Plllaging and plundering
SGX with Software-based

PLUNDER Fault Injection Attacks
VO T

Kit Murdock

Plllaging and plundering
SGX with Software-based

PLUNDER Fault Injection Attacks
VO T

Kit Murdock

Overclocking

CPU Operating Speed User Define
— External Clock 148 MHz

— Multiplier Factor x16.5

AGP Fregquency 72 MHz
CPU FSB/DRAM ratio Auto

CPU Interface Enabled

Pillaging and plundering SGX with Software-based Fault Injection Attacks

Image attribution: Rico Shen

Pillaging and plundering SGX with Software-based Fault Injection Attacks

https://commons.wikimedia.org/wiki/File:2007TaipeiITMonth_IntelOCLiveTest_Overclocking-6.jpg

Image attribution: Charles Gaudette

Pillaging and plundering SGX with Software-based Fault Injection Attacks

https://en.wikipedia.org/wiki/Overclocking

B Clock Modulation 1
). pset Modulation 100.0% I

I Set Muttiplier

lad
I Disable Turbo
I B0 PROCHOT
I Task Bar

M Log File

PM features

Core clock

Throttle

Core temp.

Multiplier (FID)
Req.Vcore [VID)

CPU model
AMD

CPU core
Manct

2010.30
2010.30
51.2°

Current
10.0%

1.200%

[cPuo crui

Code Name

Package

Specification

Ext. Family F
Instructions | MMX (+), 3DNow! (+)

Bus Speed
HT Link

Selection Jod

Name AMD Optero
Toledo

Sockef]

Technology S0 nm Vo

Dual Core AMO

Famity F Mode

Ext. Modg

Clocks (Core#0)
Core Speed
Muttiplier x10.0

2651.4 MHz

265.1 MHz
795.4 MHz

Save diagnostic info

CPU | cache | Mainboard | Memory | SPD | About |

FX

VISION

AMDU

 Status Monitor
CPU Status
GPU Status
Board Status
Logging

v Performance Control

Clock/Voltage
Memory

BEMP

Fan Control

Benchmark
Stability Test
Auto Clock

v System Information
Basic
Detailed
Diagram

AMD OverDrive

[¥] Enable Smart Profileq

© Custom Rules

CHl" il

Profile Information
Profile
Core 0 Multiplier
Core 4 Multiplier
HT ref. Clock
CPU VID
CPU VDDC

Memory Clock

CPU-Tweaker 2.0 mm @‘_i_,l

CPU
Model AMD Phenom(tm) Il X4 965 Processor CPUID | F43 Rev. | C3
Socket ANM3 (941) Tech.| 45nm Cores/Threads | 4/4 VCore | 0.000V

MotherBoard
Vendor
Chipset

M4ABSTD-M/USB3
12/10/2010

ASUSTeK Computer INC. Model
AMD 785GX BIOS version 0902 Date

Memory
Type DDR3 Manufacturer Part Nb.

Size 2 x 4096 Speed 1000 (63Mhz) @ 7.5.5.17- Chan.|Unganged

System Frequency
BCLK .o 200.9 MHz
803.6 MHz

Timings

Channels| A v| VDimm| 0.000V
CAS# Latency (CL) ...ccooevcenenne

RAS# to CAS# Delay (tRCD)

RAS# Precharge (tRP)]

Precharge Delay (tRAS)

Command Rate (CR) iT v

2008.9 MHz

2008.9 MHz

669.6 MHz

I o I

reg.txt | SubTimA|

Core 1 Multiplier

Core 2 Multiplier

Core 3 Multiplier

Core 5 Multiplier

PCle® Speed 1GP Speed SidePort Speed
NB VID Mem VDDQ Mem VIT
NB Core Voltage NB PCle® Voltage CPU HT Voltage

RAS to CAS Delay Command Rate Row Cyde Time

[OK H Cancel H Apply H Discard J

Pillaging and plundering SGX with Software-based Fault Injection Attacks

Dynamic Voltage and Frequency Scaling

5 ;;-‘:":

P 7T e
By —

(== =

%' Resilient and reliable
Very fast responses High—assurance and
lOow running costs

Pillaging and plundering SGX with Software-based Fault Injection Attacks

Memory Mapped Registers...

