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Abstract

This thesis addresses the virtualization topic, more specifically, it deals with libvirt virtu-
alization management library, the goal of which is to provide a common and stable layer
to manage virtual machines that deals with all the hypervisor or virtualization solution
specifics transparently to the user. Most of the functionality exposed by libvirt is imple-
mented in form of services within a daemon called libvirtd. One of the main reasons why
libvirt utilizes a daemon is to provide a remote management of virtual machines running on
hypervisors which do not support remote management. However, the daemon lacks support
for managing itself during runtime. Although its configuration can be altered via a configu-
ration file, the configuration is persistent only. Additionally, each time the configuration is
changed this way, the daemon needs to be restarted, which might not always be the optimal
solution. Therefore, an idea of exposing an administration interface through libvirt library
which would provide users with libvirtd’s runtime management arose. The main goal of
this thesis is to design and implement a set of administration application interfaces which
would provide features including adjustment of number of workers in a server’s threadpool,
modifying logging levels, filters, and logging outputs, as well as remote client management.

Abstrakt

Tato préce se zabyva problematikou virtualizace, konkrétné virtualiza¢ni knihovnou libvirt,
cilem které je sprava virtualnich stroji a podpora riaznych typa hypervizoru a virtualiza-
¢nich TeSeni jednotnym zpisobem transparentnim pro uzivatele. Podstatna c¢ast funkci-
onality knihovny libvirt je na pozadi implementovana formou démona libvirtd. Ackoliv
libvirtd démon poskytuje sluzby pro spravu virtualnich stroji, neumoznuje spravu sebe
samého, kromé zmén hodnot parametri v konfigura¢nim souboru. Pro zménu nastaveni
je pak standardnim pristupem zména v konfiguracnim souboru a nasledny restart démona.
Jelikoz uvedeny zptsob méni pouze perzistentni konfiguraci a restart démona nemusi byt
vzdy optimalni feseni, vznikla idea administrativniho rozhrani knihovny libvirt, které by
umoznilo spravu démona za béhu. Hlavnim piinosem této préace je ndvrh a popis implemen-
tace aplika¢niho rozhrani pro administraci knihovny libvirt. Konkrétné pro tuto praci byla
zvolena rozhrani pro konfiguraci po¢tu obsluznych vldken, nastaveni drovné a filtrovacich
parametru pro zurnalovaci podsystém a spravu pripojenych klientt na strané démona lib-
virtd.
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Chapter 1

Introduction

Virtualization technology can be accounted a topic of a broad interest, receiving very close
attention these days. It managed to revolutionize and reshape the computer industry top
to bottom since its introduction. Although it is often referred to as a “new” technology,
because of its immensely growing integration into corporate infrastructures throughout
the recent years, mainly due to different kinds of regulations, economic factors and more
competition which forces companies to make use of the advantages of virtualization, the
idea itself is in fact more than a half-century old, first remark being in the paper Processing
Time Sharing in Large Fast Computers by Christopher Strachey back in 1959 [25]. The
basic idea was to improve man-machine interaction by providing the users concurrent,
interactive access to the computer. IBM later achieved this by giving each user a virtual
machine, which transparently enabled time-sharing and resource-sharing on the (at that
time) expensive hardware.

There are several types of virtualization with the most common ones being server vir-
tualization and storage virtualization. Regardless of virtualization type, the principle of
providing an abstraction from physical resources and their characteristics remains the same.
By breaking the fixed “one owns all” relationship between the operating system and physical
assets sitting below, it optimizes the physical resources for efficiency. To clarify the princi-
ple in simple terms, virtualization is a combination of software and hardware engineering
that mainly creates

e several virtual resources on top of one physical resource or

e one virtual resource on top of several physical resources.

There are several benefits that come with the virtualization technology, with the most
notable ones being

o reduced expenses and energy saving - migrating physical servers to virtual ones and
consolidating them to fewer physical machines reduces the costs related to power
consumption and air conditioning needs,

e isolation, testing, and security - testing labs within isolated networks that provide
separate controlled environments for a tested application to be deployed to, and

o reliability and availability - using migration process to transfer a virtual machine’s
state or the underlying storage to a different host, in order to diminish downtime of
a service in case of a failure of the original host.



Thesis Motivation

Despite all the benefits virtualization provides us with, without any management of virtual
resources, virtualization would only remain a concept rather than becoming a technology
putting the benefits into production use. There are countless virtualization management
tools available on the market today, intended to be used with specific virtualization type.
However, for the purpose of this thesis, the only relevant management tool discussed will
be libvirt. In exact terms, libvirt is not only a management tool for platform virtualization,
it is rather a toolset encompassing three components within itself—an open source library,
a daemon, and a management tool. The fundamental goal of libvirt is to provide users with
a uniform management interface for different kinds of virtualization solutions. Although
libvirt offers means to configure all of its components, there is no way to do it during
runtime so far. Turning the focus towards libvirtd daemon, since it is the key part of
the whole toolset implementing most of libvirt’s features, it lacks support for managing
itself despite the fact that it is accounted as being the management backend. The only
configuration available for libvirtd today is through a configuration file. However, this type
of configuration is persistent and only serves the initial setup.

Thesis Contribution

The idea of having a separate administration interface that would allow runtime manage-
ment of the libvirtd daemon to certain extent arose after a customer request was created'
to expose libvird’s current state, so they could monitor the number of connected clients to
it proactively, thus being able to tweak the limit to the maximum number of allowed client
connections, therefore adapting it to the current load. Without any information about
libvirtd’s current state, it was rather difficult to set the limit appropriately in the config-
uration file. Having such a feature implemented would allow them to prevent the daemon
from suddenly stopping to accept any more connections with an error once the limit was
reached. This idea was later extended to also support reconfiguration of daemon’s logging
settings to enhance runtime introspection of a potentially malfunctioning virtual machine,
reconfiguration of the current number of worker threads in the daemon, as well as forcefully
disconnecting individual client connections. The goal of this thesis then is to design and
implement administration interfaces for the aforementioned use cases in libvirt library.

This chapter provided an introduction of virtualization technology, the base principle and
some benefits that it offers. The concept is further explored by Chapter 2 which immerses
deeper into the explanation of the principle, focusing on server virtualization and major
approaches to it, as well as giving some credit to different hypervisors. Understanding the
virtualization fundamentals is crucial in order to fully comprehend libvirt’s architecture
and the way it internally works, both of which are examined by Chapter 3. Chapters 4
and 5 address the key parts of the thesis—design and implementation of the administration
interfaces. Selected application interfaces are then tested using the equivalence partitioning
methodology with the details covered by Chapter 6. Lastly, Chapter 7 then confronts the
results and presents possible follow-ups of the project.

