
RESEARCH
QUARTERLY

V
O

LU
M

E
 1:3

Bringing great research ideas into open source communities

Keylime: Securing the edge, one slice at a time
The Isolation of Time and Space: Partitioning Hypervisors
The post general-purpose CPU world is upon us

November 2019

Rolling your own processor:
Ahmed Sanaullah builds an open source
toolchain for an FPGA

02

Of course, the inaptly named “Law”
is nothing of the sort, but the annual
doubling of compute power it promised
was all too real—or at least it was until
fairly recently. We all learned to expect
that the next chip generation would
completely eclipse the current one in
terms of capability and speed, and that it
wouldn’t be long in coming. In hindsight,
what a strange thing to expect from
engineering!

One of the unfortunate consequences of
this predictable growth in performance
was that it made systems architecture
more or less uninteresting to an entire
generation of engineers. What was
the point of striving for incremental
improvements in system performance
when the next chip generation was
going to come along in a year’s time and
render them irrelevant? Now, however,
as Dennard scaling approaches its
theoretical limit, things like FPGAs,
custom ASICS, and other specialized
accelerators are suddenly on everyone’s
mind, not to mention the systems
architecture development, compiler

innovations, and operating system work
required to enable them. In this issue,
Ahmed Sanaullah’s piece on the open
source FPGA toolchain he has been
involved in developing shows just how
exciting this area is. Of course, when we
have a working toolchain, we will need
a more advanced way of partitioning
systems to take advantage of it.
Craig Einstein’s thesis work on a very
lightweight partitioning hypervisor, also
in this issue, may provide just that.

Table of Contents

From the director 02

NEWS

The post general-purpose CPU world is
upon us 04

INTERVIEW

Interview with Leslie Hawthorn 07

FEATURE ARTICLES

Roll your own processor: Building an open
source toolchain for an FPGA 10

Women in Tech: Plugging the Leak in the
Pipeline 16

Keylime: Securing The Edge, One Slice at a
Time 19

RIG Leader Perspective; UMass Lowell 23

The Isolation of Time and Space: Using
a Partitioning Hypervisor to Host Virtual
Machines 25

Research Project Updates 31

About the Director: Hugh Brock is the Research
Director for Red Hat, coordinating

Red Hat research and collaboration with
universities, governments, and industry worldwide.

A Red Hatter since 2002, Hugh brings intimate
knowledge of the complex relationship between

upstream projects and shippable products to the
task of finding research to bring into the open

source world.

FROM THE DIREC TOR
I began paying attention to computers just around the same

time that Intel’s x86 architecture was starting the incredible

journey predicted by “Moore’s Law” and made possible by

the power density principle known as Dennard scaling.

RESEARCH
QUARTERLY

V O L U M E 1 : 3

03

Finding students who are interested
in open source and helping them build
that interest is an important part of
our mission at Red Hat Research. I’m
particularly happy therefore to be able
to present our involvement with Tech
Together, described in Sarah Coghlan’s
piece on women in tech. Through
our sponsorship, we aim to help Tech
Together, and events like it, make a real
dent in gender imbalance in tech, and,
particularly, in open source tech. Our
discussion with community guru Leslie
Hawthorn illustrates another path to
the same end. By connecting open
source with important real world use
cases, we can attract a whole different
group of people to open source than
those who are just interested in tech for
its own sake.

Finally, I’m really pleased to be able
to share the graduation of a Red Hat
Research project to a full-fledged Red
Hat engineering effort. The Keylime

project focuses on allowing system
users to ensure for themselves that
the systems they are using are running
the software they claim to be. This
is referred to as “attestation”. Before
now, the process of checking key parts
of the software stack, like the BIOS
and firmware, the bootloader, and the
operating system kernel, was manual
and tedious. With Keylime, a cloud user
can attest the entire stack their code
is running on, trusting only the TPM
chip in the machine to correctly report
cryptographic hashes of that stack’s
components. Keylime came out of an
MIT Lincoln Labs development effort at
the Mass Open Cloud, was adopted by
a couple of folks in the Red Hat security
group, and has now made the transition
to a full product development effort. It
is the kind of success story I hope will
be commonplace as Red Hat Research
grows, and we move more and more
good ideas into open source.

Red Hat Research Quarterly delivered to your digital
or physical mailbox?

Yes! Subscribe at research.redhat.com/quarterly.

Finding students who
are interested in open

source and helping
them build that interest

is an important part
of our mission at

Red Hat Research.

V O L U M E 1 : 3

RESEARCH
QUARTERLY

04

...any notable innovation
on the hardware side
pales by comparison

to the variety of
system and processor
architectures of just a

couple of decades ago.

THE POST GENERAL-PURPOSE CPU WORLD IS UPON US
Hardware and microarchitecture innovations for complex, data-intensive, distributed
computing systems were some of the themes for the inaugural Red Hat Research Day
in May. Another topic, as covered in the Red Hat Research Quarterly Volume 2, was
data sovereignty in all its aspects, including privacy, governance, and security.

WHY SO LITTLE FOCUS ON
HARDWARE?

For the past decade, the tech industry
has mostly focused on software
innovations rather than taking system
hardware in new directions. To be sure,
a lot of semiconductor and electrical
engineering design work has gone into
building out the massive scale-out x86
server farms that power the software.
But any notable innovation on the
hardware side pales by comparison to
the variety of system and processor
architectures of just a couple of
decades ago.

What happened was that x86 mostly
won. And, furthermore, it won in the form
of largely standardized dual-processor
socket rackmount servers. (Along with
desktop and laptop clients.) A variety
of intertwined economic and technical
factors led to this outcome.

As covered by Boston University (BU)
PhD candidate Han Dong in his Research
Day talk, two of the most important
forces that got us to where we are today
are Moore’s Law and Dennard scaling.

Probably everyone in the tech

industry has heard of Moore’s Law,
the observation that the number
of minimum cost components in an
integrated circuit doubles about every
two years. This means that you could get
twice the transistors for the same cost
which, historically, roughly translated
into also getting about twice the
performance.

Moore’s Law persisted for a long time,
in part because of another observation
termed Dennard scaling. Dennard
scaling states, more or less, that, as
transistors get smaller, their power
density stays constant—which also
means they won’t run any hotter.

One important consequence of Moore’s
Law and Dennard scaling was that, if you
needed a faster computer, you could
just wait a couple of years and buy a
new one that was twice as fast for no
more money and no difference in size or
power consumption. Oh, and it could run
the same software.

To say that this state of affairs made life
difficult for any entrepreneur thinking
to launch a new exotic system design
is a significant understatement. Issues

RESEARCH
QUARTERLY

V O L U M E 1 : 3

05

of software compatibility, time-to-
market, or even just perceived risk made
competing with the entrenched x86
architecture challenging.

WHAT COMES NEXT?

However, both Moore’s Law and Dennard
scaling are petering out. The industry
must now consider alternative ways of
gaining performance at the hardware
level, the operating system level, or even
a combination of the two.

We see early examples of this trend
in the widespread use of graphics
processing units (GPU) and specialty
processors, such as Google’s tensor
processing units (TPU), to accelerate
machine learning and other CPU-hungry
workloads.

However, there’s also a great deal of
work in this vein that is still in a relatively
early stage of research—which is one
reason why work in this area is a great
fit for the Red Hat Collaboratory with
Boston University (BU). BU’s Orran
Krieger describes how, on the one hand,
research systems are often considered
“toy systems” and his vision with the
Collaboratory is to “create projects
where we can do things together to build
innovative systems that can be used
directly.” From Red Hat’s perspective,
Uli Drepper, a Red Hat Distinguished
Engineer who investigates future
compute architectures, sees this as “a

force multiplier. It’s an opportunity to
work on projects which might not be [in
products] in the near future.”

RESEARCH DAY TOPICS

Field Programmable Gate Arrays
(FPGA) was one major topic at the
Research Day on the hardware side.
FPGAs are semiconductor devices
that connect configurable logic blocks
(CLBs) via programmable interconnects.
FPGAs can usually be reprogrammed for
different purposes after manufacturing.
FPGAs are a more flexible alternative to
custom-designed Application Specific
Integrated Circuits (ASICs) and, with
increasing performance, are now being
used for an expanding set of workloads.

As part of the Research Day talks,
BU’s Martin Herbordt and Red Hatter
Ahmed Sanaullah presented “FPGAs
Everywhere in Large Scale Computer
Systems.” One use case in particular
that Herbordt highlighted was lossy
compression, which is important in
certain high performance computing
applications that can generate a
petabyte of data per minute. The
problem is that compressing this
minute of data with general purpose
architectures can take half a day. With
FPGAs, Herbordt pointed out that you
“can do it at streaming rate.”

Other talks focused on various aspects
of software. For instance, Red Hat’s

Larry Woodman and BU PhD candidate
Ali Raza discussed UniKernel Linux.
Unikernels are single address space
library operating systems. With a
unikernal, a developer selects, from
a modular stack, the minimal set of
libraries which correspond to the OS
constructs required for their application
to run. An application compiled into
a unikernel only has the required
functionality of the kernel and nothing
else. One longer-term goal for the
use of unikernals is to provide a viable
alternative to packages that, fully or in-
part, bypass or avoid the kernel and do
most of the processing in user space.

Other presentations covered ongoing
work that is being done in areas such
as latency-sensitive workloads, single-
threaded performance acceleration,
and novel ways to allocate memory
bandwidth.

THE NEED FOR NEW TYPES OF
SPEED

When he was at DARPA, Robert Colwell
pointed out that from 1980 to 2010,
clocks improved 3500X and micro-
architectural and other improvements
contributed about another 50X
performance boost. The process shrink
marvel expressed by Moore’s Law
overshadowed just about everything
else. That performance knob has
largely run its course, meaning that we
can no longer take the broad outlines

V O L U M E 1 : 3

RESEARCH
QUARTERLY

06

of today’s hardware and software
landscape as a given.

