nc e p r o c es s I n s t a n c e = runtimeEngine
. g e t I n s t a n c e ( ) . getEngine ( )
. ge tKieSess ion ( ) . s t a r t P r o c e s s ( process id ) ;

/ / . . . c o r r e s p o n d i n g p a r t
/ / from t h e RuntimeEngineWrapper

publ ic s t a t i c RuntimeEngineWrapper g e t I n s t a n c e
( S t r i n g username , S t r i n g password )
throws IOException {
/ / i f a n o t h e r u s e r i s l o g g e d
/ / c r e a t e new r u n t i m e e n g i n e f o r him
i f ( i n s t a n c e == n u l l ||
RuntimeEngineWrapper . username != username ) {
i n s t a n c e = new RuntimeEngineWrapper ( ) ;
p r o p e r t i e s = new JBPMProperties ( ) ;
RemoteRestRuntimeEngineFactory f a c t o r y =
RemoteRestRuntimeEngineFactory . newBuilder ( )
. addDeploymentId ( p r o p e r t i e s . getDeploymentId ( ) )
. addUrl ( p r o p e r t i e s . getUrl ( ) )
. addUserName ( username ) . addPassword ( password )
. bui ldFactory ( ) ;
RuntimeEngineWrapper . username = username ;
RuntimeEngineWrapper . password = password ;
RuntimeEngineWrapper . setEngine ( f a c t o r y
. newRuntimeEngine ( ) ) ;
}
re turn i n s t a n c e ;
}

As showed in the code, the RemoteRestRuntimeEngineFactory
returns the RuntimeEngine which is an object which can be used
for remote interaction with the jBPM Execution Server. It is neces-
sary to configure the RemoteRestRuntimeEngineFactory with

43



5. SELECTED IMPLEMENTATION DETAILS

couple of properties which are shipped in the standard Property2 file
with the SLMA. What is also important that for every logged user it
is necessary to instantiate new RuntimeEngine. This is necessary if
user is supposed to see only Tasks which are assigned to him.

This integration is effectively implementing requirement "execute
custom lifecycle for those services on demand" as mentioned in sec-
tion 3.2. The same integration principle is used when implementing
requirement "monitor service lifecycle stage" because RemoteRuntime-
Engine provides access to AuditLogService which allows jBPM
developer to get access to the history information regarding specific
process instance. Based on these history information it is possible to
determine current stage of the Service Lifecycle and display it to the
end user of the application.

5.2 jBPM integration with S-RAMP

As showed in the figure 3.5 and 3.3 there is a Service task called
"Query S-RAMP for Services". In figure 3.4 there is Service task called
"Apply Ontology". Both of these tasks are communicating with the S-
RAMP repository which is deployed on a separate SOA Server. This
communication is also achieved via REST API. Service Task can be
configured as explained in De Maio et al. [2014, p. 140]. The key part
is the class which implements WorkItemHandler interface3. Ev-
ery Service Task has its own implementation - once the process flow
reaches the Service Task node the executeWorkItem method will
be invoked. This method will include the necessary business logic
which is related to the specific Service Task.

Let us assume that user is executing "Service Lifecycle - for new
Service" process and he just ended task with name "Register Service".
The process flow continues to the "Query S-RAMP For Services" task
and engine will execute executeWorkItem method which includes
code displayed in the listing 5.2.

2. http://docs.oracle.com/javase/7/docs/api/java/util/Properties.html
3. http://docs.jboss.org/jbpm/v6.1/javadocs/org/kie/api/runtime/process/WorkItemHandler.html

44



5. SELECTED IMPLEMENTATION DETAILS

Listing 5.2: Code which starts the process deployed in jBPM execu-
tion Server

publ ic void executeWorkItem ( WorkItem wi ,
WorkItemManager wm) {
Map<Str ing , Object > params = wi . getParameters ( ) ;

SRAMPClient srampClient = new SRAMPClient ( (
S t r i n g ) params . get ( " inUsername " ) ,
( S t r i n g ) params . get ( " inPassword " ) ,
sPort , ( S t r i n g ) params . get ( " inHost " ) ) ;

L i s t <Service > s e r v i c e L i s t = n u l l ;
s e r v i c e L i s t = t h i s . srampClient . g e t S e r v i c e s ( ) ;