Thttps://bugzilla.redhat.com/show_ bug.cgi?id=735385



Chapter 2

Virtualization Fundamentals

Introduction mentioned the existence of server and storage types of virtualization, but the
list of the most common virtualization types that can be encountered in the computer
industry nowadays is a bit longer, starting with

e server virtualization,

e storage virtualization,

e network virtualization,
e 1/0 virtualization, and
e client virtualization.

While this thesis covers the server virtualization of x86 architecture as one of the major
types of the virtualization, some credit to I/O virtualization is also given later in this
chapter. Description of the remaining types of virtualization mentioned above can be found
in [12, 23, 32, 6]. Before engaging in server virtualization approaches, describing different
types of hypervisors and concepts behind them, it is necessary to first establish some vital
knowledge base as the information offered in further sections build upon it. This includes
some virtualization terminology, operation modes of an operating system as described in
[22], and protection rings mechanism. Although it is not difficult to find more virtualization
related terms, following are the absolutely necessary ones to know.

Guest Operating System

An operating system running in a virtual machine environment that would otherwise run
directly on the hadware as a separate system. It has no knowledge of the existence of another
guest operating system running on the same physical system nor has it any knowledge of
the host system itself (be it a hypervisor or a conventional operating system, see below).

Hypervisor

As a term, most resources reference hypervisor also as a Virtual Machine Monitor (VMM),
which is in fact much older term, already used back in 1960s. But this is not the case of
VMware which strictly differentiates between a VMM and a hypervisor (more details can
be found in [29, 30]). This thesis however, is going to follow the definition used in [13, 15],
which defines a hypervisor as a piece of software responsible for creation and management



of virtual machines which share the underlying physical host’s hardware. Physical resources
are individually divided into “slices” that are managed by the hypervisor in amounts and
time duration as every virtualized operating system needs. In terms of classification, there
are officially two categories of hypervisors at the moment:

e type-1, also called a bare-metal hypervisor — which runs directly on top of host’s hard-
ware creating the hardware abstraction for guest operating systems running above,
and

o type-2, also called a hosted hypervisor — which runs as part of a conventional operating
system the same way as any other program does. These hypervisors support the
broadest range of hardware configurations.

This distinct, as it might seem, classification unfortunately cannot be applied to all
hypervisors currently available. A typical example would be Red Hat’s K VM and FreeBSD’s
Bhyve hypervisors which are kernel modules that supplement the kernel, thus effectively
allowing the host operating system to act as a type-1 hypervisor [¢]. But since both are
part of a conventional operating system and are subject to context switching, they can also
be classified as type-2 hypervisors.

Emulation

Emulation is a process that takes the properties of one system, trying to reproduce it with
a different kind of system. To put it in virtualization context, it’s a process of making
an exact copy of the host’s hardware resources and all of its functionalities. The advantage
is, that one can easily run software compiled for a certain architecture (typically some legacy
software) on a completely different architecture. The inherent drawback of this approach is
performance, compared to hypervisors conforming to the definition above. What is worse,
is that it emulates the host’s architecture even though the piece of software is native to the
host’s architecture.

2.1 Dual-Mode Operation and Protection Rings

In order to ensure a proper execution of the operating system, it is necessary to distinguish
between the execution of operating system code and user-defined code. The reason for this
is to improve protection of the operating system’s integrity from malicious user application
that would try to exploit the system. However, it would be impossible without any hard-
ware aid, since every application would execute its code on the CPU unrestricted. Thus,
a hardware support to differentiate among various modes of execution was needed. Every
operating system needs at least two modes of execution, namely kernel mode (also privileged
mode) and user mode. Typically, these two are also the only ones operating systems tend to
implement. The aforementioned hardware support then resides in the method how a CPU
keeps track of the current execution mode, or in other terms, current privilege level. To
fully understand the method, one needs to be familiar with virtual memory management
and segment selectors, which is outside of the scope of this thesis, but can be further studied
in [22]. What is important to mention however, is the code segment register. And that is
because this register contains a 2-bit field called Current Privilege Level, which is managed
by the CPU itself. The value this field holds is always equal to CPU’s current privilege
level. Thus four different privilege levels are supported, but as it was already mentioned,



usually not all of them are utilized by operating systems. These protection levels are orga-
nized hierarchically into a ring structure, depicted on Figure 2.1, with the inner most ring
corresponding to highest privilege'.

Before the transition between user mode and kernel mode is covered by the next para-
graph, it is necessary to say, that in order to perform protection level switch, some hard-
ware support in the CPU is needed. For this purpose, Intel’s sysenter/sysexit and AMD’s
syscall/sysret instructions enable fast entry to kernel mode, avoiding the interrupt overhead
caused by earlier approaches to protection level switching.

Every time user application requests a service from the operating system, it must tran-
sition from user mode to kernel mode using a system call to fulfill the request. Figure
2.2 depicts this scenario. Whenever a trap or interrupt occurs, the hardware transitions
from user to kernel mode (setting the mode bit accordingly) and vice-versa before passing
the control back to the user program. By designating some of the instructions from the
instruction set as privileged, hardware enforces execution of these instructions in kernel
mode only. If however, an attempt to execute a privileged instruction is performed in user
mode, the hardware does not execute it, it rather causes a general-protection exception,
trapping to the operating system, which eventually results in terminating the user process.

Ring 1

Ring 0
Kernel

Applications

Figure 2.1: Protection rings on the x86 architecture.

User process User mode
(mode bit 1)
executing system call invoked continue executing

<4

/
Kernel tra return Kernel mode
mode bit= 0 mode bit=1 (mode bit 0)

execute system call

Figure 2.2: Transition between kernel and user mode of execution [22].

'The ring comes from the Multics system where the hardware supported up to 64 modes and the access
rights changed even between ordinary user procedures stored in users’ segments [7].