The bad news is that Moore’s Law
played a huge part in enabling today’s
technology landscape. Achieving a
comparable pace of improvement in
different ways won’t be easy and may
not even be possible. But the flip side
is that many potential innovations that
weren’t of broad interest in an industry
dominated by Moore’s Law are now
in play. There exists an enormous
opportunity to research and develop
these innovations, which will require
different disciplines and different types
of organizations to work together.

To see highlights from Research
Day at Red Hat Summit 2019, go
to https://www.youtube.com/
watch?v=h6YOA9agi5U

Chris Wright’s talk on hardware
innovation https://www.youtube.com/
watch?v=9sZCC73PfSo

Orran Krieger and Uli Drepper on the
relationship between operating systems
and hardware innovation https://www.
youtube.com/watch?v=vqybu_Q_ebA

Orran Krieger and Uli Drepper on the relationship between operating systems and hardware innovation

AUTHOR

— Gordon Haff, Technology evangelist,
 Red Hat

...we can no longer take
the broad outlines of
today’s hardware and
software landscape as

a given.

RESEARCH
QUARTERLY

V O L U M E 1 : 3

07

THE HUMAN FACTOR IN OPEN SOURCE
Red Hat Research Quarterly had a chance to interview Leslie Hawthorn, one of
the founding members of Grace Hopper Open Source Day, about motivation and
experiences. Open source software had been literally all around her–all she had to do
was ask and discover.

RHRQ: You followed a non-engineering
path to open source, first discovering it
when playing mp3 files from a GNOME
desktop and then discovering the
usefulness of the Mozilla Firefox browser
from engineers at Google. It’s fair to
say that the gateway to open source
software was a business productivity
tool, but what was the motivation behind
your lifelong engagement?

Leslie Hawthorn: I’ve had the
opportunity to not only do work
focused on open source from a
business perspective, but also had the
opportunity to focus on open source
from more of a public good perspective,
just because of the privileges that my
work allowed me.

Part of the work on Google Summer of
Code was to do outreach to universities,
to help them understand that this was
an opportunity provided by Google to
help their students become competent
at open source software development.
Unlike typical programming experiences,
it gave people all sorts of skills that were
required for the job market: the ability
to work well remotely, to communicate
effectively in writing, to work in a

distributed team etc., in addition to
learning open source version control
tools and resources, like Github.

At Google, I was able to act as an advisor
to the Humanitarian FOSS Project,
which was started by several colleges
on the east coast of the U.S. The goal of
the Humanitarian FOSS Project was to
bring more computer science students
into the world of free and open source
software development, but doing so
with a humanitarian focus. Significant
amounts of research had shown that
women, or other underrepresented
groups in the technology space, were
much more driven to working in STEM
disciplines and, in particular in computer
science, when their work was made
relevant to them on a social basis. A
person who doesn’t necessarily see
themselves as a computer scientist
becomes much more interested in
computer science as a discipline
when they realize this gives them the
opportunity, for example, to develop
applications used for healthcare in the
developing world, which is where their
true passion lies. They want to help
society and computer science becomes
the vehicle to do so.

LESLIE HAWTHORN

Senior Principal Technical Program
Manager, Open Source Programs
Office, Office of the CTO, Red Hat

As an internationally known developer
relations strategist and community
management expert, Leslie Hawthorn
has spent the past decade creating,
cultivating, and enabling open source
communities across universities,
enterprises, and non-profits. She’s
best known for creating Google Code-
in, the first global initiative to involve
pre-university students in open source
software development.

V O L U M E 1 : 3

RESEARCH
QUARTERLY

08

RHRQ: It’s interesting to see how your
entry into open source was through
human connections. Now you’re
suggesting that combining tech with
social good is a really good way to bring
more people into the computer science
fold. What do you make of that parallel?

Leslie Hawthorn: When I think about
my journey to becoming a technologist,
I think it’s a little bit strange. I was
very much a fan of the humanities
and very excited about understanding
the processes by which human beings
communicate effectively with one
another. I applied that knowledge to my
work in the tech industry and how folks
work together in open source software
communities. And, while I get really
excited about new software, it’s less
about features than what it’s bringing
from a social change perspective, like
ad-blocking software for example. I
think about things like smart cities, or
what does the world look like when we
have IoT and edge applications that are
really secure, to protect consumer and
business data?

I, along with some other folks who are
very passionate about the idea of the
importance of open source software
being part of that push to have women
to be more involved in technical
disciplines, created something called,
Grace Hopper Opensource Day. It
started as a three-hour long Code-
athon for Humanity in 2011, and it was

a group of us just getting together to
help women get started working on
open source projects. Now there’s an
entire conference track focused on open
source software.

One of the outcomes has been to get
more academics talking about their work
in the open source software space, and
really shining a light on how their use of
open source software is able to meet
all kinds of requirements around data
reusability, code reusability, replicability
of experiments.

All of this is extremely important for
projects that receive grants, e.g. from
the National Science Foundation (NSF).
It turns out doing things the open source
way just happens to satisfy the NSF
project architecture requirements. That
way, you set your project up in an open
and transparent way from the get-go.

I’ve worked with various professors
on introducing open source into their
curricula. For example, the Rochester
Institute of Technology became the first
university in the United States to offer a
minor in open source software. That’s a
huge way to move the needle forward.

RHRQ: What are some of the barriers
to the adoption of open source software
and methods by universities?

Leslie Hawthorn: I think one of the
places where there is sometimes a
barrier to adoption of open source

...while I get really excited
about new software, it’s less

about features than what
it’s bringing from a social

change perspective...

RESEARCH
QUARTERLY

V O L U M E 1 : 3

09

software is in universities where open
source software and its value is not
necessarily well understood. If you look
at Red Hat’s research relationship with
universities, Red Hat does not require
assignment of intellectual property
when it funds research. That is left to
the schools themselves. And they are
able to productize the research that
comes out of those grants in whatever
way they wish to, be that through the
university’s office of technology transfer,
or companies founded, etc. But if you
look at the way that most universities are
incentivized to spend grant funding, if
it’s coming in from a private enterprise,
there are hopes of developing
intellectual property that the enterprise
can then commercialize.

For organizations that have a very
strong technology transfer office,
those technology transfer offices are
looking for opportunities to be able to
produce a patent, or some other type
of constrained intellectual property
rights, that can then be monetized,
and continue to drive revenue for the
university after the grant funding has
concluded. This is, of course, necessary
since the research needs to continue
even after the grant has run out.

RHRQ: Do you see these economic
pressures as negatively impacting the
growth of open source software?

Leslie Hawthorn: We have a

generation lacking in opportunities for
economic mobility. I think what we’re
going to see is that fewer people are
motivated to participate in open source
software from pure delight over the
cool experiment that they’re doing and
more of them are going to be doing
it from an economic motivation. But
they still want career fulfillment and
they want to do something that they
think contributes to making the world a
better place as a whole.

Maybe it’s working on medical record
systems for the developing world or
maybe it’s making sure that communities
doing subsistence agriculture are able
to get better economic value from their
agricultural transactions, because they
have access to open source software
applications.

There are all kinds of ways in which
our work can contribute to the bottom
line and social good. I think that we will
see more people invested in working
in technology and with open source
software when we return to our roots,
where it’s not just this code is available,
and everyone can do with it as they wish,
but it’s also that there was a sense of
social responsibility from the creator to
the audience, and then the audience to
everyone else as well.

–RH

V O L U M E 1 : 3

RESEARCH
QUARTERLY

10

ROLL YOUR OWN PROCESSOR: BUILDING AN OPEN SOURCE
TOOLCHAIN FOR AN FPGA
Field Programmable Gate
Arrays (FPGAs) are rapidly
becoming first-class citizens
in the datacenter, instead
of niche components. This
is because FPGAs i) can
achieve high throughput and
low latency by implementing
a specialized architecture
that eliminates a number of
bottlenecks and overheads of
general purpose computing,
ii) consume little power

and, by extension, have a
high power-performance
ratio, iii) have high-speed
interconnects and can tightly
couple computation with
communication to mask the
latency of data movement,

and iv) can be configured so
that each design is tuned for
individual use cases.

Figure 1 illustrates the
different configurations
in which FPGAs are being
deployed in a datacenter.
Bump-in-the-Wire (BitW)
FPGAs process all traffic
between a server and a
switch to perform application
and system function
acceleration. Coprocessor
FPGAs provide a traditional
accelerator configuration,
like GPUs, with an optional
back-end secondary network
for direct connectivity
between accelerators.
Storage-attached FPGAs
process data locally on
storage servers to avoid
memory copies to compute
servers. Stand-alone
FPGAs provide a pool of
reconfigurable accelerators
that can be programmed and
interfaced with directly over
the network. Smart network
interface controllers (NICs)
contain embedded FPGAs
which perform custom
packet processing alongside
a NIC ASIC (application-

specific integrated circuit).
Finally, network switches
can also contain embedded
FPGAs that process data as
the data moves through the
datacenter network (e.g.,
collective operations such as
broadcast and all-reduce).

RESEARCH PROBLEM

FPGAs have traditionally
lacked the clean, coherent,
compatible, and consistent
support for code generation
and deployment generation
that is typically available for
traditional central processing
units (CPUs). For the most
part, previous efforts to
address this have been ad
hoc and limited in scope.
Those who try to address
this always do something
special due to poor tooling,
and the tooling that does
exist is insufficient, especially
for datacenter and high-
performance computing
(HPC) applications.

This is because of the heavy
reliance on proprietary,
vendor-specific tools for
core operations. These tools
can change frequently and

Figure 1: Different configurations for deploying FPGAs in Data Centers

RESEARCH
QUARTERLY

V O L U M E 1 : 3

11

significantly, which means
that even if we wanted to
not be ad hoc, for the most
part we couldn’t be without
investing a lot of work which
could be wiped out with a
new generation of FPGAs.
Moreover, these tools are
not necessarily aimed at
providing the most efficient
solution since they limit the
“flexibility” offered to users.
For example, these tools i)
do not allow modifications
the algorithms for core
operations (such as logic
optimization and place &
route), ii) hide details of (and
access to) the underlying
device architecture which
prevents implementation of
important functions (such
as logic relocation without
recompilation), and iii) are
designed to be generic
with limited opportunities
for customization (such as
vendor IP blocks).