Map<Str ing , Object > r e s u l t =
new HashMap<Str ing , Object > ( ) ;
r e s u l t . put ( " OutServ iceL is t " , s e r v i c e L i s t ) ;

wm. completeWorkItem ( wi . get Id ( ) , r e s u l t ) ;

/ / c o r r e s p o n d i n g c o d e from SRAMPClient
p r i v a t e f i n a l s t a t i c S t r i n g g e t A l l S e r v i c e s =
"/s−ramp/ext/SwitchYardService " ;

SrampAtomApiClient c l i e n t = new SrampAtomApiClient
( endpoint , username , password , t rue ) ;

publ ic L i s t <Service > g e t S e r v i c e s ( ) {
L i s t <Service > s e r v i c e L i s t =
new ArrayList <Service > ( ) ;

f o r ( ArtifactSummary sum :
c l i e n t . buildQuery ( g e t A l l S e r v i c e s ) . query ( ) ) {

s e r v i c e L i s t . add (new S e r v i c e (sum . getName ( ) ,
sum . getUuid ( ) ) ) ;

}
re turn s e r v i c e L i s t ;

45



5. SELECTED IMPLEMENTATION DETAILS

}

SRAMPClient is a class wrapping the SrampAtomApiClientwhich
is the class provided by the Overlord S-RAMP. Method getAllServices
fetches all the SwitchYard services stored in the S-RAMP repository
and returns them back to the Service Lifecycle. In task "Select Ser-
vice from S-RAMP" these Services are displayed to the user where
he needs to pick one in order to bound Service Lifecycle instance to
a specific Service.

This integration is effectively implementing requirement "search
S-RAMP repository for SwitchYard Services" as mentioned in sec-
tion 3.2.

5.3 Overlord RTGov integration with SLMA

Overlord RTGov is storing information regarding service execution
environment. One of these information is invocation of a service.
This can be accesses at following REST API exposed by RTGov Server:
[GET] /activity/events/?from=$from&to=$to

Retired Services are stored in the jBPM database, so when user
tries to display Retired Service invocations, the application code will
be sending GET requests to the endpoint above for all the retired ser-
vices found. The from parameter will be set to the time when Service
was marked as a retired. The to parameter will be set to the current
date. If the GET request will return some result it will be displayed to
the end user in a formatted table and available for further process-
ing.

This integration is effectively implementing requirement "sup-
port executing notification actions once a deprecated service is used"
as mentioned in section 3.2.

46



6 Project testing

In order to make sure that the resultant application will meet the
quality criteria of the diploma thesis several tests has been preformed
during the development. This does not concern only the final SLMA
but also the Service Lifecycle processes we well.

Workflow tests are verifying that the Service Lifecycle have been
modeled properly. Especially that the process execution is following
the process model as expected and every process variable which is
being passed is preserved correctly. These tests are located in org.fi.
muni.diploma.service.lifecycle.tests.ProcessEngine.
ServiceTest.

Service Lifecycle includes two Service Tasks which are communi-
cating with remote S-RAMP repository - this integration is being ver-
ified by S-RAMP integration tests This test is making sure that the
integration is successful by verifying the functionality on a sample
data. Tests can be found in "handlers" project in class com.sample.
SRAMPTest.

RTGov integration tests are important as successful integration
with Overlord RTGov is essential since it is achieving one of the of-
ficial requirement of the SLMA - monitoring retired Service invoca-
tions. Functionality which is being tested is that the invocation of a
specific service is recognized by the RTGov server. This test is located
in project "vaadin-frontend" in a class org.fi.muni.diploma.
service.lifecycle.tests.RTGovIntegrationTest

Email tests are verifying that Service Lifecycle is capable of send-
ing emails - for example when the Service is being retired, the user
of the SLMA can inform the Service consumers about this. Another
situation is when User is dealing with Service retired invocation -
he can acknowledges it and send email to the respective authorities
regarding this. This functionality has been tested using FakeSMTP
1 utility. The difference between FakeSMTP and "real" SMTP server
is that FakeSMTP only delivers email in form of files created on a
filesystem. The test for this functionality is located in project "vaadin-
frontend" in class org.fi.muni.diploma.service.lifecycle
.tests.EmailServiceTest.

1. https://nilhcem.github.io/FakeSMTP/

47



6. PROJECT TESTING

User acceptance tests were final tests performed. These tests were
trying to determine that the resultant application really fulfilled all
necessary requirements. This was the only test which was not auto-
mated at all. It was executed in form of a live session with my tech-
nical consultant. We have gone through the every screen of SLMA
and tried to think of every possibility how can the application be uti-
lized. In total approximately 15 User Interface issues were found and
2-3 functional issues too.