2.2 Classical Virtualization

By the term classical virtualization is according to [!] understood any architecture, that can
be virtualized entirely by trap-and-emulate principle. Regarding this fact, x86 architecture
is not classically virtualizable, but it is still virtualizable according to Popek and Goldberg’s
criteria which they published in their article [19]. They defined three essential features for
a system software to possess, in order to be classified as a VMM:

e fidelity — all virtual machine instructions running on a VMM execute identically to
their execution on hardware,

e performance — majority of guest instructions are executed by the hardware without
any intervention of the VMM, and

e safety — VMM manages all hardware resources.

In a classically virtualizable architecture, all instructions that read or write privileged state
can be made to trap when executed in an unprivileged context. A classical VMM executes
guest operating systems directly, but at reduced privilege level. The VMM then intercepts
traps from the deprivileged guest and emulates the trapping instruction against the virtual
machine state. The base idea behind a VMM, according to [l] is to provide an execu-
tion environment which meets the guest’s expectations about the state of the virtualized
hardware, which naturally differs from that of the actual underlying hardware.

There are several special-purpose hardware-based data structures called primary struc-
tures with typically only one copy in the system. Therefore, the VMM has to derive and
maintain copies of these structures called shadow structures for each guest. Some of these
structures (typically on-CPU structures) can be handled by the VMM trivially, while others
like page tables can be challenging, since accesses to the page tables may not always pair
with trapping instructions. The details about how coherency between shadow structures
and primary structures is achieved by the VMM, as well as how address translation is done
both in memory management unit (MMU) software virtualization and using Intel’s and
AMD’s hardware support called nested paging can be further explored in [1].

2.2.1 Problems with Virtualizing x86 Architecture

Because x86 architecture was not designed baring all the virtualization aspects in mind,
there are some rather complicated issues that virtualization has to face as reported by [20],
with the most notable ones being;:

e ring aliasing — a guest operating system is able to figure out the fact it is not running
at level 0,

o non-faulting privileged instructions — there are quite a few privileged instructions” in

the x86 instruction set that do not trap when executed in user mode?®, and

e address space compression —the VMM has to use a portion of guest’s virtual address
space to manage the transition between guest operating system and itself.

2Adams et al. [1] only mention popf instruction as an example.
3Remember the guest has been deprivileged, i.e. a VMM replaced it at ring 0, thus moving the guest
kernel one level up.



2.3 Software Virtualization

This section is going to elaborate the approaches to tackle the x86 flaws as described in
previous section. One of them is emulation as defined and described in Chapter 2. The other
ones, that are going to be explained next, are binary translation and paravirtualization.
The section concludes with description of Xen hypervisor as the major representative of
paravirtualization.

2.3.1 Binary Translation

The fundamental principle of binary translation stays the same for majority of solutions
with only slight differences. This paragraph is backed by [I] that explains the principle on
VMware’s binary translator. The technique VMware used is based on traditional direct
execution with runtime binary translation. Unlike other translators which translate code
between different CPUs with different instruction sets, VMware’s translator works with
nearly identical instruction sets, which makes the translation much simpler. The translator
is capable of running privileged mode code, while patching guest’s privileged x86 instruc-
tions as it reads them from guest’s memory. Instructions are filled into a translation unit
which produces translated blocks ready to be executed, leaving all the non-privileged in-
structions unmodified. More details about improving the performance and maximizing the
overall efficiency are provided by [1, 20].

2.3.2 Paravirtualization

Paravirtualization tackled the performance challenges of having to translate each system
call in binary translation. But for this approach to virtualization, it is inevitable that the
kernel of the guest operating system is modified. According to [31], the modification in
paravirtualization is accomplished by replacing all the critical instructions with hypercalls.
Hypercalls enable the guest operating system to communicate directly with the hypervisor
layer, in other words, the guest operating system knows it is running in a virtualized
environment. In that case for instance, most of the memory management is done by the
guest operating system itself and the hypervisor would be invoked for a page table update
or DMA access.

The essential benefit from using paravirtualization therefore lies in lower virtualization
overhead, significant performance gain and simpler VMM design. The sacrifice, however,
is the inability to run legacy software and proprietary operating systems. The latter is
definitely the biggest drawback of this approach, enforcing anyone who is determined to
make use of paravirtualization, to deploy open source operating systems to all virtual
machines. Figure 2.3 shows the general principle of paravirtualization. The most interesting
thing is that the general concept puts the modified guest OS into privilege level 0, like a non-
virtualized operating system would require, without assigning any explicit privilege level
to the hypervisor. The actual implementation used in practice may however vary among
companies providing paravirtualized solutions.

2.3.3 Xen

This section focuses on Xen hypervisor and some interesting details about its paravirtu-
alization solution. Information provided here are mainly backed by the article [2]. Before
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Figure 2.3: Paravirtualization concept.

immersing into the details, it is worth noting that Xen developers adopted a different term
for a virtual machine — a domain.

Architecture

The authors of [2] state that the main goal of the Xen hypervisor design was to make it
as simple as possible, providing only basic control which is available to authorized domains
through an exported interface. The interface is called control interface and provides the
ability to create and to destroy other non-authorized domains, as well as the ability to
control the scheduling parameters and physical memory allocations, network interfaces and
both creation and deletion of block devices. By default, there is one single authorized
domain created at the boot time called Domain0. Figure 2.4 depicts both authorized and
standard user domains, as part of Xen’s architecture.

DomO DomU
Management Application
software
modified guest modified guest
OS kernel OS kernel

Native device Back-end device Front-end device

drivers drivers drivers
Control Virtual CPU Virtual MMU Event channel
interface Xen hypervisor

Hardware (SMP, MMU, SCSI, IDE, Ethernet, physical memory,...)

Figure 2.4: Xen architecture (modified original of [2]).

This domain is responsible for hosting the application-level management software which
is connected to the control interface and enables Domain0 to provide higher-level services
(besides those mentioned above) like domain network activity monitoring, creating network
filters and network traffic control (throttling included).

10



Interesting thing about domain-hypervisor communication is, that domains always com-
municate by executing hypercalls which is a synchronous type of communication. After
a request completion, Xen returns control to the calling domain. Xen also implements
a neat optimization to guest kernels to diminish the amount of hypercalls issued by queu-
ing them and executing them in a batch. On the other hand however, Xen talks to the
domains through an asynchronous mechanism which is meant to replace the usual delivery
mechanisms for device interrupts. These events can stack in a per-domain bitmap and the
guest operating system specifies an event handler which is also responsible for resetting the
bitmap of pending events.