This is not a problem
unique to FPGAs, however.
Similar issues already exist
for software. Therefore,
similar to free software
in the software world, we
must be able to code and
deploy custom architectures

using transparent, open,
end-to-end frameworks
that are i) not tied to any
vendor, that is, do not use IP
blocks or tools that are only
compatible with the FPGA
boards of a particular vendor,
ii) provide opportunities
for customization across all
levels of the development
stack, and iii) can be
upstreamed, that is, can be
easily and reliably integrated
into downstream projects in
order to build more complex
and intricate systems.

HARDWARE AS A
RECONFIGURABLE,
ELASTIC, AND
SPECIALIZED SERVICE

We refer to our framework
for providing upstream
support for datacenter
FPGAs as “Hardware as
a RecoNfigurable, Elastic
and Specialized Service”
(HaaRNESS). HaaRNESS is
built as a high-level synthesis
(HLS) tool, which creates
and deploys high-quality
hardware from algorithms
expressed in high-level
languages (HLL) such
as OpenMP or OpenCL.
Developers only specify the
algorithm, with minimal use

of pragmas and low-level
constructs, and hence require
virtually no prior expertise
in hardware development;
this prior expertise is both in
terms of hardware-specific
languages (e.g HDL), as
well as code structures (in
HDL and HLL) needed
to effectively map design
patterns to hardware. A
preprocessor transforms
this simple HLL code into
an FPGA-centric HLL code
(HLL*) which removes
hardware optimization
blockers and helps infer
opportunities for parallelism.
Then, an HLS compiler
converts this HLL* code into
HDL (hardware assembly
language). The resulting
HDL is run through a system
generator which can perform
one of two operations: i)
cycle accurate simulation, or
ii) deployment of application
logic on the physical FPGA
system. In case of the latter,
a bitstream compiler maps
the HDL code onto the
FPGA fabric using Synthesis
and Place & Route. Then, a
software runtime is used
to program the application
onto the board and interface
with it. Finally, similar to the

OS on CPUs, a hardware
operating system (OS) is
provisioned on the FPGA
in order to share the FPGA
fabric amongst multiple
independent entities.

HLS CODE
PREPROCESSOR

Current HLS tools can require
developers to explicitly
identify opportunities (and
constraints) for parallelism, as
well as manually implement
a number of important
design features such as
caches, loop coalescing,
function inlining, floating
point accumultors and data
hazard elimination. This
substantially increases the
complexity of HLS code that
developers need to provide.
Our HLS code preprocessor
reduces this complexity by
automatically identifying
optimization blockers in
an HLS compiler through
compiler instrumentation,
and then addressing them
using a series of system
code transformations.
Optimization blockers occur
when a compiler writer is
not being allowed to infer an
optimization. An optimizing
transform may be blocked if

V O L U M E 1 : 3

RESEARCH
QUARTERLY

12

it:
i) modifies code functionality, instead of
structure only, ii) can result in a failure
to compile, iii) is based on information
available at run-time, iv) requires a
global view of the computation, and/
or v) is based on implicit code behavior
that may be visible to the developer,
but cannot be reliably extracted by the
compiler.

Figure 2 illustrates
our approach. To
identify optimization
blockers, we first
built a logical model
for FPGAs by
identifying a set of
core design patterns
that an HLS compiler
should be able to
infer and implement
efficiently in order to
achieve high quality
code generation.
Examples of these
design patterns
include single
instruction, multiple data (SIMD),
pipelining, caching, logic inlining, and
loop structures.

Then, we instrumented the HLS compiler
(OpenCL in our proof-of-concept) to
determine what it has inferred given an
input code. This requires analyzing the
IR at compile time (static profiler) after
all optimizer passes have been run (i.e.

output of the front-end HLS compiler).

We then built a set of probes which
contain individual design patterns
in relative isolation, so that we can
determine compiler effectiveness
for each. By running these probes
through the compiler and looking at
instrumentation report, we can tell
what optimizations are blocked. The

process is done once for a given version
of an HLS compiler. Along with a set of
probes, we also provide a set of HLL-
HLL code transforms that can remove
the optimization blocker for each probe.
Examples of these transforms include
loop unrolling for SIMD and generating
register caches for read-after-write
hazards for on-chip memories.

These transforms are only done if an
optimization is blocked. Finally, this set
of code transforms and the probe report
is fed into the pre-processor.

ADVANCING HLS COMPILERS

Current HLS compilers have two major
drawbacks. First, since existing HLS
tools map code fragments to vendor
IP blocks in order to generate HDL

from HLL code, a
large library of such
blocks is typically
needed. Such libraries
consume a large
amount of CPU
memory, have high-
overhead non-trivial
lookup operations,
and provide limited
opportunities for
optimization since
they are proprietary.
Only a limited set
of parameters can
be modified and
that, too, is within
predefined bounds.

Second, it is also likely that a significant
fraction of code that is translated to
these IP blocks is not needed for the
HDL to execute. Application logic
can have a spectrum of performance
requirements for different components,
not all of which require execution on
custom hardware, e.g. control plane

Figure 2: Framework for automatically removing optimization blockers using compiler instrumentation

RESEARCH
QUARTERLY

V O L U M E 1 : 3

13

versus data plane.

Our goal is to advance HLS compilers
by addressing the above two drawbacks.
The first enhancement is to reduce the
size of code sequences being translated
to hardware, and perform this translation
using only basic vendor-agnostic and
transparent hardware building blocks
like registers and gates. This enables
faster compilation times and allows the
design to be tuned for each individual
application.

The second, perhaps more critical,
improvement is to identify, at
compile time, the best approach for
implementing the algorithm. For the
code generation itself, we have three
different pieces: i) the part which must
always executed on the host and cannot
be on the FPGA e.g. due to I/O, ii) the
part which is translated into softcores on
the FPGA, and iii) the rest of the code
which is translated into HDL. These parts
can be either inferred automatically
by the compiler (directly or through
profiling executables), or marked up
using OpenMP primitives. The split of
(ii) and (iii), in particular, is important,
since functions implemented using
softcores consume negligible resources
(logic/memory/DSP blocks) and can
achieve asynchronous operation with
respect to HDL. Moreover, for part (ii),
we eliminate Place & Route (an hours/
days long process), and achieve CPU-
only software-like turnaround times,

because the HDL does not change. If
the HDL itself is as small as possible
for computation kernels and/or is
relocatable to other parts of the FPGA
fabric, the need to run Place & Route is
further reduced.

SYSTEM GENERATOR: CYCLE
ACCURATE SIMULATION

Another major component of our
research includes building a cycle
accurate simulation framework. The
framework can estimate performance
directly from HDL code without
compiling to actual hardware, because
rapid and reliable design space
exploration substantially reduces
turnaround times for building high quality
hardware. While this feature, called RTL
simulation, is certainly not novel, we
provide significantly more control over
what can be evaluated and how.

Using our framework, developers
have the flexibility of testing both the
application logic and its interaction
with the world around it. The latter
involves testing application logic after
connecting it to intra-FPGA wrappers,
operating systems, external devices,
etc. This is important since testing the
application logic only, without modelling
the environment around it, can result in
developers converging on a design that
gives worse performance than naive
code when actually implemented on an
FPGA. Worse, a design is likely to fail to
execute altogether if deadlocks were not

The second, perhaps
more critical,

improvement is to
identify, at compile

time, the best approach
for implementing the

algorithm.

V O L U M E 1 : 3

RESEARCH
QUARTERLY

14

properly identified beforehand.

SYSTEM GENERATOR:
DEPLOYMENT

Bitstream compiler

The mapping of HDL to the FPGA fabric
is typically done exclusively by FPGA
vendors. This is because it requires
knowledge of low-level details of the
underlying FPGA hardware, which
vendors typically do not disclose publicly
in order to protect intellectual property.
Lack of these low-level hardware
details means that we cannot determine
how designs map to FPGAs and thus
guarantees of security and performance
cannot be reliably provided.

Our research focuses on inferring low-
level hardware by reverse engineering
FPGA bitstreams. The goal here is to
obtain key insights into the compilation
processes, which we can then use to
build an open bitstream compiler. This
allows us to both reduce the limitations
of proprietary bitstream compilers, as
well as implement important features
that are currently not supported, e.g.
FPGA fabric attestation.

Software runtime

With regards to software runtime, our
research is primarily focused on building
vendor agnostic tools, such as drivers
and runtime libraries. Similar to how
the Linux kernel is built, our goal is to

separate the software stack for FPGA
tools into architecture/configuration
dependent and independent
components. This will enable us to
maintain a uniform and reusable
structure for software runtime across all
types of FPGA configurations boards
in the datacenter. It will also reduce the
complexity of adding and removing
features, since well-defined APIs will
ensure that changes are compatible with
existing code. Having these APIs map
well to a broad set of vendors is possible
since FPGAs talk to host machines
over standard buses, such as PCIe
(peripheral component interconnect
express). These standard buses, and
associated protocols, constrain the
behaviour of both the software (drivers)
and hardware (PCIe logic blocks) built
around the buses in a similar manner for
all FPGAs. Any subtle differences, such
as vendor or device IDs, can be supplied
as compile/load/run-time values. As a
result, it is possible to implement reliable
and effective uniformity, at least for the
lower levels of the hardware and software
stacks, and expose a consistent interface
to applications on the host and device.

Hardware OS

Hardware operating systems are
effectively any logic on the FPGA
that is not part of the application.
They are responsible for partitioning
the device fabric between multiple
entities, data flow management and

Using our framework,
developers have
the flexibility of
testing both the

application logic and
its interaction with the

world around it.