Memory-mapped Registers

Hardware

Pillaging and plundering SGX with Software-based Fault Injection Attacks

CLKscrew

S\

Adrian Tang et al. "CLKSCREW: exposing the perils of security-
oblivious energy management”

Pillaging and plundering SGX with Software-based Fault Injection Attacks

A new class of
fault attacks

Memory Mapped Registers...

Memory-mapped Registers

Hardware

Pillaging and plundering SGX with Software-based Fault Injection Attacks

CLKscrew attack

add.w (a@)+,d1
cmp.1 20,do

bcc.s loop

movea.l #$18E,al
cmp.w (al),d1

bne.w WrongChecksum

Pillaging and plundering SGX with Software-based Fault Injection Attacks

Memory Mapped Registers

Frequency & Voltage
Regulators

Trustzone Normal
trusted code untrusted code

Pillaging and plundering SGX with Software-based Fault Injection Attacks

CLKscrew - Summary

e Infer secret AES key that was stored within Trustzone
e Trick Trustzone into loading a self-signed app

Pillaging and plundering SGX with Software-based Fault Injection Attacks

What about Intel?

®

inte

Pillaging and plundering SGX with Software-based Fault Injection Attacks

Memory Mapped Registers...

Memory-mapped Registers

Hardware

Pillaging and plundering SGX with Software-based Fault Injection Attacks

Undervolting Intel CPUs

.M‘msr 0x150

Pillaging and plundering SGX with Software-based Fault Injection Attacks

Undervolting Intel CPUs

63 42 40 36 32 21 0

1 plane idx 1 riw offset

0=CPUcore <« write-enable €«

1=GPU

2 = cache (=core) .

o~ anding T onis of 1024) €
4 = analog I/0 (in units o)

Pillaging and plundering SGX with Software-based Fault Injection Attacks

|dle voltage — Intel(R) Core(TM) i3-7100U CPU

1.1 | | |

10 —Idle L

)

Voltage (V)
O
oo

0.6

0.5
c4 06 08 10 12 14 16 18 20 22 24

Frequency (GHz)
Pillaging and plundering SGX with Software-based Fault Injection Attacks

bagger> I

|dle and crash voltages — Intel(R) Core(TM) i3-7100U CPU

1.1 | | |

10 lde —Crash //
//
S 0.8 __ _—
© /
S —
= 0.7 "
/
0 —//
5

c4 06 08 10 12 14 16 18 20 22 24

Frequency (GHz)
Pillaging and plundering SGX with Software-based Fault Injection Attacks

Will it fault?

correct = 7 * 3

my value = 7 *

// Start undervolting

while (my value == correct)
{

my value = 7 * 3
}

// Can we ever get here?

Pillaging and plundering SGX with Software-based Fault Injection Attacks

Will it fault?

uint 64 t multiplier = 0x1122334455667788;
uint 64 t correct = Oxdeadbeef*multiplier;

uint 64 t var = Oxdeadbeef*multiplier;

// start undervolting

while (var == correct)
{

var = 0Oxdeadbeef * multiplier;
}

// stop undervolting
// Can we ever get here?
uint 64 t flipped bits = var " correct;

Pillaging and plundering SGX with Software-based Fault Injection Attacks

bagger> I

|dle, error and crash voltages — Intel(R) Core(TM) i3-7100U CPU

1.1 | | | |

1.0 ldle ——Errors ==Crash //
//
> 09 —| /
% 0.8 — /
;) 0.7 //

c4 06 08 10 12 14 16 18 20 22 24

Frequency (GHz)
Pillaging and plundering SGX with Software-based Fault Injection Attacks

Error and crash voltages — Intel(R) Core(TM) i3-7100U CPU

0.70 | |

—Ermors —Crash /
0.65 /

_——
e

Voltage (V)
-
@)}
O

0.55 //
0.50
0.7 0.9 1.1 1.3 1.5 1.7
Frequency (GHz)

Pillaging and plundering SGX with Software-based Fault Injection Attacks

R Carmen Crincoli, but Fhqwhgads v
£ @CarmenCrincoli

"Plundervolt” sure does have a catchy name and logo for
an exploit that... <checks notes> ...requires you to be
running as root already.