This was one of the first images what Xen looked like couple of years ago, according
to [2]. Though the concept stayed the same, many new features have been introduced and
besides paravirtualization, Xen also made use of the CPU extensions Intel and AMD added
to their processors. Not only does Xen support full virtualization with unmodified guests
at the moment, it can also combine both approaches.

I/O Virtualization

Following the information from [4], instead of providing physical devices, Domain0 provides
only virtualized views of them to other user domains. Since Domain0 is privileged and does
have full access to all the hardware below, it can export a specific subset of devices to each
user domain depending on each domain configuration. As it was mentioned above, the user
domain has only a virtualized view of the device. Xen calls this mechanism class devices,
because each device falls to a certain category, being a block device, character device,
network device, etc. As Figure 2.4 shows, the communication is conducted between frontend
of the device located on the user domain and the backend which is located on Domain0. The
communication itself takes place in memory, and Xen actually provides several mechanisms
to accomplish this including shared memory, interrupts or event channels. Domain0 then
handles the I/O request, performs the operation on the actual hardware and propagates
the results back to the user domain.

2.4 Hardware Assisted Virtualization—x86 Extensions

The main goal of the hardware assisted virtualization is to eliminate the need for CPU
paravirtualization and binary translation techniques and to finally support the concept of
classical virtualization. Both leading CPU manufacturers, Intel and AMD, provide hard-
ware support for x86 CPU VMMs. Both are similar, but because most resources (including
[1, 26, 31, 20]) turned their attention to Intel, this section further describes Intel’s VT
technology as presented in [20]. Intel’s VT introduced two new modes of operation:

e VMX root — similar to original supervisor mode originally intended for the host, this
one is intended for the VMM, and

e VMX non-root — which provides an alternative x86 environment, including most of
the privileged and sensitive instructions, controlled by the VMM.

Both of these operation modes fully support all four protection levels, allowing the guest
operating system to run at its intended level, and the VMM to make use of multiple privilege
levels. In other words, the guest operating system executes almost natively without VMM’s
intervention, including kernel services, as long as the system call itself would not lead to
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critical instruction execution. The instruction set further distinguishes between instructions
which would result into a virtual machine exit unconditionally, and those that can be
configured to trigger virtual machine exit conditionally. This enhances the flexibility of
a VMM that is able to specify instructions and events which result in a virtual machine
exit using various control bitmaps. An example would be setting the VMCS to exit from
non-root mode on guest operating system page faults, TLB flushes or address space switches
in order to maintain the shadow page tables. Figure 2.5 depicts transitions between these
two operation modes which starts by executing VMXON, thus putting the processor into vmx
root operation mode. The transition to non-root operation mode is illustrated by two
different instructions:

e VMLAUNCH — used only on initial entry, and

e VMRESUME — used on all subsequent entries

VMX non-root R )
mode Ring 3 Ring 3 Ring 3
Ring 0 Ring 0 Ring 0
—VMEXITI_VMLAUNCH-—VMRESUMEL
VMCS 1 VMCS 2 VMCS N
VMX root i
Ring 3
mode (VMM) Y 9
VMXON Ring 0

Figure 2.5: Intel VT: Transition between root and non-root operation modes [21].

The small blocks labeled as VMCS represent new in-memory data structure called
virtual machine control structure which is logically divided into guest-state area and host-
state area, each containing fields corresponding to different components of the processor
state. Virtual machine entries (either VMLAUNCH or VMRESUME) load the CPU state
from the guest-state area, whereas virtual machine exits save the CPU state along with
detailed information specifying the reason of the exit to the guest-state area (using dedicated
diagnostic fields) and load the CPU state from host-state area instead.

24.1 KVM

Kernel Virtual Machine (KVM) is a feature of Linux allowing the host Linux system to act
as a type-1 hypervisor itself (according to definition in Chapter 2). As a result of integration
of the hypervisor into the host Linux kernel as a loadable module, massive management
simplification and performance gain can be achieved. Rather than taking the other path
that involves creation of a new small featured kernel, the approach the KVM developers
took, brought a number of benefits. Being represented as a regular Linux process, being
scheduled by a conventional Linux scheduler, each virtual machine is thus able to profit
from all new features Linux kernel provides. From the implementation point of view, KVM
currently supports all main architectures including x86, IBM’s PowerPC and ARMv8 (also
called AArch64). As with the Xen hypervisor, the goal of this section is to provide a light
insight to the hypervisor concept, so the reader can put the hypervisors into an overall
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architecture comparison. The section relies mainly on information delivered by [14], [10],
and [9].

Architecture

As section 2.2 stated, x86 architecture was not designed with virtualization support in mind.
KVM, as a full virtualization and both type-1 and type-2 hypervisor representative, relies
completely on the hardware support provided by Intel VT and AMD’s SVM technology.

At the center of the architecture, there is a character device named /dev/kvm. The
operations which this device exposes to the user-space include:

e virtual machine creation,

e virtual machine memory allocation,

e virtual CPU register reading/writing,

e injecting an interrupt into a virtual CPU, and
e running a virtual CPU.

Running a guest operating system (including its own user and kernel execution modes) is not
entirely possible within user-space process. Therefore KVM introduced a new execution
mode — guest mode in which the virtual machine, unless an 1/O request or an external
event? occurs, runs uninterrupted. Figure 2.6 depicts the overall architecture. KVM does
not provide any hardware emulation, thus it is always used in conjunction with a hardware
emulator such as QEMU for instance. When QEMU is preparing to start a guest, it sends
various requests for hypervisor-specific functions through /dev/kvm to KVM. Once the
preparation phase is finished, QEMU instructs KVM to start executing the guest system.

User mode Kernel mode Guest mode

I
> Issue guest _IJ ¢ |
|
|
I
[
|
|
|
|
I
I
|
I
|
|
1

execution ioctl [Enter guest
I mode
Execute natively
Handle
exit

Y
Handle 1/0]<€

Figure 2.6: KVM architecture [11].

4Such event might be shadow page table fault, network activity or a timeout.
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KVM Paravirtualization

The need for paravirtualized devices comes from the slow nature of I/O access, because it
requires the guest to exit the native execution and letting the emulator handle the request.
The standard approach in KVM is to handle the I/O requests in user-space where the
emulation takes place. Most often, this is achieved by employing QEMU to simulate the
behaviour of I/O. For these purposes, QEMU adopted a virtual I/O interface called virtio.
Section 2.4.3 delivers an overview about the virtio virtualization driver.