RESEARCH
QUARTERLY

V O L U M E 1 : 3

15

interfaces, and hardware modifications.
They also manage the flow of data
between different components in
the FPGAs by defining a number of
specifications such as APIs, protocols,
bus widths, clock domains, FIFO depths,
etc. Figure 3 shows our hardware
operating system for Bump-in-the-Wire
FPGAs, called Morpheus. Morpheus
supports the sharing of the FPGA fabric
between developers and the system
administrator. Administrator functionality
offloads are particularly useful for
accelerating a large number of critical
workloads such as encryption, SDN, Key
Value Store, database operations, etc.

Since APIs are well defined, Morpheus
can be easily modified to support other
deployment configurations of FPGAs in

the datacenter. This is critical to ensuring
compatibility across the stack, enabling
portability across FPGAs, and reducing
developer effort in integrating their
designs into the hardware OS.

CONCLUDING REMARK

We expect to have a toolchain,
Morpheus, and compiler extensions
to target the FPGA in the near future.
If you are interested in collaborating,
please feel free to contact us and we
would be happy to discuss the research
with you: asanaull@redhat.com.

Figure 3: Design of our prototype Hardware OS for Bump-in-the-Wire FPGAs

AUTHOR

— Ahmed Sanaullah,PhD
 Software engineer, Office of the CTO

AHMED SANAULLAH is a software
engineer for the Red Hat Office of
the CTO, working on all things FPGA.
This includes a number of projects
across the hardware and software
stacks, such as compilers, drivers and
hardware operating systems. He has
a PhD in Computer Engineering from
Boston University, a MSc in Electrical
and Electronic Engineering from The
University of Nottingham, and a BS
in Electrical Engineering from Lahore
University of Management Sciences.

V O L U M E 1 : 3

RESEARCH
QUARTERLY

16

WOMEN IN TECH: PLUGGING A LEAK IN THE PIPELINE
It’s hardly news that there is
an enduring gender gap in
tech. According to the United
States National Center
for Women & Information
Technology, only 26 percent
of the U.S. computing
workforce is female.
Women are chronically
underrepresented in the U.S.
tech sector and this lack
of diversity is not a recent
phenomenon.

Although the problem
is complex and finding
solutions is daunting, it’s
entirely possible to bring
more girls into tech and
support them at all points
along the pipeline. Women-
led organizations like Girls
Who Code and littleBits
were founded with this
mission in mind: to get more
girls interested in technology
in the first place, and then
support them throughout
their journey so they stay
interested, persist, and
succeed. Industry can play a
powerful role in supporting
women even further as they
enter the workforce.

This year, Red Hat is
a top-tier sponsor for
TechTogether Boston,
Boston’s largest all-female,
femme, and non-binary
hackathon, to be hosted
at Boston University (BU).
TechTogether Boston’s
mission is to help gender-
marginalized groups thrive
and be more successful,
confident, and prepared
for careers in the tech field.
Red Hat attended last year
and hired 10 strong interns
from the program. This year,
we’re aiming to double the
number of hires drawn from
the talent pool participating
in this event.

“In high school and college,
women fall out of the tech
pipeline because there
aren’t the resources there
to support them in their
tech-related classes, clubs,
internships, and even
hackathons,” says Grace
Yeung, Director of Marketing
at TechTogether Boston.
“By being a top sponsor
for TechTogether Boston,
Red Hat is directly helping

to plug a leak in the tech
pipeline.”

In 2018, only 20% of
hackathon participants
identified as women.
TechTogether Boston is
directly addressing this by
creating an environment
for traditionally gender-
marginalized people who
aspire who aspire to work
on projects, explore their
interests on a deeper level,
and connect with other
women and non-binary
people in technical fields and
build lifelong connections.

“With the support of
sponsors like Red Hat, we
are able to host our event
free of charge to all our
hackers, thereby eliminating
the financial barrier that is
present in trying to break into
tech,” Yeung says. “With their
on-the-ground presence at
our event, Red Hat allows
women and non-binary
individuals to see that
technology companies are
willing to invest in them and
hire them as well.”

Source: United States National
Center for Women & Information
Technology

26%

FEMALE

U.S.
COMPUTING
WORKFORCE

RESEARCH
QUARTERLY

V O L U M E 1 : 3

17

Red Hat is planning to
provide the best experience
for these hackers by offering
participants the opportunity
to network, attend a variety
of workshops, interview
for internships, enjoy fun
activities, and make lasting
friendships along the way.
Tech Together not only
supports the development
of new talent, but also
celebrates strong female
role models in the local
technology industry. Last
year, Red Hatters Oindrilla
Chatterjee and Hema
Veeradhi each led workshops
at the event. Data scientist
Chaterjee presented
“Understanding Text and
the Underlying Sentiment,”
while software engineer
Veeradhi covered “Machine
Learning Flow on OpenShift.”
Chatterjee and Veeradhi are
both recent graduates of
Boston University.

Efforts to reduce the gender
gap reach beyond Boston.
This past summer, Red Hat
continued its sponsorship for
the University of Massachu-
setts (UMass) Lowell’s RAMP
program. RAMP, which stands

for Research, Academics and
Mentoring Pathways, is a
six-week program for twenty
first-year female engineering
students. RAMP is designed
by the faculty based on pre-
vious experiences mentoring
female students. The guiding
principle behind this program
is that when women entering
engineering don’t stay the
course, other young women
then feel isolated and switch
to other majors.

“Often times, subjects like
math and science breed
unwelcoming environments
from day one,” Kate Carcia,
associate manager in quality
engineering at Red Hat and
graduate of UMass Lowell,
says. “We rob people of
the opportunity to learn if
we shut them out from the
beginning.”

Without other women to
look up to, many young
women self-select out of a
technical career path before
they have even given it a
chance. Leaning on her
own experiences, Carcia
mentored students from the
RAMP program and spoke on

“We rob people of the opportunity
to learn if we shut them out from

the beginning.”
–Kate Carcia, Associate manager in

quality engineering at Red Hat and graduate
of UMass Lowell

V O L U M E 1 : 3

RESEARCH
QUARTERLY

18

the program’s industry panel with other
female engineers from Red Hat.

“I would not have stuck around if it
weren’t for my mentors,” Carcia says.
“The feeling of not belonging was
enough to start pushing me out the door
on numerous occasions. I’m lucky to
have people who push me right back in.”

There is a huge opportunity to shift the
trajectory of women and girls entering
the industry and make tech an exciting
and welcoming career opportunity
for all. Changing how people envision
computer scientists is an important step
in the effort to encourage more women
to pursue careers in technology. Girls
need to see that computer scientists

come in all shapes and all sizes. Adding
more women to Red Hat will attract
more women to Red Hat - and we are
doing just that.

ARTICLE LINKS:
26 percent of the U.S. computing workforce is
female: http://www.techrepublic.com/article/the-
state-of-women-in-technology-15-data-points-
you-should-know/

Girls Who Code: http://www.girlswhocode.com

littleBits: https://littlebits.com/

TechTogether Boston: https://boston.techtogether.
io/

20% of hackathon participants identified as
women: http://ladyproblemshackathon.com/our-
impact/

AUTHOR

— Sarah Coghlan

SARAH COGHLAN is the University
Program Manager for Red Hat Research
working out of the Boston Office. She
oversees the PnT Intern and Co-op
Programs and is the lead organizer for
Tech Together Boston.

Red Hat Research Quarterly delivered to your digital
or physical mailbox?

Yes! Subscribe at research.redhat.com/quarterly.

RESEARCH
QUARTERLY

V O L U M E 1 : 3

19

KEYLIME: SECURING THE EDGE, ONE SLICE AT A TIME
As the number of workloads in cloud, IoT, and edge continue to grow, how do we
verify that a remote, shared, and/or physically unsecured computing system has
not been tampered with? Is there a good way to use a standardized cryptographic
module to establish a hardware root of trust, do a remote, trusted secure-measured
boot, do remote integrity verification management, and do remote encrypted
payload execution?

Keylime is an open source community-
based project that enables the
establishment and maintenance
of trusted compute in distributed
deployments. It uses embedded
Trusted Platform Module (TPM)
hardware (version 2 and later) and the
Linux kernel’s Integrity Measurement
Architecture (IMA) subsystem to do
so. Keylime was originally created by an
MIT Lincoln Laboratory research team.
It has now grown to include a small and
dedicated open source community
behind it.

WHAT PROBLEMS DOES KEYLIME
HELP SOLVE?

Today’s clouds rely upon complete trust
in the provider to secure applications
and data. Cloud providers do not offer
the ability to create hardware-rooted
cryptographic identities for cloud
resources nor do they supply sufficient
information to verify the integrity of
systems. Trusted computing protocols,
as well as trusted hardware like TPM
chips, promised a solution to this
problem. Unfortunately their complex

implementation, low performance, and
lack of compatibility with virtualized
environments has limited their adoption.

Keylime’s design allows the remote
attestation and IMA monitoring of
thousands of nodes. Work is underway
in collaboration with Boston University
(BU) on a virtual TPM (vTPM) quote.
Keylime can also scale to be used to
monitor thousands of virtual machines
running on a single host by reducing the
performance penalty of directly calling
the hardware TPM of the cloud node to
cryptographically sign data.