48



7 SLMA showcase

This chapter will show Service Lifecycle Management Application
in action. Its main purpose is to show all use cases implemented by
SLMA and accompany these use cases by screenshots so it will be
clear what web page is implementing what exact functionality. This
will all be done be executing "Service Lifecycle - for existing Service"
process.

If reader is interested it is possible to try all of this in local envi-
ronment since all necessary source codes as well as the installation
instructions are published in the GitHub repository Giertli [2014].
After successfully installing the whole project it can be started by
issuing a command ./start.sh from the installation folder. The
whole showcase will assume that the git repository is cloned locally
on file system and installed according to the published installation
instructions.

7.1 Uploading SwitchyYard Service into S-RAMP

"Service Lifecycle - for existing Service" process assumes that the Ser-
vice artifact is already uploaded into the S-RAMP repository. So first
we need to execute this task - in real scenario this would probably by
done by the Service developer or similar role.

• Navigate to folder ./installation/jvm3-soa-server
/jboss-eap-6.3/quickstarts/bean-service

• Execute mvn clean package command from the terminal

• Log into http://localhost:8480/s-ramp-ui/

• Navigate to Manage Artifacts - > Import Artifacts

• Locate ./installation/jvm3-soa-server/jboss-eap-6.3/
quickstarts/bean-service/target/switchyard-bean-
service.jar

• As Artifact Type set SwitchYardApplication and press Import

49



7. SLMA SHOWCASE

That is it! Example OrderService has been just uploaded to the S-
RAMP Repository.

Note that value SwitchYardApplication for Artifact Type is
required. This is the value which Service Lifecycle uses for fetching
Service artifacts stored in S-RAMP repository.

7.2 Execute Service Lifecycle on demand

The first action when using the SLMA initially is to start new instance
of the Service Lifecycle. The On Demand requirement is achieved by
the fact that user decides when he wants to start the new instance. It
is not done automatically as in Overlord DTGov.

• Log into http://localhost:8280/service-lifecycle-mgmt/.
Sample credentials are anton/password1!. User anton has role
SOAGovernanceSpecialist assigned which has all permissions
set - this role can execute every use case in the application and
complete every Lifecycle task.

• In left menu bar click on Start New Lifecycle Instance

• Click on Start Service Lifecycle - for existing Service

That is it! The new instance of the Service Lifecycle has been created.
You should be redirected to the first Task of this Lifecycle as shown
in the figure 7.1.

7.3 Work on the Service Lifecycle Task

In order to move from between stages of the Service Lifecycle user
has to work on some tasks. Their complete documentation is in the
Appendix A.

• Navigate to Lifecycle Tasks

• Since only one lifecycle is started, there is only one available.
Click on Work on Task button

50



7. SLMA SHOWCASE

Figure 7.1: First Task of the Service Lifecycle as presented to the end
user

• You will be presented with the same screen as shown in fig-
ure 7.1. Fill in appropriately, for example:

– Status - Deprecated

– Description - SampleDescription

– Hostname - localhost (S-RAMP host)

– Username - admin (S-RAMP username)

– Password - password1! (S-RAMP password)

– Port - 8480 (S-RAMP Port)

• Press Complete Task button

That is it! First task have been completed and now the Service has
moved to a different stage and the Service Lifecycle to a different

51



7. SLMA SHOWCASE

task. This is how the Service Lifecycle is being executed by the user.
All tasks works similarly - User is presented with a form where he
needs to input some values - there is always a description displayed,
once done, he can press Complete button and he will be redirected
to the Task List where he can pick another task to work on.

I will not be providing examples for every single Task as the prin-
ciple is really the same. However there is one which is a bit more
interesting as it directly implements one of the requirement - query
S-RAMP repository for services.
If the "Register Existing Service" task has been finished, the next Task
in this specific Service Lifecycle is called "Select Service from S-RAMP".
Its corresponding form presented to the user is displayed in a fig-
ure 7.2. This form includes list of Services and user needs to select
precisely one. In this case specifically only OrderService is being dis-
played. This is because this was the Service which we have uploaded
in the S-RAMP Repository as explained in section 7.1.

