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Dynamic Voltage and Frequency Scaling

Very fast responses

Resilient and reliable

High–assurance and 
low running costs
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Memory Mapped Registers...

Software

Hardware

Memory-mapped Registers
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CLKscrew

2

Adrian Tang et al. "CLKSCREW: exposing the perils of security-
oblivious energy management"

In: USENIX Security Symposium. 2017



A new class of 
fault attacks
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Memory Mapped Registers...

Software

Hardware

Memory-mapped Registers
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CLKscrew attack

add.w (a0)+,d1
cmp.l a0,d0
bcc.s loop
movea.l #$18E,a1
cmp.w (a1),d1
bne.w WrongChecksum

2 + 2 = 5
add.w (a0)+,d1
cmp.l a0,d0
bcc.s loop
movea.l #$18E,a1
cmp.w (a1),d1
bne.w WrongChecksum

2 + 2 = 5
add.w (a0)+,d1
cmp.l a0,d0
bcc.s loop
movea.l #$18E,a1
cmp.w (a1),d1
bne.w WrongChecksum

2 + 2 = 5
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Memory Mapped Registers

CPU Core

Frequency & Voltage
Regulators

Normal
untrusted code

Trustzone
trusted code
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CLKscrew - Summary

• Infer secret AES key that was stored within Trustzone
• Trick Trustzone into loading a self-signed app



ARM
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What about Intel?



Pillaging and plundering SGX with Software-based Fault Injection Attacks

Memory Mapped Registers...

Software

Hardware

Memory-mapped Registers
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Undervolting Intel CPUs

msr 0x150
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Undervolting Intel CPUs

63

1 plane idx

40 36

1

32

r/w offset

21 042

11-bit signed voltage offset

(in units of 1/1024 V)

write-enable0 = CPU core

1 = GPU

2 = cache (=core)

3 = uncore

4 = analog I/O
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Idle voltage – Intel(R) Core(TM) i3-7100U CPU
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Idle and crash voltages – Intel(R) Core(TM) i3-7100U CPU
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Can we
fault it?
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Will it fault?

correct = 7 * 3

my_value = 7 * 3

// Start undervolting

while ( my_value == correct )

{

my_value = 7  *  3

}

// Can we ever get here?
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Will it fault?

uint 64 _t multiplier = 0x 1122334455667788;

uint 64 _t correct = 0xdeadbeef*multiplier;

uint 64 _ t var = 0xdeadbeef*multiplier;

// start undervolting

while ( var == correct )

{

var = 0xdeadbeef * multiplier;

}
// stop undervolting

// Can we ever get here?

uint 64 _ t flipped_ bits = var ^ correct;
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Idle, error and crash voltages – Intel(R) Core(TM) i3-7100U CPU
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Error and crash voltages – Intel(R) Core(TM) i3-7100U CPU
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Let's meet 
SGX
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SGX

Application
Untrusted part

Create Enclave

Operating System

Call Trusted 
Function

. . .

Trusted part

Trusted
Function

Ca
ll g

at
e

Return
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Memory
Encryption
Engine

EPC

Encrypted
Memory

Physical Memory
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We can bypass the SGX integrity checks!
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1st_operand * 2nd_operand = result

0x89af
Smallest 0x1

Smallest

0x200000
0x80000 * 0x4

Smallest

Multiplication faults
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Multiplication faults – the order matters

0x80000 * 0x4 = 0x200000 ✓
0x4 * 0x80000 = 0x200000 ✘

1st_operand * 2nd_operand = result
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Multiplication faults

Operand 1 Operand 2 Flipped Bits

0xacff13 0x00ee 0x000000003e000000

0xa7fccc 0x0335 0x0000000010000000

0x9fff4f 0x00b2 0x0000000020000000

0x2bffc0 0x0008 0x0000000001000000

0x0b7a04 0x0087 0x0000000004000000

0x080004 0x0008 0xfffffffff0000000

0x0022b2 0x6c3a 0x0000000000000700



You promised 
plundering...



Pillaging and plundering SGX with Software-based Fault Injection Attacks

RSA Basics

• Public Key Cryptography
• Untrusted channel
• Encrypt/Verify messages with public key
• Decrypt/Sign messages with private key
• Public key: e,n
• Private key: d,p,q

Many RSA implementations use the 

Chinese Remainer Theorem optimisation
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RSA decryption

// Start undervolting

uint 8 _ t rsa_ dec_ ecall(int iterations)

{

//Waitforfirstfault

trigger_ fault(iterations);

//Actualdecryption

ipps RSA_ Decrypt(ct,dec,pPrv,scratch Buffer);

}

// Stop undervolting





And the 
pillaging...?
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AES-NI (New Instructions)

AES can be attacked if you get

a fault in the 8th round.
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AES New Instructions - inside SGX

// Start undervolting

do

{

plaintext= <randomlygenerated>;

result 1=aes 128 _ encryption(plaintext);

result 2=aes 128 _ encryption(plaintext);

} while(result1 == result 2)

// Stop undervolting
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Hold
tight...
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But what about memory corruption?

struct_ foo_ t *foo = &arr[offset];

foo->foo = enclave_ secret;
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foo = arr + offset * 0x24

But what about memory corruption?





Pillaging and plundering SGX with Software-based Fault Injection Attacks

Summary

• A new type of attack against Intel 
• Breaks the integrity of SGX
• Within SGX

• Retrieve keys using AES-NI
• Retrieve RSA key
• Induce memory corruption in bug free
• Make enclave write secrets to untrusted memory
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