KEYLIME’S BENEFITS

Keylime enables:

1. Trusted measured boot functionality
and secrets provisioning using
encrypted payloads.

2. Runtime integrity checks and
verification.

It also supports the following distribution
scenarios:

• Single site - single node (multi-user)

Bootstrapping and Maintaining Trust in the Cloud
∗

Nabil Schear

MIT Lincoln Laboratory

nabil@ll.mit.edu

Patrick T. Cable II

Threat Stack, Inc.

pat@threatstack.com

Thomas M. Moyer

MIT Lincoln Laboratory

tmoyer@ll.mit.edu

Bryan Richard

MIT Lincoln Laboratory

bryan.richard@ll.mit.edu

Robert Rudd

MIT Lincoln Laboratory

robert.rudd@ll.mit.edu

ABSTRACT

Today’s
infrastr

ucture
as a service

(IaaS)
cloud environ

-

ments rely upon full trus
t in the provide

r to secure appli-

cations
and data. Cloud provide

rs do not offer the ability

to create hardwar
e-rooted

cryptog
raphic identitie

s for IaaS

cloud resource
s or sufficient information to verify the in-

tegrity
of syste

ms. Trusted
computing protoco

ls and hard-

ware like the TPM have long promised a solution
to this

problem
. However,

these technolo
gies have not seen broad

adoptio
n because

of their
complexity

of implementation
, low

perform
ance, an

d lack of compatibilit
y with virtualiz

ed en-

vironments. In this paper we introdu
ce keylim

e, a scal-

able trusted
cloud key managem

ent system. keylim
e pro-

vides an end-to-e
nd solution

for both bootstra
pping hard-

ware rooted cryptog
raphic identitie

s for Iaa
S nodes a

nd for

system
integrity

monitorin
g of those

nodes via periodic
at-

testatio
n. We support

these function
s in both bare-metal

and virtualiz
ed IaaS environ

ments using a virtual
TPM.

keylim
e provide

s a clean interfac
e that allows higher level

security
services

like disk encrypt
ion or configur

ation man-

agement to le
verage t

rusted computing w
ithout b

eing tru
sted

computing
aware.

We show that our bootstra
pping proto-

col can
derive a key in less tha

n two seconds
, we can detect

system
integrity

violatio
ns in as little as 110ms, and that

keylim
e can scale to thousan

ds of Ia
aS cloud nodes.

∗This material
is based upon work support

ed by the As-

sistant
Secretar

y of Defense for Researc
h and Enginee

ring

under Air Force Contrac
t No. FA8721-05

-C-0002
and/or

FA8702-15
-D-0001.

Any opinion
s, findin

gs, conc
lusions

or

recommendatio
ns expre

ssed in this material a
re those

of the

author(
s) and do not nece

ssarily reflect t
he views of

the As-

sistant
Secretar

y of Defense for Researc
h and Enginee

ring.

c© 2016 Massachu
setts Institut

e of Technol
ogy. Delivered

to the U.S. Government with Unlimited Rights,
as defined

in DFARS Part 25
2.227-70

13 or 7014
(Feb 2014). Notwith-

standin
g any copyrigh

t notice,
U.S. Government rights in

this work are defined
by DFARS 252.227

-7013 or DFARS

252.227
-7014 as detai

led above.
Use of this w

ork other th
an

as speci
fically authoriz

ed by the U.S. Government may vio-

late any copyrigh
ts that

exist in
this wor

k.

ACM acknowledges that this contribution was authored or co-authored by an em-

ployee, or contractor of the national government. As such, the Government retains

a nonexclusive, royalty-free right to publish or reproduce this article, or to allow oth-

ers to do so, for Government purposes only. Permission to make digital or hard copies

for personal or classroom use is granted. Copies must bear this notice and the full ci-

tation on the first page. Copyrights for components of this work owned by others than

ACM must be honored. To copy otherwise, distribute, republish, or post, requires prior

specific permission and/or a fee. Request permissions from permissions@acm.org.

ACSAC ’16, December 05-09, 2016, Los Angeles, CA, USA

c© 2016 ACM. ISBN 978-1-4503-4771-6/16/12. . . $15.00

DOI: http:/
/dx.doi

.org/10
.1145/2

991079.
2991104

1. INTRODUCTION

The prolifera
tion and popular

ity of infrastr
ucture-a

s-a-

service
(IaaS)

cloud computing
services

such as Amazon

Web Services
and Google Co

mpute En
gine means more clou

d

tenants
are hosting

sensitiv
e, priva

te, and
business

critical

data and applicat
ions in the cloud.

Unfortun
ately, IaaS

cloud service
provide

rs do not currentl
y furnish

the build-

ing blocks necessar
y to establis

h a trusted
environ

ment for

hosting
these sensitiv

e resource
s. Tena

nts have
limited abil-

ity to verify the underly
ing platform

when they deploy
to

the clou
d and to ensure t

hat the
platform

remains in a good

state for the duration
of their

computation
. Additiona

lly,

current
practice

s restric
t tenant

s’ ability
to establis

h unique,

unforge
able identitie

s for ind
ividual

nodes th
at are tied to a

hardwar
e root of trust

. Often, ide
ntity is based solely on a

software
-based cryptog

raphic solution
or unverifi

able trust

in the prov
ider. Fo

r example, tena
nts often

pass unp
rotected

secrets
to their Ia

aS nodes v
ia the cloud provide

r.

Commodity trusted
hardwar

e, like the Trusted
Platform

Module (TPM) [40], h
as long

been propose
d as the solution

for boot
strappin

g trust, en
abling the dete

ction of chang
es to

system
state th

at might ind
icate co

mpromise, and
establis

h-

ing cryptog
raphic i

dentitie
s. Unfortun

ately, T
PMs have n

ot

been widely deploye
d in IaaS cloud environ

ments due to a

variety
of challe

nges. F
irst, the

TPM and related
standar

ds

for its use are complex and difficult to implement. Second,

since the TPM is a cryptog
raphic co-proce

ssor and not an

accelera
tor, it c

an introdu
ce subst

antial p
erformance bo

ttle-

necks (e.g., 50
0+ms to generat

e a single digital s
ignature

).

Lastly,
the TPM is a physica

l device
by design and most

IaaS services
rely upon virtualiz

ation, which purpose
fully

divorces
cloud nodes fr

om the hardwar
e on which they run.

At best, the limitation
to physica

l platform
s means that

only the cloud provide
r would have access to the trusted

hardwar
e, not t

he tenants
[17, 20,

31]. The Xen hypervi
sor

includes
a virtualiz

ed TPM implementation
that lin

ks its se
-

curity to a physica
l TPM

[2, 10],
but pro

tocols t
o make use

of the vTPM in an IaaS environ
ment do not exis

t.

To address
these challeng

es we identify
the followin

g de-

sirable features
of an IaaS trusted

computing system:

• Secure
Bootstra

pping
– the system

should
enable

the tenant t
o securely

install a
n initial r

oot secr
et into

each cloud node. T
his is ty

pically the nod
e’s long

term

cryptog
raphic identity

and the tenant c
hains ot

her se-

crets to
it to enable secure services

.

• System
Integri

ty Monitori
ng – the system

should

allow the tenant t
o monitor c

loud nodes a
s they oper-

V O L U M E 1 : 3

RESEARCH
QUARTERLY

20

• Single site - multi-node (Datacenter,
IoT)

• Multi-site - multi-node (Distributed
Datacenter, Network Edge equipment,
IoT)

• Multi-tenant (Cloud)

• Baremetal

• Virtual machines (VM)

Figure 1 and Figure 2 illustrate the
difference between a traditional remote
trusted secure boot and continuous
remote integrity verification.

THE TPM CORE

The TPM chip provides a root of trust
facility introduced by the Trusted
Computing Group (TCG), standardized
in 2009, and updated in 2015 to
version 2.0. The TPM standard includes
general system trust facilities such as
random number generation, secure key
generation, data encryption, and remote
attestation. Version 2.0 is not backward
compatible with previous TPM versions.
Keylime targets version 2.0 or later of
the standard.The Keylime

community is currently
working on packaging

the project for
different platforms
and hardening the
system by porting
subsystems from
Python to Rust.

Figure 1

Figure 2

RESEARCH
QUARTERLY

V O L U M E 1 : 3

21

KEYLIME’S COMPONENTS

Using the below components, Keylime
attests system integrity during node
provisioning as part of a trusted boot
workflow as well as continuously
attesting the trustability of the runtime
environment while it is operational. The
only external component Keylime needs
to operate is a functional TPM provided
by each infrastructure node where
attestation is desired.

The three main components to the
Keylime system are the agent, the
registrar, and the verifier. All three
components were initially developed in
Python. Components that have greater
performance and security needs, like
the agent, are being ported to the Rust
language for its performant nature as
a low-level systems language and for
the strict security model of ownership
enforced by the compiler.

The agent is required to be installed on
each node in the infrastructure where
attestation is desired. It is responsible for
interacting with the TPM of the system it
resides on, including TPM 2.0 functions
such as requesting cryptographic
quotes. The agent is then responsible
for communicating the collected
information back to other system
components to enable the processing of
the trust chain.

The verifier is responsible for
bootstrapping a new node into the
system and continuously requesting the
quotes from each agent component in
the system. The verifier then performs
the attestation on the quotes returned
to determine if there have been any
unauthorized changes to the remote
systems.

The registrar is responsible for
maintaining the set of known secure
(public) key values used during
attestation processing. The agent
on each node registers itself with
the registrar upon boot up, locking in
the initial state of the node for later
comparison. The registrar’s secure
key set also includes the public keys
for the hardware manufacturer of
each node in the system. These
manufacturer keys are used to verify
that the hardware TPM is valid and
can be used as the root of trust for
the respective node.

Also included in the Keylime tooling is
a tenant command line interface (CLI)
utility (keylime_tenant). The tenant
utility uses Keylime’s RESTful interfaces
to communicate with the Keylime
components. The user can either employ
the tenant utility, the Keylime web user
interface (UI), or integrate a management
system with Keylime by integrating
with the Keylime REST application
programming interface (API) directly.

V O L U M E 1 : 3

RESEARCH
QUARTERLY

22

AUTHORS

— Luke Hinds and Andrew Toth

LUKE HINDS is a software engineer
in Red Hat’s CTO office with a focus on
security trust systems for Cloud, Edge
and IoT.

ANDREW TOTH is a software
Engineering Manager in Red Hat’s CTO
office focused on Telecommunication
Service Provider solutions.

Keylime includes a simple Certificate
Authority (CA) manageable by the
tenant utility or its dedicated Keylime
CA utility (keylime_ca). The CA is an
integral part of initially establishing trust
during the bootstrapping phase of node
provisioning and in enforcing the trust
relationship of the node thereafter. The
CA is initially responsible for signing
all boot keys sent to the nodes being
provisioned, establishing the initial
trust the system relies on. If the verifier
detects a breach of the established
trust via broken attestations, the CA
is notified and expected to revoke the
trust by invalidating the keys associated
with the compromised node.