This task specifically is implementing use case "search S-RAMP
repository for SwitchYard Services" as listed in section 3.2. The data
which are being presented to the user are obtained from a Service
Task called "Query S-RAMP Services" - its implementation details
has been explained in section 5.2.

Sections 7.2 and 7.3 are a practical example of use cases specified
in section 3.2.2. These two use cases are together implementing re-
quirement "execute custom lifecycle for those services on demand"
as defined in section 3.2.

7.4 Monitor Service Lifecycle Stage

At any stage of the Service Lifecycle instance it is possible to dis-
play its detailed information including Service Lifecycle stage - in a
graphical way as well as all the variables associated with the selected
instance. It is possible to display these information for any Service
Lifecycle Instances - Active, Aborted and even Completed.

• Open http://localhost:8280/service-lifecycle-mgmt/

• Navigate to Lifecycle Instances

52



7. SLMA SHOWCASE

• Select Show details on a desired Lifecycle instance and you
will be redirected to a page where detailed information will be
displayed

That is it! Details of selected Service Lifecycle instance are now dis-
played. The page includes list of Instance metadata, variables bound
to this specific instances, and most importantly the Diagram which
shows the current progress of the Service Lifecycle. Based on the ac-
tive task in the Service Lifecycle the SLMA will dynamically generate
new diagram. Example one is shown in the figure 7.3.

This section showed how the use case View Task Details, as de-
fined in section 3.2.2, is implemented in the SLMA. It is an effective
realization of the official thesis’s assignment "monitor service lifecy-
cle stage" as listed in section 3.2. The implementation detail behind
this functionality consists of two parts - obtaining history related
data of the Service Lifecycle instance which is possible due to suc-
cessful integration with jBPM execution server as explained in sec-
tion 5.1. The second part is of course the dynamic generation of the
Service Lifecycle diagram.

7.5 Acknowledge Retired Service Invocation

This particular functionality can be fully utilized only under these
two circumstances:

• There is a completed Service Lifecycle instance which ended
up in making Service retired

• The Service has been invoked

Note that in order to finish the Service Lifecycle the user has to com-
plete the last Task which is called "Retire Service". If user wants to
this Task will send an email to the Service consumers regarding Ser-
vice retirement. If this Email is supposed to be sent successfully the
SMTP server has to run on port 1025.

This is the whole procedure how this functionality can be uti-
lized:

53



7. SLMA SHOWCASE

• Start the SMTP server on port 1025: java -jar
fakeSMTP-1.11.jar1 -s -b -p 1025 -a 127.0.0.1 -o
/emailInbox

• Navigate to Lifecycle Tasks and Complete the Retire
Service Task by filling all necessary fields and pressing Complete
Task button

• Invoke the retired Service by sending a Simple Object Access
Protocol (SOAP) request to the respective endpoint:

– Navigate to the cloned git repository and execute the fol-
lowing command: ./installation/jvm3-soa-server/
jboss-eap-6.3/bin/jboss-cli.sh -connect
controller=localhost:10399

– Deploy OrderService to the service container by execut-
ing: /installation/jvm3-soa-server/jboss-eap-6.3/
quickstarts/bean-service/target/switchyard-bean-
service.jar

– Open ./installation/jvm3-soa-server/jboss-eap-6.3/
quickstarts/bean-service/src/test/java/org/switchyard
/quickstarts/bean/service/BeanClient.java and
on line 45 change the Port value so it points to the Service
container. If SLMA was installed according to the README
instructions in the Git repository, then the value is 8480.

– Navigate to the root of the bean-service folder and is-
sue command which will execute BeanClient class:
mvn exec:java

– That is it! The OrderService was invoked by Sending an
appropriate message SOAP message to the service con-
tainer

• In SLMA, navigate to Retired Services menu and observe
that the SLMA has registered this invocation.

• Acknowledge this Invocation by pressing Send Notification
button.

1. https://nilhcem.github.io/FakeSMTP/

54



7. SLMA SHOWCASE

• The form presented to the user is displayed in figure 7.4. The
"body" field is prefilled automatically with additional details
regarding the Invocation.

• Finish the whole process by filling in all the necessary fields
and pressing Process Notification button.

• You will be redirected to the List of remaining (unprocessed)
invocations - the one just processed will not be displayed any-
more.