1:59 AM - Dec 11, 2019 - Twitter Web App

Let's meet
SGX

Application

Untrusted part Trusted part
Create Enclave
Trusted
| O Function
Call Trulsted “I
Function
\ 4
Return
\ 4

Operating System

Pillaging and plundering SGX with Software-based Fault Injection Attacks

Physical Memory

Encrypted
Memory Memory
Encryption
Engine

Pillaging and plundering SGX with Software-based Fault Injection Attacks

We can bypass the SGX integrity checks!

Pillaging and plundering SGX with Software-based Fault Injection Attacks

Larry Osterman
@osterman
' @N\T6572A

Replying 10
GX assumes that the attacker

e also has phyS\ca\ control

hasrootaccess
), this is actua\\y a bigger deal than you

over the hardware),
make it out to be.

A B C D E

1 Operand 1 ([v| Operand2 |1 XOr answer ~| undervolting~v| temperature€v]
5525 0x9e2d4a 0x0024 ffffffffe0000000 -272 +36.0C
5526 0x9e2d51 0x0024 fffff£f£ffe0000000 -272 +36.0C
5527 0x9eb497 0x0024 fEfffff£ffe0000000 =272 +37.0C
5528 0x9eb4d9e 0x0024 fffff£f£ffe0000000 =272 +36.0C
5529 0x9f3bf2 0x0024 ffffff£ffe0000000 =272 +37.0C
5530 0x9f3cl5 0x0024 ffffff£ffe0000000 -272 +37.0C
5531 0x9f3c23 0x0024 ffffff£ffe0000000 =272 +37.0C
5532 0x9f3c2a 0x0024 ffffff£ffe0000000 =272 +37.0C
5533 0x9f3c5b 0x0024 ffffff£ffe0000000 =272 +37.0C
5534 O0Oxa04b2d 0x0024 0000000002000000 -272 +37.0C
5535 Oxa0d2f1l 0x0024 0000000002000000 =272 +37.0C
5536 0xa0d306 0x0024 0000000002000000 -272 +37.0C
5537 0xa269cd 0x0024 0000000002000000 -272 +37.0C
5538 O0xa269fe 0x0024 0000000002000000 =272 +36.0C
5539 Oxa6lele 0x0024 0000000010000000 -272 +37.0C
5540 Oxa6le38 0x0024 0000000010000000 -272 +37.0C
5541 Oxa6le3f 0x0024 0000000010000000 -272 X +36.0C
5542 Oxa6ledb 0x0024 0000000010000000 =272 +36.0C
5543 0xa72d34 0x0024 0000000010000000 -272 +36.0C
5544 Oxa72d5e 0x0024 0000000010000000 =272 +36.0C
5545 Oxa8c3ae 0x0024 0000000002000000 -272 +37.0C
5546 0xa94b25 0x0024 0000000001000000 -272 +37.0C
5547 0xa9d2bl 0x0024 0000000001000000 -272 +37.0C
5548 Oxaa59fe 0x0024 0000000001000000 -272 +37.0C
5549 Oxaa5alc 0x0024 0000000001000000 =272 +37.0C
5550 Oxaab5al3 0x0024 0000000001000000 -272 +37.0C
5551 Oxaa5a2l 0x0024 0000000001000000 -272 +37.0C