WHAT’S NEXT FOR KEYLIME

The Keylime community is currently
working on packaging the project for

different platforms and hardening
the system by porting subsystems
from Python to Rust. Rust will provide
performance improvements and brings
extra security benefits due to its type
ownership model enforced by the
compiler

To learn more about Keylime

Interested in learning more or trying
Keylime out for yourself? Come check
out the community at https://keylime.
dev and explore the “Get Started With
Keylime” guide.

RESEARCH
QUARTERLY

V O L U M E 1 : 3

23

RIG LEADER’S PERSPECTIVE: ONBOARDING A NEW
UNIVERSITY
A Red Hat Research Interest Group (RIG) is a self-organizing team that drives support
for and participation in local technical research projects at academic and government
agencies or industrial groups.

Red Hat Research Interest Groups are,
in part, driven by the passion of their
members. Often, these passions revolve
around technology areas or social
concerns and, sometimes, a combination
of both. But, even with passion, pulling
together partnerships with local
universities is not without its challenges.

The MetroWest RIG covers Boston,
Massachusetts, a city with a high
concentration of universities, as well
as Boston’s suburbs, including the
New England technology belt where
Red Hat’s second largest engineering
office is located in Westford. While the
Westford office has many research
projects and internships to offer, it has
fewer candidates in the immediate area.
We did not have to look too far away,
however, to find excellent prospects in
the nearby University of Massachusetts
at Lowell (UMass Lowell), where a lot of
us studied and where Red Hat software
engineer Jeff Brown served as an
adjunct professor.

First problem solved--we had insight
and connections. We also believed
we had something of value to offer
to the university and to the students

themselves. But how could we motivate
them to collaborate with us? We hoped
that, although Red Hat is not as big
a fish as Google or Amazon, to the
people at UMass Lowell, we would still
be seen as a medium-sized fish. In the
end, what we found the real motivator
to be was the kind of partnership we
put together for them.

The next challenge was more difficult
to address—finding the right channels
to formalize the activities we planned to
do in regards to Women in Engineering
and Women in Science seminars and
teaching classes as a partnership with
commitment from both sides. Our
entry point was the UMass Lowell
Co-op Program office. Through their
Professional Co-op program, students
can now receive university credits and
earn a salary for their work experience at
Red Hat. Students who participate spend
6 months embedded in an engineering
team with the ability to make significant
contributions to open source projects. We
now have 20 openings for UMass Lowell
Co-op students.

After determining the channel to
connect with the students, we were

One of the projects
we sponsored was the

University of Massachusetts
Lowell Cyber Range, which

emphasized the importance
of security in open source
development. The cyber
range supports research,
teaching, and workforce

development, providing a
live, sandboxed environment
where students can build and
investigate security systems
from the ground up, safely
exploring security attacks
and defense techniques.

V O L U M E 1 : 3

RESEARCH
QUARTERLY

24

ready to tackle the final challenge—
building up collaborative research
projects. We talked to the heads of the
computer science and electrical and
computer engineering departments
about the kinds of opportunities we
could offer. Ideas included a semester’s
project, a senior project for undergrads,
a master thesis, and even a multi-year
PhD level project. Red Hatters came
up with the ideas for the projects and
dedicated at least half a day each week
to mentor students on campus or at the
Westford office.

Although we offer some stipends for the
larger projects, the relationship between
UMass Lowell and Red Hat is more about
the exchange of knowledge and creation
of opportunities for collaboration. The
relationship is mutually beneficial. For
example, the open source Linux project
upstream from Red Hat Enterprise Linux,
Fedora, is being experimented with and
tweaked for a range of small IoT devices
and facial recognition technologies by
students and, at the same time, they’re
working on something they’re calling
“Fedora for Academia.”

The openness of Red Hat’s approach
is very appealing for the university.

When they have a huge program with a
conventional technology company, it is
difficult to get papers out or advertise
the research. Someone working on a
radar system for a private company
might find it impossible to publish
a paper. But with Red Hat, it’s not a
problem. We are open and all the work
is open, so we don’t mind when they
publish their work.

UMass Lowell has a special appeal to
Red Hat, as well. Besides the expertise
in advanced networking and 5G that
their students bring, there’s a “vibe”
that’s reminiscent of the early days of
Red Hat. As a public university located
in a historical industrial center, it is often
overlooked and has to work hard to be
noticed or make an impact. Nobody
believed in Red Hat at first, or in its
commitment to open source software,
and we had to work hard to prove
ourselves. That’s a big reason why we
feel that the UMass Lowell and Red Hat
partnership is going to thrive.

AUTHOR

— Rashid Kahn, Sr. Director of software
engineering, Red Hat

...there’s a “vibe” that’s
reminiscent of the

early days of Red Hat.

RESEARCH
QUARTERLY

V O L U M E 1 : 3

25

THE ISOLATION OF TIME AND SPACE: USING A PARTITIONING
HYPERVISOR TO HOST VIRTUAL MACHINES
For certain classes of systems and applications, the latency, nondeterminism, and resource
sharing found in traditional hypervisor-based virtual systems are unacceptable. Examples of this
can be seen in machine control, applications guaranteeing a strict quality of service, real-time
systems, and power-constrained platforms. Each of these examples would encounter dynamics
in the traditional hypervisor approach that could cause the system or application to not operate
as intended. For these cases, making use of a virtualized system may still be desirable if different
components of a platform, or different applications run on that platform, need to make use of
different operating systems. However, it might be inefficient, or too power intensive, to use a
different computational platform for each operating system. Thus, another approach to virtual
systems must be used to mitigate these unacceptable dynamics. One such approach is the use of
a partitioning hypervisor.

Virtualization is a powerful
tool that enables the hosting
of multiple operating
systems, known as virtual
machines (VMs) or guests,
on the same physical
platform. This allows for the
functionality and services
of several, potentially
different, operating systems
to coexist and make use of
the same set of hardware
resources. These hardware
resources include processors,
memory, and I/O devices
such as network cards, USB
ports, and cameras. The
use cases of such a system
configuration are plentiful,
spanning across several
domains such a servers,
robotics, vehicles, general
development, and many

more. Virtualization provides
interesting dynamics that can
exploit the hardware features
of a physical platform.

Depending on how
virtualization is implemented
though, this exploitation
has a limit. Traditionally,
virtual systems make use of
a hypervisor to manage the
multiple operating systems’
usage of hardware. This
hypervisor, otherwise known
as a virtual machine manager,
or VMM, is a sort of resource
manager. It ensures that each
guest on a platform can make
use of the hardware that it
should be allowed to use,
that each guest gets a turn
to use shared resources, and
that data is returned to the

correct guest. A diagram of
an example system running
three VMs that makes use of
a hypervisor can be seen in
Figure 1.

In certain cases, a guest
can be made aware of
the hypervisor and that
it is running in a virtual

Figure 1. This figure shows an
example of a virtual system making
use of a traditional hypervisor. The
regions dedicated to each guest are
delineated by the dashed red lines.

V O L U M E 1 : 3

RESEARCH
QUARTERLY

26

environment, but in other
cases a guest operating
system will remain oblivious
to the hypervisor.

In the first case, a
mechanism known as
paravirtualization is used to
make the guests aware of
the hypervisors existence.
Paravirtualization, in essence,
is when an operating system
communicates with the
hypervisor directly to access
the hardware resources of
the platform on which they
are running. A guest’s device
drivers are altered to make
calls into the hypervisor to
perform tasks on its behalf,
instead of the guest trying to
directly access devices.

In the second case, when
each guest is unaware of the
hypervisor, a guest attempts
to make direct use of the
hardware. When this happens,
the instructions that the
guest attempts to execute
are trapped (redirected)
into the hypervisor. The
hypervisor then emulates
the guest’s usage of a device
and returns any data back to
the appropriate guest. While
these two dynamics are
useful in allowing each guest

to make use of the hardware
devices of the platform,
uses of the hypervisor are
complicated, expensive, and
nondeterministic.

When an operating
system running in a virtual
environment makes a request
to use a device, it is unaware
that other operating systems
might also be making use
of that device. Thus, the
OS might have to wait an
unexpected amount of time
in order to make use of that
device and to receive the
expected data. Additionally,
each round-trip into the
hypervisor (performing a
VM exit and a VM enter) can
cause a TLB flush.

The TLB (translation look-
aside buffer) is used to store
address translations, so that
a guest operating system
does not always need to re-
translate virtual addresses
into a physical address. Once
populated, the TLB reduces
memory access times and
improves the performance of
the system. Flushing the TLB
negates this performance
boost and thus with every
call into the hypervisor guest
performance suffers. Aside

from the nondeterminism
and high round-trip time,
hypervisors need to employ
additional control structures
to manage multiple guests’
usage of the hardware.

All of these factors have an
impact on both the spatial
and temporal performance
of the virtual systems. On
modern hardware, these
effects might not be
immediately noticeable;
modern platforms have
suitable processing speeds
and memory to handle
multiple guest requests
without significantly
degrading performance
(besides in extreme cases).

However, these systems
cannot guarantee dynamics
such as hard real-time
performance. In this context,
real-time means that a task
or event will finish within a
predetermined deadline and
can happen periodically, with
each occurrence finishing
within the expected time-
bound. Because of the
non-deterministic nature of
the hypervisor, and because
of the competition for shared
resources, a typical guest
operating system cannot

RESEARCH
QUARTERLY

V O L U M E 1 : 3

27

safely make the claim that
a certain task will finish in a
specifically predetermined
amount of time.

Hypervisors also have
limited device power
management. Because
the hypervisor manages
the hardware resources for
a set of guest operating
systems, if a certain device
is exposed to multiple
guest operating systems,
any one of those operating
systems could make use of
the device at essentially any
time. Thus, the hypervisor
cannot safely give a guest
OS the capability to power
off the device as another
guest might need to make
use of it (or could be in
the middle of using it!).
The hypervisor is given the
ability to power down and
idle devices, but it can not
be certain that one of the
guests will not need to make
use of it in the near future.