That is it! You have just acknowledge retired Service invocation!
This section showed how the Service Lifecycle can be completed. If it
was completed successfully it really means that the Service bound to
that particular Service Lifecycle instance was marked as "Retired" as
that is the final stage of the Service Lifecycle. Once Service is marked
as Retired the SLMA will watch out for every invocation of such ser-
vice. This section explained how can the Service be invoked by send-
ing a simple SOAP request to the Service Container and also how can
the user process this retired Service invocation.

This example showed how the use case Acknowledge retired
service invocation, as defined in section 3.2.2, was implemented by
SLMA. This use case is effectively realizing the official diploma the-
sis’s requirement "support executing notification actions once a dep-
recated service is used" as listed in the section 3.2. The implementa-
tion of this requirement was achieved by successful integration be-
tween Overlord RTGov and SLMA as explained in section 5.3.

55



7. SLMA SHOWCASE

Figure 7.2: "Select Service From S-RAMP" Task Form

56



7. SLMA SHOWCASE

Figure 7.3: Diagram which shows the current stage of the Service
Lifecycle

57



7. SLMA SHOWCASE

Figure 7.4: Web page allowing user to process retired Service invoca-
tion

58



8 Final word

8.1 Conclusion

The goal of this thesis was to implement Service Lifecycle Manage-
ment Application based on agreed requirements. These requirements
were derived from the definition of Service Lifecycle which is one of
main concepts used in SOA Governance and was explained by Joe
Dirksen Dirksen [2013, p. 213].

This goal has been met and the application source codes as well
as the installation instructions have been published in the GitHub
repository Giertli [2014].

The added value of this application is that it shows how can the
rather complex discipline - SOA Governance - be implemented in a
real application. Theoretical concepts have been propagated through-
out the whole application.

Besides the fact that SLMA can be used as part of the SOA Gover-
nance solution it also shows how the numerous JBoss open source
technologies can integrate between themselves through the REST
API.

8.2 Future enhancements

The initial implementation of the SLMA could be enhanced in cou-
ple of areas. This section will discuss possibilities of these future en-
hancements.

• Strengthening the architecture by adding the Clustering sup-
port in order to achieve High Availability

• Service Lifecycle process enhancements - for example Service
Lifecycle could automatically deploy Service to a Service Con-
tainer and undeploy it once it is Retired.

• Add support for another type of the Lifecycle and Ontology
- for example Policy Lifecycle. Initial design is showed in the
attachment C.

59



8. FINAL WORD

SLMA is an open-source project published under Apache v2 license.
All forks of the project, contributions and ideas for improvement are
more than welcome.

60



Bibliography

Overlord s-ramp. [online]. [qtd. 2014-12-18]. Available at: <http:
//www.projectoverlord.io/s-ramp/>.

Switchyard. [online]. [qtd. 2014-12-18]. Available at: <http://
switchyard.jboss.org/>.

Soa ontology v2.0. Technical report, OpenGroup, 2010. https://
www2.opengroup.org/ogsys/catalog/C144.

Dtgov guide. Technical report, JBoss community, 2014.
http://docs.jboss.org/overlord/dtgov/1.4.0.
Final/html/index.html.

Jboss enterprise application platform 6.3 - administration
and configuration guide. Technical report, Red Hat, 2014.
https://access.redhat.com/documentation/en-US/
JBoss_Enterprise_Application_Platform/6.3/html/
Administration_and_Configuration_Guide/index.
html.

jbpm documentation. Technical report, JBoss community, 2014.
http://docs.jboss.org/jbpm/v6.1/userguide/.

M.N. De Maio, M. Salatino, and Esteban Aliverti. jBPM6 Developer
Guide. Packt Publishing, 2014. ISBN 978-1-78328-661-4.

Jos Dirksen. SOA Governance in Action: Rest and Web Service Architec-
ture. Manning Publications Co., 2013. ISBN 9781617290275.

Thomas Erl. Service Oriented Architecture: Concepts, Technology, and
Design. Prentice Hall, 1 edition, 2005. ISBN 9780131858589.

Anton Giertli. agiertli/service-lifecycle-mgmt. [online]. [qtd. 2014-
12-18]. Available at: <https://github.com/agiertli/
service-lifecycle-mgmt>.

Marko Grönroos. Book of vaadin. Technical report, Vaadin Ltd, 2014.
https://vaadin.com/book.