The base concept could be compared to Xen’s approach - all the guests need to support
virtio®. Since the host implementation of virtio is in QEMU, the host itself does not need
any virtio driver. It is worth noting, that virtio does not eliminate the need for emulation
(like Domain0 touching the hardware directly does), it provides a significant performance
improvement of network and disk operations.

2.4.2 QEMU

QEMU (Quick Emulator) is a machine emulator capable of emulating several CPU archi-
tectures, for instance x86, ARM, PowerPC, and SPARC. It operates in two modes — full
system emulation and user process emulation. When used with the former, full system
emulation, QEMU emulates all aspects of the machine, including a CPU, MMU, graphical
adapter and peripherals. In the latter, user mode emulation which is only supported on
Linux powered hosts, QEMU launches Linux processes executing binaries for CPU archi-
tectures that are not native to the host. The emulation follows principle already mentioned
in section 2.3.1 — interpreting each guest instruction, translating it to the host’s architec-
ture and producing translated block of code which is then executed. Like [1] describes for
VMware, to overcome the performance overhead to the full extent possible, QEMU utilized
a translation cache for the most recently used translated block in the same way.

The concept of the translator, which is the most crucial part of the whole emulation
process, was different to what QEMU uses nowadays. According to [3], QEMU favored the
idea of lightweight portability to new architectures and general maintenance since the very
beginning and presented it as an advantage over the competition. Rather than having mul-
tiple translators for all known guest-host pairs, QEMU based its design on micro-operations.
Each guest instruction was then split into one or more micro-operations represented by small
C functions [3, 27, 16]. QEMU then utilized host’s GCC compiler to produce object files
holding native code for each micro-operation. Omitting details about the complex internal
process of translation, QEMU translated each guest block to a string sequence of micro-
operations, the native binaries of which were then linked together to produce a translated
block®.

Later versions of GCC turned out to be problematic to comply with the design, so
QEMU replaced its translation engine with Tiny Code Generator (TCG) which is used
to date. TCG is a just in time compiler working over a small set of operations coded in
an intermediate representation. According to [11], when a block of guest code is fetched,
a translator, conforming to guest architecture, translates it into TCG intermediate code.

®As for Windows OS, there are available virtio drivers to install; all Linux kernels newer than 2.6.25
support virtio.

5Micro-operations used to appear in many translations, thus they existed in several places across the
memory. Since micro-operations were generic enough, issues related to relocation of external code and
variables occurred. For this purpose, QEMU used a tool called dyngen to analyze the relocation records
and resolve the issues.
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TCG then proceeds with some simple optimizations of the code and eventually translates
the intermediate representation into native code. TCG is host specific (the architecture
QEMU runs on top of) which is quite the opposite to the original concept, since for every
target host architecture that should be supported, a dedicated piece of code has to be
added.

| Application | | Application | Application

|
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File system 1/0 scheduler

Device driver

Y
1/0 scheduler
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i

Y
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Figure 2.7: Comparison of virtio with standard Linux I/O stack and duplicated I/O stack
in virtualization [33].

2.4.3 Virtio

Section 2.4.1 already prefaced the performance issue caused by I/O requests. With virtu-
alization however, the performance degradation is even easier to observe. This is due to
duplication of so-called Linux I/O stack which, in broad overview, consists of a file system
controlling the data, an I/O scheduler sorting and merging I/O requests’, and a device
driver accessing the hardware device itself as depicted by Figure 2.7a. In virtualization
environment, an I/O stack exists in both the host and the guest (Figure 2.7b), thus every
I/0 request generated by a process in the guest causes a trap to the emulator, and is further
propagated to the I/O stack of the host. Since a guest system is nothing else than a user-
space process, I/O requests generated by this process are handled the same way as requests
from other processes in the host — gathered and rescheduled by host’s 1/O scheduler. It is
therefore clear that 1/O requests coming from the guest are scheduled twice.

Virtio on the other hand, is exploited by the virtual machine as a separate device driver.
It is generic enough to support various drivers such as network driver, block device driver,
and memory ballooning. As illustrated by Figure 2.7c, the I/O stack in the guest is replaced
by virtqueue. The virtqueue is shared between host and guest and each time an I/O request
is placed into the queue, the execution is returned back to the host (CPU mode is changed

"Sorting reorders I/0O requests to reduce the seek time of physical disks, while merging reduces the
number of requests by combining the adjacent ones. [33]
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from guest mode back to host mode) which then handles the I/O request. Once the request
is complete, host inserts a reply into the virtqueue and switches the CPU mode back to
guest mode. Following this principle, the overhead of I/O stack duplication can be reduced
significantly.

This section was backed by [33]. The article also provides details about the actual perfor-
mance of virtio, since number of experiments and benchmarks using various I/O schedulers
have been made.

2.5 Container-based Virtualization

Compared to the other types of virtualization described earlier in this chapter, there is
a significant difference with containers — there is no hypervisor virtualizing all the underlying
hardware for a guest operating system. Instead, they run on top of the same shared
operating system kernel, running one or more processes within themselves. But what is
a container? There is actually no rigorous definition, but from the interpretation of [2, 17],
one can understand that a container is a conventional Linux user-space process. Because
running a set of processes over shared kernel avoids the hardware abstracting overhead,
this kind of virtualization is often denoted as lightweight approach. Continuing with the
lightweight essence of containers, they also enable higher density of virtualized instances
which became the keystone of most Platform as a Service — PaaS cloud solutions available
today. The shared host kernel is also one of the disadvantages of the containers, because
the kernel is exposed to the containers which might pose an issue for multi-tenant security.

There have been quite a few container-based solutions on the market for several years,
including Linuz- VServer, OpenVZ, Solaris Zones, BSD Jails, etc., but this section focuses
on the most recent approach taken in this field, based on kernel support for namespaces
and cgroups. Linux manual page® provides an exact definition of what a namespace is.
It says, it is a mechanism wrapping a global system resource in an abstraction creating
an illusion for all processes within the namespace of having an exclusive isolated instance of
the global resource, which is why containers have no visibility or access to objects outside
the container. Namespaces is a large topic worth an independent article, so description of
its internals is out of scope of this thesis.

The other mechanism mentioned, cgroups, is a subsystem used to limit and isolate
resources usage for a group of processes, thus for instance, allowing a container to be
resized just by changing the limits of its corresponding cgroup.