What, then, can be done to
preserve the advantages
of virtualization while still
obtaining the guarantees
a real-time system needs
to operate correctly? A
partitioning hypervisor is

one answer: it can create a
virtual system that mitigates
the described latency,
nondeterminism, and shared
resource dynamics found in
traditional hypervisors, while
preserving the flexibility
and low friction of VMs. A
partitioning hypervisor is a
form of virtual system which
partitions the hardware
resources of a physical
platform. It then individually
assigns these partitioned
resources to a set of guest
operating systems running
in the virtual system. Each
guest can then make
exclusive use of the set
of resources to which it is
assigned. Using this method,
each guest receives a
dedicated set of processors,
a dedicated region of
memory, and a dedicated
set of I/O devices. This
partitioning arrangement
enables each guest operating
system to be both temporally
and spatially isolated from
each other. A diagram of
an example system running
three VMs that makes use of
a partitioning hypervisor can
be seen in Figure 2.

Each guest operating system
in a partitioning-hypervisor-

based virtual system is set
up by a monitor. During
this set-up, the monitor
establishes the guest’s
memory region, ensures that
the guest only has access to
the set of devices to which
it is assigned (processors
and I/O devices), and can
handle certain faults of
the guest. After this set-
up, the monitor largely
removes itself from the
guest’s runtime operations.
This prevents costly VM
exits and enters and
allows each guest to make
direct use of the hardware
assigned to it without any
hypervisor intervention.

The monitor can also be
used to establish shared
memory communication
channels. These channels

Figure 2. This figure shows an
example of a virtual system making
use of a partitioning hypervisor. The
regions dedicated to each guest are
delineated by the dashed red lines.

V O L U M E 1 : 3

RESEARCH
QUARTERLY

28

allow guest operating systems to
communicate directly with each other
through shared memory, instead of
using some I/O device as if they were
running on separate physical platforms,
which is the traditional approach. This
allows for information generated in
one guest to be quickly disseminated
to, and consumed by, another guest
operating system. This shared
memory communication enables
interesting inter-guest dynamics to be
established.

As each guest can interact with the
hardware directly and is the exclusive
user of that hardware, it has the ability
to manage the power of the hardware
to which it is assigned. This allows
for per-guest power management of
devices. This per-guest management
of power allows a guest to suspend its
devices in periods of low activity, thus
consuming less power per-guest. In
this way, less power is consumed by the
platform as a whole.

The isolation between guests allows
for systems of different criticalities to
be run on the same platform. Criticality
indicates a system’s sensitivity to a
certain domain, such as safety, timing,
or security. Thus, a system with a high-
timing criticality might be running tasks
that are very sensitive to variations
in time, or a system with a high-
security criticality might store sensitive

information that should be shielded from
external readers.

Certain guests might have a high
sensitivity to multiple domains, with
an example of such a system being
an autonomous vehicle. A vehicle has
stringent timing dynamics, as the delay
in the sending of a command to a wheel
or propeller could cause disastrous
consequences. Security-wise, it would
be undesirable for an external attacker
to gain control over the vehicle as
unwanted commands could then be sent
and processed by the vehicle. Safety-
wise, it is important for the vehicle to
ensure that it is fault-tolerant and will
not perform any unwanted behaviour
that might harm the individuals within or
outside the vehicle. Using a partitioning
hypervisor, this vehicle might host a
guest to provide the necessary safety,
security, and timing required to control
the vehicle, and also host a separate,
isolated guest to communicate
with external sources or to perform
autonomous computation that should
not interfere with, but inform, the critical
vehicle control.

Aside from vehicles and other IoT
devices, the isolation that partitioning
hypervisors provides is useful in a server
and data-center context. Allowing each
guest to manage its own resources
enables each one to optimize its
utilization of the hardware resources to

...the isolation that
partitioning hypervisors

provides is useful in a
server and data-center

context.

RESEARCH
QUARTERLY

V O L U M E 1 : 3

29

which it is assigned. This optimization,
while beneficial for power consumption,
is also beneficial economically, as data
centers would require less overall power.

In data centers, having mixed criticality
systems executing on the same physical
medium allows for the creation of new
and interesting services. For example,
users of the data center might be
able to specify which I/O devices they
would like to make use of, how many
processors they require, and how much
memory they should be allocated.
Then, the data center would find a
physical platform that can guarantee
dedicated access to those resources
and gives the user exclusive control of
those resources. The user’s processes
might be executing on a machine with
several other guest operating systems
operating on it, but through the
isolation mechanisms of a partitioning
hypervisor, the guest would not
encounter any interference from them.
This dynamic would be very valuable
to edge devices, or applications
that require strict quality of service
guarantees.

Currently, our research is exploring
how to make more efficient usage of,
and build applications and services for,
the environments that a partitioning
hypervisor provides. We are also
investigating how to better equip Linux
with these partitioning features. This

will give Linux the ability to be used
more optimally in a wider variety of
domains and will enable partitioning
hypervisors to become more
accessible. This accessibility provides
an opportunity for a wider audience
to explore the potential of partitioning
hypervisors.

Linux is a well-known and widely used
system, so building these partitioning
features into the Linux kernel will not
only make them easy to adopt, but will
also allow individuals to use Linux to
explore their hardware in interesting
ways. For example, there are several
SBCs (single board computers),
such as the UP Squared, that have
the hardware one would expect on
commodity platforms, but also include
GPIOs (general purpose I/O pins).

In some cases, such as Intel’s Aero
Board, the platforms also include
gyroscopes and IMUs. Using
partitioning techniques, a core,
some memory, and the GPIOs could
be isolated and used to emulate
something like an Arduino, which
can be hosted on the same physical
platform as the platform where the
Arduino development is occurring.
Shared memory channels could then
be used to communicate data from the
guest where development is occurring
to the Arduino-like guest, instead of
through a serial link or some other

V O L U M E 1 : 3

RESEARCH
QUARTERLY

30

communication mechanism. This would
increase the bandwidth and flow rate
of the data and reduces both the
hardware and software complexity of
the communication. An example of a
potential system configuration for such
a system can be seen in Figure 3.

With these partitioning features, we can
investigate the limits and possibilities
of hardware, and discover and develop
configurations and protocols to aid in
endeavours such as resource and power
management, mixed criticality system
interactions, and autonomous vehicle
dynamics. These features would also
provide the flexibility to explore how
to allow artificial devices to interact
more efficiently with the physical world.

These endeavours and explorations
are immediately useful and will become
increasingly more prevalent, especially
as bigger and harder challenges
are tackled, such as creating fully
autonomous vehicles, increasing the
efficiency and capabilities of our global
computing infrastructures, and exploring
the universe.

I would like to thank my advisor,
Professor Richard West, and Bandan
Das for their guidance, mentorship, and
insights.

AUTHOR

— Craig Einstein. Ph.D. Student

CRAIG EINSTEIN is a computer science
Ph.D. student at Boston University
under the advisement of Professor
Richard West. Prior to starting his Ph.D.
he received his B.A. in Geophysics
and Planetary Sciences in 2016 from
Boston University. He researches
computer systems with an emphasis on
real-time and mixed criticality systems
and autonomous control. Upon the
completion of his doctorate, he would like
to work in the space industry developing
systems to make space travel more
efficient and accessible.

Figure 3. This figure shows an overview of the hardware and software configuration of an example use-case
of a partitioning hypervisor. The regions dedicated to each guest are delineated by the dashed red line.

RESEARCH
QUARTERLY

V O L U M E 1 : 3

31

RESEARCH PROJECTS UPDATE
Faculty, PhD students, and U.S. Red Hat associates in the Northeast U.S. are collaborating actively on the following research
projects. This quarter we highlight collaborative projects at Boston University (BU), Northeastern University, Harvard University,
and the University of Massachusetts. We will highlight research colloborations from other parts of the world in future editions of the
Research Quarterly. Contact academic@redhat.com from more information on any project.

Academic investigators Red Hat investigators Project title
Ali Raza (araza) Ulrich Drepper, Larry Woodman, Richard

Jones
Unikernel Linux

Unikernels are small, lightweight, single address space operating systems with the kernel included as a library within the application. Because
unikernels run a single application, there is no sharing or competition for resources among different applications, improving performance and
security. Unikernels have thus far seen limited production deployment. This project aims to turn the Linux kernel into a unikernel with the
following characteristics: 1) are easily compiled for any application, 2) use battle-tested, production Linux and glibc code, 3) allow the entire
upstream Linux developer community to maintain and develop the code, and 4) provide applications normally running vanilla Linux to benefit
from unikernel performance and security advantages. The paper Unikernels: The Next Stage of Linux’s Dominance was presented at HotOS
XVII, The 17th Workshop on Hot Topics in Operating Systems, 2019.

Video presentation

https://www.youtube.com/watch?v=ltvXeolVnVE&feature=youtu.be&t=3h57m40s

Academic investigators Red Hat investigators Project title
Tommy Unger, Han Dong, Yara Awad, Prof.
Jonathan Appavoo, Prof. Amos Waterland,
Prof. Orran Kreiger

Ulrich Drepper An optimizing operating system: Accellerating
execution with speculation

To optimize performance, Automatically Scalable Computation (ASC), a Harvard/BU collaboration attempts to auto-parallelize single threaded
workloads, reducing any new effort required from programmers to achieve wall clock speedup. SEUSS takes a different approach by splicing a
custom operating system into the backend of a high throughput distributed serverless platform, Apache OpenWhisk. SEUSS uses an alternative
isolation mechanism to containers, called Library Operating Systems (LibOSs). LibOSs enable a lightweight snapshotting technique. Snapshotting
LibOSs enables two counterintuitive results: 1) although LibOSs inherently replicate system state, SEUSS can cache multiplicatively more
functions on a node; 2) although LibOSs can suffer bad “first run” performance, SEUSS is able to reduce cold start times by orders of magnitude.
By increasing sharing and decreasing deterministic bringup, SEUSS radically reduces the amount of hardware and cycles required to run a FaaS
platform.