61

http://www.projectoverlord.io/s-ramp/
http://www.projectoverlord.io/s-ramp/
.
http://switchyard.jboss.org/
http://switchyard.jboss.org/
.
https://www2.opengroup.org/ogsys/catalog/C144
https://www2.opengroup.org/ogsys/catalog/C144
http://docs.jboss.org/overlord/dtgov/1.4.0.Final/html/index.html
http://docs.jboss.org/overlord/dtgov/1.4.0.Final/html/index.html
https://access.redhat.com/documentation/en-US/JBoss_Enterprise_Application_Platform/6.3/html/Administration_and_Configuration_Guide/index.html
https://access.redhat.com/documentation/en-US/JBoss_Enterprise_Application_Platform/6.3/html/Administration_and_Configuration_Guide/index.html
https://access.redhat.com/documentation/en-US/JBoss_Enterprise_Application_Platform/6.3/html/Administration_and_Configuration_Guide/index.html
https://access.redhat.com/documentation/en-US/JBoss_Enterprise_Application_Platform/6.3/html/Administration_and_Configuration_Guide/index.html
http://docs.jboss.org/jbpm/v6.1/userguide/
https://github.com/agiertli/service-lifecycle-mgmt
https://github.com/agiertli/service-lifecycle-mgmt
.
https://vaadin.com/book


8. FINAL WORD

Jiří Kolár. Business activity monitoring. Master’s thesis, Masaryk
University, 2009.

C.M. MacKenzie, K. Laskey, F. McCabe, P.F. Brown, R. Metz, and
B.A. Hamilton. Reference model for service oriented architecture
1.0. Technical report, OASIS, 2006. http://docs.oasis-open.
org/soa-rm/v1.0/.

K. Stam and E. Wittmann. Soa repository artifact model and proto-
col. Technical report, OASIS, 2013. https://www.oasis-open.
org/committees/tc_home.php?wg_abbrev=s-ramp.

Mathias Weske. Business Process Management: Concepts, Languages,
Architectures. Springer, 2007. ISBN 978-3-540-73521-2.

62

http://docs.oasis-open.org/soa-rm/v1.0/
http://docs.oasis-open.org/soa-rm/v1.0/
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=s-ramp
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=s-ramp


A Service Lifecycle Tasks

This attachment includes documentation of all Tasks which are in-
cluded in both Service Lifecycle processes.

Task name Task Description Data which needs to be
entered

Identify Service Every service has to have a
purpose. Enter the reason-
ing and description of this
service and any additional
details which you feel are
necessary.

• Service Description

Initialize Every service implements
some interface (contract).
Make sure that this con-
tract is well defined and
documented. If these re-
sources are exposed some-
where include URLs which
points to them

• Contract

• Documentation

Register If service has been cre-
ated the service artifact
should be uploaded to the
repository. Enter the neces-
sary details which allows
querying this repository so
the artifact can be found.
Repository currently used
is S-RAMP. Note that ser-
vice has to be created
and policies fulfilled be-
fore moving onto the next
stage of the lifecycle

• Are the service poli-
cies fulfilled?

• Has the service been
created?

• Hostname

• Username

• Password

• Port

63



A. SERVICE LIFECYCLE TASKS

Select Service
from S-RAMP

Select the service artifact to
which this lifecycle will be
bound • Artifact UUID in S-

RAMP

• Service Name

Test Service Enter the Service Test re-
sults. If all went well ser-
vice should be deployed
in production with all tests
passed.

• Is service deployed
in production?

• Have service passed
the integration with
other components?

• Have service passed
tests with service
consumers?

Evaluate Tests
result

Tests has not passed. It is
possible to evaluate the re-
sult - re-test the service
if needed and follow up
on the test results through
email - e.g. with QA lead.

• Send email?

• Email Body

• Email recipient

• Email subject

• Email sender

• Re-test?

64



A. SERVICE LIFECYCLE TASKS

Deprecate
Service

The best practice, when
it comes to Service Dep-
recation is to inform ser-
vice consumers about it
and also update the service
configuration so it reflect
this change

• Inform consumers
about service depre-
cation?

• Email recipient

• Email sender

• Email subject

• Service deprecation
announcement

Retire Service Policy regarding retired
service is usually that it
should not be used at
all. Consumers should be
informed about this.

• Inform consumers
about service retire-
ment?