In terms of security, considering isolation as mentioned above, the container is prohibited
to interact with the outside of its isolated environment. However, there is a subset of
system calls which are not aware of the namespaces and thus potentially posing a security
vulnerability. By using seccomp library, the significance of this threat can be diminished.
What it does, is that it allows a process to specify a list of system calls it is allowed to
perform. Should the process try to make a system call it is not allowed to make after entering
this “secure state”, SIGKILL signal will be delivered to it. This system call blacklisting is
done at an early stage of starting a container, so that any application that is supposed to
run in the container is affected by this change.

Shttp://man7.org/linux/man-pages/man7 /namespaces.7.html
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Chapter 3

Libvirt Project: The Virtualization
Library

This chapter will discuss libvirt virtualization toolkit, its fundamental goal, its purpose in
the virtualization world, libvirt’s driver-based architecture, and the difference between client
and server side drivers. As part of description of libvirt’s internals, libvirtd daemon and
aspects regarding libvirtd, including libvirtd’s purpose, communication with the daemon,
client request handling, task-based model, and data serialization/deserialization will be
addressed. The contents of this chapter is backed by information obtained from libvirt’s
documentation [28], as well as from article [5].

3.1 Libvirt’s Objective

Motivation

Disregarding virtualization types, as described in Chapter 2, every virtualization solution
offers a set of programming interfaces to corresponding operations to be used with their
virtual machines. Lack of such management programming interfaces would render any
solution useless. Although there was an effort to create a standard for managing virtual
environment, eventually resulting in Virtualization Management (VMAN) standard’ which
was published by American National Standard Institute, it has not been adopted by the
virtualization market yet. Thus, building universal compatible virtualization management
solutions supporting arbitrary virtualization environments is a rather complicated task. As
authors of [5] state, this eventually resulted in different management solutions, especially
commercial ones like VMware and Citrix, tailored and optimized to specific hypervisors.
Some open source projects trying to stay hypervisor-independent like oVirt and OpenNeb-
ula came up as well, but they needed to find a way to overcome the problem of management
programming interfaces incompatibility. To make it even harder, some virtualization solu-
tions tend to change application interface between releases, breaking any backwards com-
patibility completely. Even kernel might change the structure of some of its entities, like
cgroups, with newer versions. All of these aspects needed to be taken into consideration.

"http://www.dmtf.org/standards/vman
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Goal

To fulfill the aspects mentioned in the previous paragraph, a management tool would either
require complex internal modifications or make use of a middleware layer which would take
care of these inconsistencies and provide a stable abstract interface. Following the latter,
the goal of libvirt virtualization toolkit is then to provide such an abstraction middleware
layer that deals with all underlying hypervisor specifics transparently and is sufficient to
securely manage virtual machines, or in terms of libvirt — domains on a host node. In
terms of stability, it is worth noting that all application interfaces libvirt library exposes
strictly follow a philosophy of a long-term stability which also can be accounted a crucial
benefit in favor of the management solutions using libvirt.

3.2 Libvirt as a Middleware Layer

The information from previous Section 3.1 still does not clarify libvirt’s place in the appli-
cation hierarchy though, therefore Figures 3.1 and 3.2 are both meant as an aid to better
understand it. The former, depicting the basic concept of libvirt being an intermediary for
some userspace management tools to communicate to various hypervisors or virtualization
solutions only serves as an introduction to the latter which is more complex, so the following
paragraphs divide Figure 3.2 into individual scenarios and describe each one separately.

Management Tools and Libvirtd Daemon

Figure 3.2 depicts communication with three different virtualization types as per infor-
mation provided by Chapter 2. Consider a management tool, like virsh or OpenStack,
that, given the specific use case, invokes an application interface designed to achieve the
requested operation. The library needs to know what kind of hypervisor, emulator, or con-
tainer solution it should communicate with. This is because not all hypervisors support
remote management, so a daemon that implements remote communication, among other
functionality, is needed at the remote side. This daemon is called libvirtd and in most
cases, the library will direct the communication through it. By further analyzing Figure
3.2, it can be seen that libvirtd (top left) then uses the same library in order to achieve
the requested effect of the operation. In fact, when libvirtd uses the library, it invokes
the very same library method as the original caller on the client side did. This is possible
due to libvirt’s driver-based architecture that allows the daemon to associate a different
driver with accomplishing the operation than the client is allowed to use. The driver-based
architecture and details regarding the communication with libvirtd daemon are further ad-
dressed by Sections 3.3 and 3.4 respectively, and in context of this section and Figure 3.2
are irrelevant.

Managing Xen

Depending on the nature of the operation and virtualization type involved, libvirtd then
uses libvirt library in variety of scenarios. The first scenario, as Figure 3.2 depicts (top
right), involves a bare-metal hypervisor — Xen in this case — which is then responsible
for contacting the privileged domain (refer to 2.3.3 for Xen’s architectural details) and
performing the operation.
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Managing Containers

The second scenario involves operating system level containers (bottom right). Recalling
Chapter 2, all containers, independent of any specific solution, share the host’s kernel. Since
many configurations on containers are achieved via cgroups editing, libvirtd can then use
libvirt library to edit cgroups, or even talk to various kernel modules or drivers, which might
include SELinux, network drivers, device drivers, etc. The other, more straight-forward and
expected way to use it, is to invoke a method of the container engine.

QEMU-KVM

In the last scenario (bottom left), libvirt can still be used to manipulate various kernel
entities, but the focus should be directed to QEMU emulator. Although the hypervisor used
in this scenario is KVM and QEMU is only responsible for I/O emulation, the philosophy
of KVM is to keep the module as simplest and smallest as possible and either let the guest
run uninterrupted or hand the control over to QEMU (red arrows originating from KVM).
So besides scanning for presence of /dev/kvm device and querying for KVM'’s capabilities,
only to later format them as QEMU command line options, libvirt never talks to KVM. So
whenever a client requests an operation over a domain to be carried out, libvirt talks to
QEMU via a monitor QEMU exposes.

userspace management tools

|virsh | |virt-manager | |OpenStack | |0Virt | |other |

Y
Libvirt

v v v v v ¥

|X;n| |KV'M| |Ope:VZ | |L>:C| |Ul\v/IL| |E;X|

Figure 3.1: Libvirt connecting management tools to various virtualization solutions.

