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Overclocking



CPU Operating Speed User Define
— External Clock 148 MHz

— Multiplier Factor x16.5

AGP Fregquency 72 MHz
CPU FSB/DRAM ratio Auto

CPU Interface Enabled
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Dynamic Voltage and Frequency Scaling
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Memory Mapped Registers...

Memory-mapped Registers

Hardware

Pillaging and plundering SGX with Software-based Fault Injection Attacks



CLKscrew

S\

Adrian Tang et al. "CLKSCREW: exposing the perils of security-
oblivious energy management”
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A new class of
fault attacks







Memory Mapped Registers...

Memory-mapped Registers

Hardware
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CLKscrew attack

add.w (a@)+,d1
cmp.1 20,do

bcc.s loop

movea.l #$18E,al
cmp.w (al),d1

bne.w  WrongChecksum
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Memory Mapped Registers

Frequency & Voltage
Regulators

Trustzone Normal
trusted code untrusted code
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CLKscrew - Summary

e Infer secret AES key that was stored within Trustzone
e Trick Trustzone into loading a self-signed app

Pillaging and plundering SGX with Software-based Fault Injection Attacks






What about Intel?

®

inte
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Memory Mapped Registers...

Memory-mapped Registers

Hardware
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Undervolting Intel CPUs

.M‘msr 0x150
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Undervolting Intel CPUs

63 42 40 36 32 21 0

1 plane idx 1 riw offset

0=CPUcore <« write-enable €«

1=GPU

2 = cache (=core) .

o~ anding T onis of 1024 ) €
4 = analog I/0 (in units o )
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|dle voltage — Intel(R) Core(TM) i3-7100U CPU
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bagger> I



|dle and crash voltages — Intel(R) Core(TM) i3-7100U CPU
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Will it fault?

correct = 7 * 3

my value = 7 *

// Start undervolting

while ( my value == correct )
{

my value = 7 * 3
}

// Can we ever get here?
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Will it fault?

uint 64 t multiplier = 0x1122334455667788;
uint 64 t correct = Oxdeadbeef*multiplier;

uint 64 t var = Oxdeadbeef*multiplier;

// start undervolting

while ( var == correct )
{

var = 0Oxdeadbeef * multiplier;
}

// stop undervolting
// Can we ever get here?
uint 64 t flipped bits = var " correct;
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bagger> I



|dle, error and crash voltages — Intel(R) Core(TM) i3-7100U CPU
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Error and crash voltages — Intel(R) Core(TM) i3-7100U CPU
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R Carmen Crincoli, but Fhqwhgads v
£ @CarmenCrincoli

"Plundervolt” sure does have a catchy name and logo for
an exploit that... <checks notes> ...requires you to be
running as root already.

1:59 AM - Dec 11, 2019 - Twitter Web App



Let's meet
SGX



Application

Untrusted part Trusted part
Create Enclave
Trusted
| O Function
Call Trulsted “I
Function
\ 4
Return
\ 4

Operating System
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Physical Memory

Encrypted
Memory Memory
Encryption
Engine
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We can bypass the SGX integrity checks!
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Larry Osterman
@osterman
' @N\T6572A

Replying 10
GX assumes that the attacker

e also has phyS\ca\ control

hasrootaccess
), this is actua\\y a bigger deal than you

over the hardware),
make it out to be.