• Email recipient

• Email sender

• Email subject

• Service retirement
announcement

65



A. SERVICE LIFECYCLE TASKS

Register Exist-
ing Service

If service has been cre-
ated, the service artifact
should be uploaded to the
repository. Enter the nec-
essary details which al-
lows querying this repos-
itory, so the artifact can
be found. Repository cur-
rently used is S-RAMP

• Status

– InTest

– Available

– Deprecated

• Hostname

• Port

• Username

• Password

66



B Wireframes

This attachment includes all the wiraframes which has been used
during the design of the User Interface of the SLMA. During devel-
opment these wireframes has been used as a template.

Figure B.1: Welcome page

67



B. WIREFRAMES

Figure B.2: Start the Lifecycle

68



B. WIREFRAMES

Figure B.3: First Task of the "Service Lifecycle - existing Service"

69



B. WIREFRAMES

Figure B.4: List of Lifecycle instances

Figure B.5: Details of selected lifecycle instance

70



B. WIREFRAMES

Figure B.6: List of available Tasks

Figure B.7: Details of selected task

71



B. WIREFRAMES

Figure B.8: List of retired service invocations

72



B. WIREFRAMES

Figure B.9: Details of selected retired service invocation with possi-
bility to acknowledge it

73



C Policy Lifecycle and Ontology

This attachment includes resources which could be used to imple-
ment support for Policy Lifecycle.

C.1 Ontology for Policy classification

Listing C.1: Ontology which could be used for Policy classification

<?xml vers ion=" 1 . 0 " encoding="UTF−8" ?>
<rdf:RDF
xmlns : rdfs=
" h t t p : //www. w3 . org /2000/01/ rdf−schema# "
xmlns :rdf=
" h t t p : //www. w3 . org/1999/02/22− rdf−syntax−ns# "
xmlns:owl=
" h t t p : //www. w3 . org /2002/07/owl# "
xmlns :xs i=
" h t t p : //www. w3 . org /2001/XMLSchema−i n s t a n c e "
xml:base=
" h t t p : //www. j b o s s . org/overlord/serv ice−
l i f e c y c l e . owl ">

<owl:Ontology r d f : I D =" P o l i c y L i f e c y c l e S t a t u s ">
< r d f s : l a b e l >
Pol i cy L i f e c y c l e S t a t u s
</ r d f s : l a b e l >
<rdfs:comment>
Pol i cy L i f e c y c l e S t a t u s Ontology
</rdfs:comment>

</owl:Ontology>

<owl :Class r d f : I D =" P o l i c y L i f e c y c l e ">
< r d f s : l a b e l >
pol i cy l i f e c y c l e
</ r d f s : l a b e l >

74



C. POLICY LIFECYCLE AND ONTOLOGY

<rdfs:comment>
Root s t a t u s −
p a r t i c i p a t i n g in Pol i cy L i f e c y c l e Workflow .
</rdfs:comment>

</owl :Class>

< !−−
B a s i c s e t o f p o s s i b l e p o l i c y l i f e c y c l e s t a t e s
−−>

<owl :Class r d f : I D =" PolicyDesigned ">
<rdfs : subClassOf r d f : r e s o u r c e =
" h t t p : //www. j b o s s . org/overlord/
serv ice− l i f e c y c l e . owl# S e r v i c e L i f e c y c l e " />
< r d f s : l a b e l >
Pol i cy Designed
</ r d f s : l a b e l >
<rdfs:comment>
Pol i cy Designed
</rdfs:comment>

</owl :Class>
<owl :Class r d f : I D =" T r i a l P e r i o d ">

<rdfs : subClassOf r d f : r e s o u r c e =
" h t t p : //www. j b o s s . org/overlord
/serv ice− l i f e c y c l e . owl# S e r v i c e L i f e c y c l e " />
< r d f s : l a b e l >
T r i a l Period
</ r d f s : l a b e l >
<rdfs:comment>
Pol i cy i s in t r i a l period ,
i t has not been accepted yet
</rdfs:comment>

</owl :Class>
<owl :Class r d f : I D =" Active ">

<rdfs : subClassOf r d f : r e s o u r c e =
" h t t p : //www. j b o s s . org/overlord/
serv ice− l i f e c y c l e . owl# S e r v i c e L i f e c y c l e " />

75



C. POLICY LIFECYCLE AND ONTOLOGY

< r d f s : l a b e l >
Active Pol i cy
</ r d f s : l a b e l >
<rdfs:comment>
Pol i cy i s a c t i v e and a l l s e r v i c e s must conform
</rdfs:comment>