3.3 Libvirt’s Architecture

Originally, libvirt project started as a Xen wrapper® rather than a unified management
library for different hypervisors. But its architecture allowed other hypervisors to be added
later on, thus shaping it to its present form.

The architecture is conceptually divided into a hypervisor agnostic and several hyper-
visor specific parts, called drivers. The implementation of these drivers is exposed by
a generic public API for the applications to use, which then maps to appropriate internal
driver functions.

However, high diversity of hypervisors that libvirt supports inherently caused some
issues that complicated the overall design, e.g. lack of remote management support and

2Xen, as an open source project, used to be very popular regarding its paravirtualization implementation.
Since hardware-assisted virtualization and KVM introduction, the situation has slightly changed, though
Xen still remains one of the major virtualization solutions available on the market.
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Figure 3.2: More complex view of libvirt connecting to different virtualization solutions.

an architecture which does not preserve the state of a domain, which means that although
there might be an internal representation of a state available, it is volatile only and not
preserved between restarts or in case of a crash. As Section 3.2 already prefaced, libvirt
tackled this issue by implementing a client-server model where libvirtd daemon implements
the server side (Section 3.4 provides more details about libvirtd daemon).

3.3.1 Stateful and Stateless Drivers

Not all hypervisors however, are compatible with this remote management daemon concept.
These are mostly proprietary, closed source solutions which do expose their own remote
management interface. Because of this, libvirt drivers are divided into two disjoint sets,
the first one comprising of client-side only drivers and the second one containing server-
side (daemon-side) drivers. As it was mentioned, since most proprietary solutions do not
need a daemon to tunnel remote connection and the hypervisor is capable of restoring
a running domain’s state after a crash, it is understandable that the client-side group of
drivers consists of such drivers®. Libvirt often addresses this set of drivers as stateless,
because it is the virtualization solution itself who is responsible for restoring a domain that
crashed to its last known state prior to the crash. Conversely, daemon-side only set of
drivers consist of drivers that represent hypervisors or virtualization solutions which need
an intermediary to tunnel a remote connection, as well as to preserve the domain’s state —

3 At the moment, the current set of client-side only drivers, excluding remote driver and Xen, corresponds
to following proprietary hypervisors: Microsoft’s HyperV, VMware’s ESX, IBM’s phyp and Parallels.
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for this reason libvirt refers to these as stateful drivers. The last driver to cover is the
hypervisor-agnostic remote driver which extends the client-side set of drivers. The purpose
of the remote driver is to offer the client a mechanism to establish a remote connection to
a libvirtd-managed hypervisor and provide an encapsulation of the communication between
both sides for the whole lifetime of the connection. It is clear that all the other client-side
drivers need to implement communication with the hypervisor on their own, according to
specifications provided by the hypervisor. The situation regarding both types of connection,
using stateless drivers and tunneling through remote driver, are depicted on Figure 3.3.

Client side : Server side

| Client remote driverft — - = - 3 libvirtd |

Stateless drivers : Stateful drivers

|

HyperV QEMU
PHYP : [Cume ]
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Figure 3.3: Hypervisor connection difference using stateless drivers and remote driver

3.3.2 Connection Establishment

Before any communication with a hypervisor takes place, a connection must be established
first. This was already prefaced by section 3.3.1 and Figure 3.3. The choice of driver
used for connection and further management is transparent to the client and libvirt does it
automatically. Client however needs to instruct libvirt in which driver should be probed for
connection establishment. This is achieved via a connection URI which follows the pattern
below.

driver [+transport] :// [username@] [hostname] [:port]/[path] [Textraparameters]

The decisive part for libvirt to choose a driver to open a connection with is the URI
scheme®. Should the scheme be not recognized by any stateless driver, remote driver is
selected. From implementation point of view, a client establishes a connection to hypervisor
by initiating virConnectOpen call, specifying a fully qualified URI® to the hypervisor.
Figure 3.4 illustrates a communication between virsh client and libvirtd daemon. In this
case, virsh specifies gemu://host/ as the fully qualified URI. Since QEMU is managed by
libvirtd, as explained in previous section, no stateless driver will be able to recognize the
URI schema, thus, remote driver will be used. Recalling Figures 3.2 and 3.3, it should
be noted that the library used by a client and the one used by libvirtd daemon may only
differ in their version number which has an impact only on the number of features both
sides support, but has no practical impact on the communication itself. That means when

*https://en.wikipedia.org/wiki/Uniform_ Resource_ Identifier
®libvirt.conf allows setting up URI aliases for frequently used URIs.
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a request to establish a connection arrives to libvirtd, an identical call to virConnectOpen
is issued, but this time using one of the stateful drivers. In this case QEMU driver is used.
Libvirtd returns the response from QEMU driver and the initial handshake between virsh
and QEMU emulator is then complete.

libvirt libvirt

URI
Application

gemu://host/

Figure 3.4: Connecting to QEMU emulator using the remote driver [28].

This driver-based architecture proved to be very flexible, so several other drivers, includ-
ing storage handling and network management have been added, as Figure 3.5 demonstrates.
Focus should be moved towards storage driver, because this particular driver is, to some
extent, different from other drivers. And that is because it is further divided into a number
of sub-entities, called backends, each responsible for different storage implementation. This
way, libvirtd is able to manage both local and remote storage technologies, including SCSI,
iSCSI, Ceph, Sheepdog, LVM based storage, etc.
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Figure 3.5: Driver based libvirt architecture [5].
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3.4 Libvirtd Daemon

This section focuses on libvirt’s daemon — libvirtd — it’s purpose, communication details
with a client, and task-based model used to handle client requests.

As Section 3.3 prefaced, there are two main reasons for having a daemon as part of
libvirt library. First one, not every hypervisor supported by libvirt provides mechanisms
(application interfaces) for remote management. Secondly, some hypervisors (virtualization
solutions) do not provide users with mechanisms to safely store virtual machines states.
That way, in case of a crash, not only the virtual machine is not restarted automatically,
all configurations related to such a virtual machine are lost. Libvirt’s daemon implements
features to address both of these issues and following paragraphs are dedicated to explaining
the details.

