
Pillaging and plundering
SGX with Software-based

Fault Injection Attacks
Kit Murdock

Pillaging and plundering
SGX with Software-based

Fault Injection Attacks
Kit Murdock

Overclocking

Pillaging and plundering SGX with Software-based Fault Injection Attacks

Pillaging and plundering SGX with Software-based Fault Injection Attacks

Image attribution: Rico Shen

https://commons.wikimedia.org/wiki/File:2007TaipeiITMonth_IntelOCLiveTest_Overclocking-6.jpg

Pillaging and plundering SGX with Software-based Fault Injection Attacks

Image attribution: Charles Gaudette

https://en.wikipedia.org/wiki/Overclocking

Pillaging and plundering SGX with Software-based Fault Injection Attacks

DVFS

Pillaging and plundering SGX with Software-based Fault Injection Attacks

Dynamic Voltage and Frequency Scaling

Very fast responses

Resilient and reliable

High–assurance and
low running costs

Pillaging and plundering SGX with Software-based Fault Injection Attacks

Memory Mapped Registers...

Software

Hardware

Memory-mapped Registers

Pillaging and plundering SGX with Software-based Fault Injection Attacks

CLKscrew

2

Adrian Tang et al. "CLKSCREW: exposing the perils of security-
oblivious energy management"

In: USENIX Security Symposium. 2017

A new class of
fault attacks

Pillaging and plundering SGX with Software-based Fault Injection Attacks

Memory Mapped Registers...

Software

Hardware

Memory-mapped Registers

Pillaging and plundering SGX with Software-based Fault Injection Attacks

CLKscrew attack

add.w (a0)+,d1
cmp.l a0,d0
bcc.s loop
movea.l #$18E,a1
cmp.w (a1),d1
bne.w WrongChecksum

2 + 2 = 5
add.w (a0)+,d1
cmp.l a0,d0
bcc.s loop
movea.l #$18E,a1
cmp.w (a1),d1
bne.w WrongChecksum

2 + 2 = 5
add.w (a0)+,d1
cmp.l a0,d0
bcc.s loop
movea.l #$18E,a1
cmp.w (a1),d1
bne.w WrongChecksum

2 + 2 = 5

Pillaging and plundering SGX with Software-based Fault Injection Attacks

Memory Mapped Registers

CPU Core

Frequency & Voltage
Regulators

Normal
untrusted code

Trustzone
trusted code

Pillaging and plundering SGX with Software-based Fault Injection Attacks

CLKscrew - Summary

• Infer secret AES key that was stored within Trustzone
• Trick Trustzone into loading a self-signed app

ARM

Pillaging and plundering SGX with Software-based Fault Injection Attacks

What about Intel?

Pillaging and plundering SGX with Software-based Fault Injection Attacks

Memory Mapped Registers...

Software

Hardware

Memory-mapped Registers

Pillaging and plundering SGX with Software-based Fault Injection Attacks

Undervolting Intel CPUs

msr 0x150

Pillaging and plundering SGX with Software-based Fault Injection Attacks

Undervolting Intel CPUs

63

1 plane idx

40 36

1

32

r/w offset

21 042

11-bit signed voltage offset

(in units of 1/1024 V)

write-enable0 = CPU core

1 = GPU

2 = cache (=core)

3 = uncore

4 = analog I/O

Pillaging and plundering SGX with Software-based Fault Injection Attacks

Idle voltage – Intel(R) Core(TM) i3-7100U CPU

0.5

0.6

0.7

0.8

0.9

1.0

1.1

0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4

Vo
lta

ge
 (V

)

Frequency (GHz)

Idle

Pillaging and plundering SGX with Software-based Fault Injection Attacks

Idle and crash voltages – Intel(R) Core(TM) i3-7100U CPU

0.5

0.6

0.7

0.8

0.9

1.0

1.1

0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4

Vo
lta

ge
 (V

)

Frequency (GHz)

Idle Crash

Can we
fault it?

Pillaging and plundering SGX with Software-based Fault Injection Attacks

Will it fault?

correct = 7 * 3

my_value = 7 * 3

// Start undervolting

while (my_value == correct)

{

my_value = 7 * 3

}

// Can we ever get here?