</owl :Class>

<owl :Class r d f : I D =" Deprecated ">
<rdfs : subClassOf r d f : r e s o u r c e =
" h t t p : //www. j b o s s . org/overlord/
serv ice− l i f e c y c l e . owl# S e r v i c e L i f e c y c l e " />
< r d f s : l a b e l >
Deprecated Pol i cy
</ r d f s : l a b e l >
<rdfs:comment>
Pol i cy i s deprecated and s e r v i c e s does
not need to conform to t h i s po l i cy anymore
</rdfs:comment>

</owl :Class>

<owl :Class r d f : I D =" Fa i l ed ">
<rdfs : subClassOf r d f : r e s o u r c e =
" h t t p : //www. j b o s s . org/overlord/
serv ice− l i f e c y c l e . owl# S e r v i c e L i f e c y c l e " />
< r d f s : l a b e l >
Fa i l ed Pol i cy
</ r d f s : l a b e l >
<rdfs:comment>
Pol i cy did not pass the t r i a l period ,
t h e r e f o r e i t can not be marked as a c t i v e
</rdfs:comment>

</owl :Class>

<owl :Class r d f : I D=" Obsolete ">
<rdfs : subClassOf r d f : r e s o u r c e =
" h t t p : //www. j b o s s . org/overlord/

76



C. POLICY LIFECYCLE AND ONTOLOGY

serv ice− l i f e c y c l e . owl# S e r v i c e L i f e c y c l e " />
< r d f s : l a b e l >
Obsolete Po l i cy
</ r d f s : l a b e l >
<rdfs:comment>
After some period of deprecation , po l i cy
becomes o b s o l e t e . S e r v i c e s should no
longer use i t .
</rdfs:comment>

</owl :Class>

</rdf:RDF>

C.2 Policy Lifecycle Model

77



C. POLICY LIFECYCLE AND ONTOLOGY

SOA Governance specialist
Service Analyst

D
e
si

g
n
 P

o
lic

y

System

A
p
p
ly

 o
n
to

lo
g
y
 -

Tr
ia

l 
S
ta

te

Pa
ss

e
d
 t

h
e
 t

ri
a
l 
p
e
ri

o
d
?

A
p
p
ly

O
n
to

lo
g
y
 -

A
ct

iv
e
 S

ta
te

A
p
p
ly

O
n
to

lo
g
y
 -

Fa
ile

d
 S

ta
te

A
p
p
ly

O
n
to

lo
g
y
 -

D
e
p
re

ca
te

d
S
ta

te

A
p
p
ly

 o
n
to

lo
g
y
 -

O
b
so

le
te

 s
ta

te

S
e
n
d
 a

n
 e

m
a
il

SOA Governance specialist

A
ct

iv
a
te

 p
o
lic

y
D

e
p
re

ca
te

O
b
so

le
te

N
o
ti

fy
st

a
ke

h
o
ld

e
rs

yes
no

Figure C.1: Process model of Policy Lifecycle
78



D Content of the CD

The enclosed CD contains following items:

• /git_repo Clone of the git repository including source codes
of the application and installation instructions

• /support_software All the supporting software which is
used by the SLMA, such as JBoss open source technologies can
be either downloaded from web, or taken from this directory

• /text Text of this diploma thesis

79


	Introduction
	 Objectives

	Theoretical background
	 Service Oriented Architecture
	 SOA Governance
	 Business Process Management

	Analysis
	 Overall architecture
	 Server descriptions

	 Use cases
	 Use case diagram
	 Use case details

	 Service Lifecycle Models
	 Service Lifecycle Ontology
	 User Interface Mockup

	Technological stack
	 JBoss Enterprise Application Platform
	 jBPM
	 Overlord S-RAMP
	 SwitchYard
	 Overlord Runtime Governance
	 Vaadin
	 Alternative - Overlord Design Time Governance

	Selected implementation details
	 jBPM Integration with SLMA
	 jBPM integration with S-RAMP
	 Overlord RTGov integration with SLMA

	Project testing
	SLMA showcase
	 Uploading SwitchyYard Service into S-RAMP
	 Execute Service Lifecycle on demand
	 Work on the Service Lifecycle Task
	 Monitor Service Lifecycle Stage
	 Acknowledge Retired Service Invocation

	Final word
	 Conclusion
	 Future enhancements

	Service Lifecycle Tasks
	Wireframes
	Policy Lifecycle and Ontology
	 Ontology for Policy classification
	 Policy Lifecycle Model

	Content of the CD