3.4.1 Communication

Based on previous sections, it can be easily noticed that libvirt utilizes client-server model
of communication, using request-response message-passing system. Libvirt made a decision
to use RPC as communication technique. This fact, however, is completely transparent
to the client. What each client has to do when establishing a connection to libvirtd, is
to specify whether the desired connection is supposed to be local only or remote, using
a transport layer. But this is only a basic bisection, in fact, libvirt does support a range of
transports, including:

e Uniz sockets — since these are available on local machine only, the communication is
not encrypted and libvirtd uses Unix permissions and SELinux for access control,

e TLS — daemon uses an authenticated and encrypted socket, listening on a public port
number,

e ssh — communication is conveyed over ssh connection using OpenSSH binary,

e [ibssh2 — like the classic ssh protocol transport, but uses libssh2 library instead of
OpenSSH binary, and

e TCP — in this case, daemon would use an unencrypted TCP/IP socket, thus, this
type of transport is not advised for production use.

Enabling a specific transport for a connection is only a matter of changing schema part of
the connection URI.

Recalling Figure 3.4, virsh client does not specify any additional transport details in
the connection URI’s schema, thus, local connection is requested. Should a client request
a TLS transport for instance, the schema would need to be changed in accordance with
Listing 3.1, where <driver> is the name of hypervisor requested. However, it should be
noted, that in order to use TLS transport, client and server authentication certificates have
to be generated first.

<driver>+tls://host

Listing 3.1: Libvirt’s generic connection URI format
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So far, previous sections described how clients connect to hypervisors managed by lib-
virtd daemon via libvirt’s driver mechanism. Naturally, the process of connection estab-
lishment is more complex and some internal details about daemon’s architecture have been
purposely neglected. For most clients connecting to libvirtd, in order to perform some do-
main management tasks, this sort of information is transparent and unnecessary to know.
However, the daemon’s architecture needs to be further explored to a degree necessary to
understand how the administration interface, explained by Chapters 4 and 5, is designed.

Although libvirtd does represent the server in the client-server model used by libvirt,
the architectural detail is that libvirtd implements a server object, the only responsibility
of which is to accept clients’ connections. In fact, libvirtd’s architecture is flexible and
modular enough to implement multiple servers contained within itself’. However, only
one server is currently enabled within libvirtd daemon at the moment, with another one
— administration server — waiting to be enabled once the administration interface is ready
to be released. Each server then implements multiple service objects that basically can be
divided into two groups, services that accept local connections (i.e. connections to UNIX
sockets) and services that accept remote connections. It is actually the service, that operates
the socket which clients connect to, only to then pass the client to the server for further
processing, e.g. to determine whether the client is trying to connect to a valid hypervisor.
A service can also be responsible for a client’s authentication, if an authentication method is
allowed in libvirtd’s configuration file. Figure 3.6 summarizes the details mentioned in this
paragraph, with two servers contained within libvirtd, the original one — now called libvirtd
— and the second one called admin. As confusing as naming a server exactly the same as
the daemon itself might seem, this decision was made to reflect the fact that this is the
server clients were connecting to the whole time transparently. Figure 3.6 also illustrates
different types of services, remote ones that may or may not support traffic encryption,
possibly authentication as well, and local ones that operate on sockets with different access
permissions.

When a client is then trying to establish a connection, depending on the service,
a new server-side client representation is created, along with some identity information
libvirt was able to gather.

Next section will provide information regarding the whole process from receiving a request,
through extracting data from RPC, to actually performing the task.

3.4.2 Message Processing and Task-based Model

Every client request that arrives to libvirtd is subject to several stages of processing which
include multiple levels of dispatching the raw data received on a socket, through creating
a libvirt job and placing it into a queue, deserializing the data and finally invoking the
hypervisor-specific driver to accomplish the task. Although important, a detailed descrip-
tion of libvirtd’s internal message processing implementation is out of scope of this thesis,
but information found libvirt’s documentation [28], as well as code introspection may be
helpful resources to acquire all the necessary details. However, it is still important to pro-
vide a general insight on the mechanism used to execute a task.

It is obvious that with growing number of connected clients, serializing tasks and executing
them sequentially may have a significant impact on performance. Libvirt therefore supports

6 Although libvirtd has been the only daemon mentioned so far, libvirt distinguishes and supports two
other daemons compatible with this design, namely virtlockd and virtlogd. Both however, are out of scope
of this thesis and will not be further addressed.
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Figure 3.6: Another view of how client is connected to libvirtd daemon

concurrent task execution. Because of the nature of operations performed, some tasks are
not allowed to be executed at once over the same resource, i.e. operations modifying inter-
nal state of a domain will queue on a domain’s lock. But in context of message processing,
this fact is irrelevant. The concurrent execution is achieved by utilizing a threadpool, or as
libvirt refers to it — a workerpool which is signalized each time a task, which holds the pro-
cedure identification to be invoked and the data to be passed to the procedure, was placed
into the queue. But since the data the task holds are still raw the last stage of processing
needs to be performed. First available worker that removes the task from the queue invokes
a procedure-specific dispatcher which is responsible for deserializing the XDR format used
for the data and finally executes the task, passing the deserialized data as an argument.
As is was mentioned above, by neglecting the fact that not all tasks can be executed con-
currently, a theoretical hypothesis, that the only limiting factor to the performance besides
hardware is the actual number of workers in a threadpool, can be formed.

Workerpool Limits

Libvirt does not use a constant number of workers, it is rather dynamically increased,
which means that when a task occurs and all workers are currently busy with some time-
consuming operations, a new worker is created within the threadpool, so that the task can
be carried out. Spawning too many threads can however pose a significant performance
drop for the whole host system, so each threadpool implements limits” to maximum and
minimum number of threads that can be active in a threadpool. What this does is, that
before a worker can be created, first the current number of workers is confronted with the
allowed limits. If no other worker can be created, the task stays in the queue until the first
available worker takes it out. However, it may happen that the maximum limit of workers
has been reached and all workers are occupied with a task requiring communication with
a hypervisor. After instructing the hypervisor to accomplish an operation, libvirt waits for
a response. But because libvirt cannot guarantee that such a response will always arrive,
typically if something goes wrong within the hypervisor, the task may hang, possibly making
a domain unresponsive, in which case the domain needs an intervention by performing
a hard reset. But since all workers might be occupied with executing a task or by waiting
for a lock to access the very same domain, there would not be any available workers to

"These limits can be configured in libvirtd’s configuration file libvirtd.conf
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perform such a critical operation. For these purposes, the threadpool is divided into a set
of ordinary workers, as described above, and a set of workers dedicated to operations which
do not rely on communication with a hypervisor, m