Pillaging and plundering SGX with Software-based Fault Injection Attacks

Will it fault?

uint 64 _t multiplier = 0x 1122334455667788;

uint 64 _t correct = 0xdeadbeef*multiplier;

uint 64 _ t var = 0xdeadbeef*multiplier;

// start undervolting

while (var == correct)

{

var = 0xdeadbeef * multiplier;

}
// stop undervolting

// Can we ever get here?

uint 64 _ t flipped_ bits = var ^ correct;

Pillaging and plundering SGX with Software-based Fault Injection Attacks

Idle, error and crash voltages – Intel(R) Core(TM) i3-7100U CPU

0.5

0.6

0.7

0.8

0.9

1.0

1.1

0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4

Vo
lta

ge
 (V

)

Frequency (GHz)

Idle Errors Crash

Pillaging and plundering SGX with Software-based Fault Injection Attacks

Error and crash voltages – Intel(R) Core(TM) i3-7100U CPU

0.50

0.55

0.60

0.65

0.70

0.7 0.9 1.1 1.3 1.5 1.7

Vo
lta

ge
 (V

)

Frequency (GHz)

Errors Crash

Pillaging and plundering SGX with Software-based Fault Injection Attacks

Let's meet
SGX

Pillaging and plundering SGX with Software-based Fault Injection Attacks

SGX

Application
Untrusted part

Create Enclave

Operating System

Call Trusted
Function

. . .

Trusted part

Trusted
Function

Ca
ll g

at
e

Return

Pillaging and plundering SGX with Software-based Fault Injection Attacks

Memory
Encryption
Engine

EPC

Encrypted
Memory

Physical Memory

Pillaging and plundering SGX with Software-based Fault Injection Attacks

We can bypass the SGX integrity checks!

Pillaging and plundering SGX with Software-based Fault Injection Attacks

1st_operand * 2nd_operand = result

0x89af
Smallest 0x1

Smallest

0x200000
0x80000 * 0x4

Smallest

Multiplication faults

Pillaging and plundering SGX with Software-based Fault Injection Attacks

Multiplication faults – the order matters

0x80000 * 0x4 = 0x200000 ✓
0x4 * 0x80000 = 0x200000 ✘

1st_operand * 2nd_operand = result

Pillaging and plundering SGX with Software-based Fault Injection Attacks

Multiplication faults

Operand 1 Operand 2 Flipped Bits

0xacff13 0x00ee 0x000000003e000000

0xa7fccc 0x0335 0x0000000010000000

0x9fff4f 0x00b2 0x0000000020000000

0x2bffc0 0x0008 0x0000000001000000

0x0b7a04 0x0087 0x0000000004000000

0x080004 0x0008 0xfffffffff0000000

0x0022b2 0x6c3a 0x0000000000000700

You promised
plundering...

Pillaging and plundering SGX with Software-based Fault Injection Attacks

RSA Basics

• Public Key Cryptography
• Untrusted channel
• Encrypt/Verify messages with public key
• Decrypt/Sign messages with private key
• Public key: e,n
• Private key: d,p,q

Many RSA implementations use the

Chinese Remainer Theorem optimisation

Pillaging and plundering SGX with Software-based Fault Injection Attacks

RSA decryption

// Start undervolting

uint 8 _ t rsa_ dec_ ecall(int iterations)

{

//Waitforfirstfault

trigger_ fault(iterations);

//Actualdecryption

ipps RSA_ Decrypt(ct,dec,pPrv,scratch Buffer);

}

// Stop undervolting

And the
pillaging...?

Pillaging and plundering SGX with Software-based Fault Injection Attacks

AES-NI (New Instructions)

AES can be attacked if you get

a fault in the 8th round.

Pillaging and plundering SGX with Software-based Fault Injection Attacks

AES New Instructions - inside SGX

// Start undervolting

do

{

plaintext= <randomlygenerated>;

result 1=aes 128 _ encryption(plaintext);

result 2=aes 128 _ encryption(plaintext);

} while(result1 == result 2)

// Stop undervolting

Pillaging and plundering SGX with Software-based Fault Injection Attacks

Hold
tight...

Pillaging and plundering SGX with Software-based Fault Injection Attacks

But what about memory corruption?

struct_ foo_ t *foo = &arr[offset];

foo->foo = enclave_ secret;

Pillaging and plundering SGX with Software-based Fault Injection Attacks

foo = arr + offset * 0x24

But what about memory corruption?

Pillaging and plundering SGX with Software-based Fault Injection Attacks

Summary

• A new type of attack against Intel
• Breaks the integrity of SGX
• Within SGX

• Retrieve keys using AES-NI
• Retrieve RSA key
• Induce memory corruption in bug free
• Make enclave write secrets to untrusted memory

Kit Murdock, David Oswald, Flavio D. Garcia,
Jo Van Bulck, Daniel Gruss, and Frank Piessens.

"Plundervolt: Software-based Fault Injection Attacks against Intel SGX".
In S&P 2020

Pillaging and plundering SGX with Software-based Fault Injection Attacks

Acknowledgements

This research is partially funded by the Research Fund KU Leuven, and by the
Agency for Innovation and Entrepreneurship (Flanders). Jo Van Bulck is
supported by a grant of the Research Foundation – Flanders (FWO). This
research is partially funded by the Engineering and Physical Sciences
Research Council (EPSRC) under grants EP/R012598/1, EP/R008000/1, and
by the European Union’s Horizon 2020 research and innovation programme
under grant agreements No. 779391 (FutureTPM) and No. 681402
(SOPHIA).

Thank you