Faulted Multiplications +

Multiplication faults

lst operand * 2" operand = result

/ Sma#est l

Smallest 0x1 Smallest

0x89af 0%200000

0x80000 * 0Ox4

Pillaging and plundering SGX with Software-based Fault Injection Attacks

Multiplication faults — the order matters

lst operand * 2" operand = result

0x80000 * 0x4 = 0x200000 \/

O0x4 * 0x80000 = 0x200000 X

Pillaging and plundering SGX with Software-based Fault Injection Attacks

Multiplication faults

Operand 1 Operand 2 Flipped Bits

Oxacffl3 0x00ee 0x000000003e000000
Oxa7fccc 0x0335 0x0000000010000000
Ox9fff4f 0x00b2 0x0000000020000000
Ox2bffcl 0x0008 0x0000000001000000
0x0b7a04 0x0087 0x0000000004000000
0x080004 0x0008 OxEfffff££££0000000
0x0022b2 Oxbc3a 0x0000000000000700

Pillaging and plundering SGX with Software-based Fault Injection Attacks

You promised
plundering...

RSA Basics

o Public Key Cryptography

e Untrusted channel

Pillaging and plundering SGX with Software-based Fault Injection Attacks

RSA decryption

// Start undervolting

uint 8 t rsa dec ecall(int iterations)

{
//Waitforfirstfault
trigger fault(iterations);
//Actualdecryption
ipps RSA Decrypt(ct,dec,pPrv,scratchBuffer);
}

// Stop undervolting

Pillaging and plundering SGX with Software-based Fault Injection Attacks

bagger> dog Enclave/encll

A And the
pillaging...?

AES-NI (New Instructions)

Instruction Description

AESENC Perform one round of an AES ep-
AESENCLAST

AESDEC

Inverse Mix Columns

Carryless multiply (CLMUL)

Pillaging and plundering SGX with Software-based Fault Injection Attacks

AES New Instructions - inside SGX

// Start undervolting

do

{
plaintext= <randomlygenerated>;
result 1=aes 128 encryption(plaintext);
result 2=aes 128 encryption(plaintext);

} while(resultl == result?2)

// Stop undervolting

Pillaging and plundering SGX with Software-based Fault Injection Attacks

bagger> sudo ./aes-encrypt 100000 -262

But what about memory corruption?

struct foo_t *foo = &arr[offset];

foo->foo = enclave secret;

Pillaging and plundering SGX with Software-based Fault Injection Attacks

But what about memory corruption?

foo = arr + offset Ox24

Pillaging and plundering SGX with Software-based Fault Injection Attacks

Creating enclave...

==== Victim Enclave ====
[pt.c] /dev/sgx-step opened!
Enclave Base: 0x7f001a000000

Voltage
0.584V

Undervolting
-235mV

Summary

e A new type of attack against Intel
e Breaks the integrity of SGX
e Within SGX
e Retrieve keys using AES-N|
e Retrieve RSA key

e Induce memory corruption in bug free

e Make enclave write secrets to untrusted memory

Pillaging and plundering SGX with Software-based Fault Injection Attacks

Voltage
0.594V

Undervolting
-240mv

PLUNDER
VO T

Kit Murdock, David Oswald, Flavio D. Garcia,
Jo Van Bulck, Daniel Gruss, and Frank Piessens.

"Plundervolt: Software-based Fault Injection Attacks against Intel SGX".
In S&P 2020

Acknowledgements

AN This research is partially funded by the Research Fund KU Leuven, and by the
Agency for Innovation and Entrepreneurship (Flanders). Jo Van Bulck is
supported by a grant of the Research Foundation — Flanders (FWQO). This
research is partially funded by the Engineering and Physical Sciences
Research Council (EPSRC) under grants EP/R012598/1, EP/R008000/1, and
\AAAANA/ by the European Union’s Horizon 2020 research and innovation programme

under grant agreements No. 779391 (FutureTPM) and No. 681402
(SOPHIA).

Pillaging and plundering SGX with Software-based Fault Injection Attacks

{hank you