Video presentation

https://www.youtube.com/watch?v=h1rpSeaTecQ

Parul Sohal, Prof. Renato Mancuso, Prof. Orran
Kreiger

Ulrich Drepper Removing memory as a noise factor

V O L U M E 1 : 3

RESEARCH
QUARTERLY

32

Academic investigators Red Hat investigators Project title
Memory bandwidth is increasingly the bottleneck in modern systems and a resource that, until today, we could not schedule. This means that,
depending on what else is running on a server, performance may be highly unpredictable, impacting the 99% tail latency, which is increasingly
important in modern distributed systems. Moreover, the increasing importance of high-performance computing applications, such as machine
learning and real-time systems, demands more deterministic performance, even in shared environments. Alternatively, many environments
resist running more than one workload on a server, reducing system utilization. Recent processors have started introducing the first mechanism
to monitor and control memory bandwidth. Can we use these mechanisms to enable machines to be fully used while ensuring that primary
workloads have deterministic performance? This project presents early results from using Intel’s Resource Director Technology and some
insight into this new hardware support. The project also examines an algorithm using these tools to provide deterministic performance on
different workloads.

Video presentation

https://www.youtube.com/watch?v=i8JnQ7VKkEM

Ali Raza (alraza), Prof. Orran Kreiger "Performance management for serverless
computing

Academic investigators Red Hat investigators Project title
Serverless computing provides developers the freedom to build and deploy applications without worrying about infrastructure. Resources
(memory, cpu, location) specified for a function can affect performance, as well as cost, of a serverless platform, so configuring these
resources properly is critical to both performance and cost. COSE uses a statistical learning approach to dynamically adapt the configurations
of serverless functions while meeting QoS/SLA metrics and lowering the cost of cloud usage. This project evaluates COSE on a commercial
serverless platform (AWS Lambda) as well as in multiple simulated scenarios, proving its efficacy.

Video presentation

https://www.youtube.com/watch?v=7CgBJnNebrQ

Academic investigators Red Hat investigators Project title
Sahil Tikale, Ali Raza (alraza), Leo McGann,
Danni Shi, Filip Vukelic, Jacob Daitzman, Prof.
Orran Kreiger

Langdon White, Lars Kellog-Stedman, Tzu-
Mainn Chen, Gagan Kumar

FLOCX: First Layer of the Open Cloud
eXchange

FLOCX provides a marketplace for trading physical servers among co-located pools of hardware where each pool is owned and managed by
independent organizations. Using FLOCX, organizations can rent nodes from their co-located neighbors in times of high demand and offer their
own resources at a suitable price when others experience high demand. An implementation of FLOCX (https://cci-moc.github.io/flocx/) is
running in the Massachusetts Open Cloud environment (https://massopen.cloud).

Video presentation

https://youtu.be/goDpCRLhCao

RESEARCH
QUARTERLY

V O L U M E 1 : 3

33

Academic investigators Red Hat investigators Project title
Han Dong, James Cadden, Yara Awad, Prof.
Orran Kreiger, Prof. Jonathan Appavoo

Sanjay Arora Automatic Configuration of Complex
Hardware

A modern network interface card (NIC), such as the Intel X520 10 GbE, is complex, with hardware registers that control every aspect of the
NIC’s operation from device initialization to dynamic runtime configuration. The Intel X520 datasheet documents over 5600 registers; yet
only about 1890 are initialized by a modern Linux kernal. It is thus unclear what the performance impact of tuning these registers on a per
application basis will be. In this project, we pursue three goals towards this understanding: 1) identify, via a set of microbenchmarks, application
characteristics that will illuminate mappings between hardware register values and their corresponding microbenchmark performance impact,
2) use these mappings to frame NIC configuration as a set of learning problems such that an automated system can recommend hardware
settings corresponding to each network application, and 3) introduce either new dynamic or application instrumented policy into the device
driver in order to better attune dynamic hardware configuration to application runtime behavior.

Video presentation

https://www.youtube.com/watch?v=8UQTlNQTKtQ

Academic investigators Red Hat investigators Project title
Emine Ugur Kaynar, Mania Abdi, Prof. Peter
Desnoyers, Prof. Orran Kreiger

Matt Benjamin, Brett Niver, Ali Maredia, Mark
Kogan

D3N: A multi-layer cache for data centers

Current caching methods for improving the performance of big-data jobs assume abundant (e.g., full bi-section) bandwidth to cache
nodes. However, many enterprise data centers and co-location facilities exhibit significant network imbalances due to over-subscription and
incremental network upgrades. This project designs and develops D3N, a novel multi-layer cooperative caching architecture that mitigates
network imbalances by caching data on the access side of each layer of hierarchical network topology. A prototype implementation, which
incorporates a two-layer cache, is highly-performant (can read cached data at 5GB/s, the maximum speed of our SSDs) and significantly
improves the performance of big-data jobs. To fully utilize bandwidth within each layer under dynamic conditions, we present an algorithm that
adaptively adjusts cache sizes of each layer based on observed workload patterns and network congestion.

Video presentation

https://www.youtube.com/watch?v=troLFFM6btc

Academic investigators Red Hat investigators Project title
Ahmed Sanaullah, Prof. Martin Herbordt, Prof.
Orran Kreiger

Ulrich Drepper FPGAs in large-scale computer systems

Secure Multiparty Computation (MPC) is a cryptographic primitive that allows several parties to jointly and privately compute desired functions
over secret data. This project developed and deployed JIFF: an extensible general-purpose MPC framework capable of running on web and
mobile stacks, showing how developments in distributed systems, web development, and the SMDI paradigm can inform MPC constructs
and implementation. JIFF includes a JavaScript library for building applications that rely on secure MPC, with the ability to be run in the
browser, on mobile phones, or via Node.js. JIFF is designed so that developers need not be familiar with MPC techniques or know the details
of cryptographic protocols in order to build secure applications. This project used JIFF to implement several MPC applications, including a
successfully deployed real-world study on economic opportunity for minority-owned businesses in the Boston area and a service for efficient
privacy-preserving route recommendation.

Video presentation

https://www.youtube.com/watch?v=wwwtyIWrTZ0

V O L U M E 1 : 3

RESEARCH
QUARTERLY

34

Academic investigators Red Hat investigators Project title
Craig Einstein, Prof. Richard West Bandan Das A partitioning hypervisor for latency-sensitive

workloads

Quest-V is a separation kernel that partitions services of different criticality levels across separate virtual machines or sandboxes. Each sandbox
encapsulates a subset of machine physical resources that it manages without requiring intervention from a hypervisor. In Quest-V, a hypervisor
is only needed to bootstrap the system, recover from certain faults, and establish communication channels between sandboxes. The machine
physical resources that are given to each sandbox include one or more processing cores, a region of machine physical memory, and a subset
of I/O devices. Current Quest-V research is exploring how to manage hardware resources to allow for a power and latency aware system.
The partitioning of virtual machines (VMs) onto separate machine resources offers an opportunity for per-sandbox power management.
Thus, in idle periods, a sandbox may place its hardware into a suspend state, reducing the power utilization of the sandbox. Depending on the
latency and power demands of the sandbox, the sandboxes can be suspended to RAM or to disk. The sandbox can then resume normal power
consumption when appropriate. Sandboxes also have the ability to be migrated across hosts to balance system resources and reduce power
consumption. This allows for entire machines to be placed into low power states upon the migration of all sandboxes away from those machines.
Quest-V is unlike a normal hypervisor in that it allows VMs to suspend and resume individual hardware resources without interfering with the
operation of other VMs on the same physical platform. This allows for the creation of systems that are both power and latency aware.

Academic investigators Red Hat investigators Project title
Xiaojing Zhu Sanjay Arora Code2Vec: Learning code representations

Code2Vec is a neural model for representing snippets of code as fixed-length continuous vectors (code embeddings) that encode some
semantic similarities , which enables the application of neural techniques to a wide-range of programming-languages tasks. Embeddings can
be applied to performance measurement of program execution in CPU and smarter code completion and finding similar functions in analyzed
code. This project analyzed semantic similarities of learned code embeddings parsed from open source python libraries such as numpy, pandas
and sklearn. Still in progress is another analysis that learns code embeddings in a supervised manner with the C++ codebase for performance
measurement of program execution in CPU with performance counters (e.g. LLC misses to L1 requests, Cycles Per Instruction).

RESEARCH
QUARTERLY

V O L U M E 1 : 3

35

facebook.com/redhatinc

@redhatnews

linkedin.com/company/red-hat

ABOUT RED HAT

Red Hat is the world’s leading provider of open
source software solutions, using a community-
powered approach to provide reliable and high-
performing cloud, Linux, middleware, storage,
and virtualization technologies. Red Hat also
offers award-winning support, training, and
consulting services. As a connective hub in a
global network of enterprises, partners, and
open source communities, Red Hat helps create
relevant, innovative technologies that liberate
resources for growth and prepare customers for
the future of IT.

NORTH AMERICA
1 888 REDHAT1

EUROPE, MIDDLE EAST,
AND AFRICA
00800 7334 2835
europe@redhat.com

ASIA PACIFIC
+65 6490 4200
apac@redhat.com

LATIN AMERICA
+54 11 4329 7300
info-latam@redhat.com

Feedback, comments or ideas?
Is there something you’d like to read about?
Drop us a line: academic@redhat.com

Red Hat Research Quarterly delivered to your digital
or physical mailbox?

Yes! Subscribe at research.redhat.com/quarterly.

V O L U M E 1 : 3

RESEARCH
QUARTERLY

November 2019 – Volume 1: Issue 3

RESEARCH
QUARTERLY

V O L U M E 1 : 3

COMING IN FEBRUARY:
• Real-time complex event processing from streaming

data
• Project Vega: Adding rotation to stellar computational

models
• Interview with Red Hat’s Mark Little on Quarkus and all

things Java

Bringing great research ideas into open source communities