A B C D E

1 Operand 1 ([v| Operand2 |1 XOr answer ~| undervolting~v| temperature€v]
5525 0x9e2d4a 0x0024 ffffffffe0000000 -272 +36.0C
5526 0x9e2d51 0x0024 fffff£f£ffe0000000 -272 +36.0C
5527 0x9eb497 0x0024 fEfffff£ffe0000000 =272 +37.0C
5528 0x9eb4d9e 0x0024 fffff£f£ffe0000000 =272 +36.0C
5529 0x9f3bf2 0x0024 ffffff£ffe0000000 =272 +37.0C
5530 0x9f3cl5 0x0024 ffffff£ffe0000000 -272 +37.0C
5531 0x9f3c23 0x0024 ffffff£ffe0000000 =272 +37.0C
5532 0x9f3c2a 0x0024 ffffff£ffe0000000 =272 +37.0C
5533 0x9f3c5b 0x0024 ffffff£ffe0000000 =272 +37.0C
5534 O0Oxa04b2d 0x0024 0000000002000000 -272 +37.0C
5535 Oxa0d2f1l 0x0024 0000000002000000 =272 +37.0C
5536 0xa0d306 0x0024 0000000002000000 -272 +37.0C
5537 0xa269cd 0x0024 0000000002000000 -272 +37.0C
5538 O0xa269fe 0x0024 0000000002000000 =272 +36.0C
5539 Oxa6lele 0x0024 0000000010000000 -272 +37.0C
5540 Oxa6le38 0x0024 0000000010000000 -272 +37.0C
5541 Oxa6le3f 0x0024 0000000010000000 -272 X +36.0C
5542 Oxa6ledb 0x0024 0000000010000000 =272 +36.0C
5543 0xa72d34 0x0024 0000000010000000 -272 +36.0C
5544 Oxa72d5e 0x0024 0000000010000000 =272 +36.0C
5545 Oxa8c3ae 0x0024 0000000002000000 -272 +37.0C
5546 0xa94b25 0x0024 0000000001000000 -272 +37.0C
5547 0xa9d2bl 0x0024 0000000001000000 -272 +37.0C
5548 Oxaa59fe 0x0024 0000000001000000 -272 +37.0C
5549 Oxaa5alc 0x0024 0000000001000000 =272 +37.0C
5550 Oxaab5al3 0x0024 0000000001000000 -272 +37.0C
5551 Oxaa5a2l 0x0024 0000000001000000 -272 +37.0C

Faulted Multiplications +



Multiplication faults

lst operand * 2" operand = result

/ Sma#est l

Smallest 0x1 Smallest

0x89af 0%200000

0x80000 * 0Ox4
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Multiplication faults — the order matters

lst operand * 2" operand = result

0x80000 * 0x4 = 0x200000 \/

O0x4 * 0x80000 = 0x200000 X
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Multiplication faults

Operand 1 Operand 2 Flipped Bits

Oxacffl3 0x00ee 0x000000003e000000
Oxa7fccc 0x0335 0x0000000010000000
Ox9fff4f 0x00b2 0x0000000020000000
Ox2bffcl 0x0008 0x0000000001000000
0x0b7a04 0x0087 0x0000000004000000
0x080004 0x0008 OxEfffff££££0000000
0x0022b2 Oxbc3a 0x0000000000000700

Pillaging and plundering SGX with Software-based Fault Injection Attacks



You promised
plundering...




RSA Basics

o Public Key Cryptography

e Untrusted channel
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RSA decryption

// Start undervolting

uint 8 t rsa dec ecall(int iterations)

{
//Waitforfirstfault
trigger fault(iterations);
//Actualdecryption
ipps RSA Decrypt(ct,dec,pPrv,scratchBuffer);
}

// Stop undervolting
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bagger> dog Enclave/encll



A And the
pillaging...?




AES-NI (New Instructions)

Instruction Description

AESENC Perform one round of an AES ep-
AESENCLAST

AESDEC

Inverse Mix Columns

Carryless multiply (CLMUL)
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AES New Instructions - inside SGX

// Start undervolting

do

{
plaintext= <randomlygenerated>;
result 1=aes 128 encryption(plaintext);
result 2=aes 128 encryption(plaintext);

} while(resultl == result?2)

// Stop undervolting
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bagger> sudo ./aes-encrypt 100000 -262






But what about memory corruption?

struct foo_t *foo = &arr[offset];

foo->foo = enclave secret;
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But what about memory corruption?

foo = arr + offset Ox24
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Creating enclave...

==== Victim Enclave ====
[pt.c] /dev/sgx-step opened!
Enclave Base: 0x7f001a000000

Voltage
0.584V

Undervolting
-235mV



Summary

e A new type of attack against Intel
e Breaks the integrity of SGX
e Within SGX
e Retrieve keys using AES-N|
e Retrieve RSA key

e Induce memory corruption in bug free

e Make enclave write secrets to untrusted memory
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Voltage
0.594V

Undervolting
-240mv
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