
Building a Successful Open 
Source Community
Alan Turing Institute 4th July 2019

The content of this presentation is available under the terms of the Creative 
Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) license

See https://creativecommons.org/licenses/by-sa/4.0/ for more information

Modified versions must remove Red Hat trademarks.

https://creativecommons.org/licenses/by-sa/4.0/


About us

OPTIONAL SECTION MARKER OR TITLE

2 Source:
Insert source data here
Insert source data here
Insert source data here

Engineering Manager @ Red Hat (7 months)

Software Engineer @ Red Hat (6 months)

Research Associate @NCL (15 years)

“”

Simon Woodman
Engineering Manager | AMQ Streams & Knative Eventing

Senior Software Engineer @RedHat (4 years)

IT jobs @Newcastle University (10 years)

Debian contributor (14 years) 

p/t PhD student (CS, 2 years)

“”

Jonathan  Dowland
Senior Software Engineer | OpenJDK



Who drives Open Source software?

We know what OS software is but who drives it? 

Yes, you can put your software on GH but is that really maximising the value? The 
maximum bang for your buck?

You tick a few boxes - your boss is happy, the funders are happy.

But who drives the progress in that project? It's the developers and the community

So, what is a community?



Who drives Open Source software?



5 Reasons to build a community around your project



5 Reasons to NOT build a community around your project



1. Time

It takes a lot of time to build the community which obviously takes time away from 
other things you could be doing

● Publicity
● Helping people
● Documentation, documentation, documentation
● Letting others learn which will take longer than doing it yourself



2. Relinquishing Control

To let the community develop, you have to allow others to have a sense of ownership. 
We'll talk later about governance models and it's not a case of relinquishing all control 
but you need to accept you don't have complete control (unless your name is Linus)

● Allow community to influence direction and effort
● Decisions by committee?
● Who can merge PRs?
● What's the makeup of any committees? What happen if people move 

employers?
● How do you deal with conflict?



3. Lack of Academic Credit

You can't submit a community to the REF. You can't cite a community.

It's somewhat intangible and like the time aspect, it is hard to define how healthy it is.

Large communities change constantly. Boards change, governance changes, …

As RSEs you can probably get more credit than traditional academics though



4. Lack of Correct Skills

You probably enjoy software development, data science, some kind of scientific 
discipline if you're in this audience (not wanting to exclude those who don't).

The skills you need to promote, grow and maintain an open source community is 
different from software development.

Some people can do both, some can't. Growing the community requires soft skills.

Promotion, enthusiasm, inclusion

Not everyone has these skills but in some cases work may be shared around

e-SC - blog not updated for 2 years. I can't regularly tweet about something 
interesting about it.



5. Chance of Success

Realistically, your chance of building a thriving community is small. 

Definitely greater than zero but small. You probably won't be organising events the 
size of Kubecon next year.

So we should look at what success looks like for your project

However, when we talk about the positive angle later on, a lot of these benefits can be 
achieved by striving for the community. They are side effects of the journey, not the 
destination



However...

If you are able to spend the time, do have enough of the skills, don't mind giving up 
your baby to a group of people who you probably haven't met, know the chance of the 
baby living is small and don't mind sacrificing your career then listen on...



5 Reasons to build a community around your project

Just by trying to build a community around your project will have significant benefits.

There are thousands, millions of successful open source communities around the 
world, collaborating and improving the project.

We shouldn't measure success by comparisons with 600lb gorillas such Apache 
Spark, OpenJDK, …

And in some cases although those pieces of software have been open sourced, the 
community is quite closed. The software is successful but not always the community



1. Increased Speed, Reach and Impact

You have limited resources. Build a community and you can accelerate that.

If you build a community people will cite your work, offer co-authorship on papers, 
funding proposals etc…

Taverna - authors

You show that you are open to collaboration and and interested to work with them



2. Diversified access to skills and experience and kit

Resources not only in people but also in skills and availability of kit / technology

DBZ community contributing DB drivers

Diversified set of use cases



3. Increased lifespan of the project

You start something, it's your baby, you focus your whole attention on it...and then you 
move on.

Change in fundung, projects, …

Before I spoke about the chance of success being small. If you can build even a small 
community around it, the project can live on after you have moved on.



4. Increased career potential

At the externe end of the spectrum committers on a popular Open Source project are 
highly sought after and command a very high price. Companies can and do, buy them 
to influence the direction of the project.

Even if you're not succsesful, and this may be more industrial focussed, but GH is 
your CV - it shows engagement and people can look at what you're contributing to

Paolo, Jakub and Tom GH - health?

Even if you try and fail, you will still learn along the way. 

Silicon Valley startup culture vs UK



5. Profit

You can make money through Open Source software 

● Support
● Training

Red Hat 7 years ago became the first $1BN open source software company. Shortly 
it's going to be sold to IBM for $34BN and it's only IP is the logo. Everything else is 
open source

Inkspot



Building a Successful Open 
Source Community: How

19

How?

We’re going to explore the constituent blocks for bootstrapping a successful open 
source community and their relative priorities

Firstly, what do you think is the most important thing?

How many of you think the code itself is the most important thing



Community model

Argument that the model is more important than the code!
Rules for how the community operate
Including. How the code evolves
Must be self-modifying
“Rules of engagement”

How do you decide which features to add, and when? And how? How do you prioritise 
which bugs to fix? How do you resolve conflicts when there’s more than one way to 
do things?

Make the implicit, explicit: write down how the project is going to work. Potential 
contributors are more empowered to contribute if any questions they might have 
about “how things are done” are easily answered

Hypothetically, given zero code and a community model, you could have a project 
since you have a process to accept new code.
But the reverse is not necessarily true: you need a decision process for accepting 
new or modifying code (implicit or otherwise)



#0: Community model

21

“
Stock-photo guy
Some agency, probably

If you build it,
they will come”

Quote from Field of Dreams
 Character 

“Build it and they will come” is true, but the “it” isn’t your software, it’s your community 
model.



Off-the-shelf model

#0: Community model

https://github.com/cortexproject/cortex/blob/master/GOVERNANCE.md

https://github.com/cortexproject/cortex/blob/master/GOVERNANCE.md

An example of a short, self-contained, clear community governance model

An off the shelf model, as opposed to writing one from scratch, will have had some 
“battle testing”

I was surprised when researching this that I could not find more examples

https://github.com/cortexproject/cortex/blob/master/GOVERNANCE.md
https://github.com/cortexproject/cortex/blob/master/GOVERNANCE.md


Three factors to consider

#0: Community Model

23

License

Pick an existing one
Pick a popular one

Pick an OSI-approved one

https://opensource.org/licenses

Code of Conduct

Becoming more common
Recently adopted by Linux

https://www.contributor-covenant.org/

Versioning Scheme

Semantic versioning 
Widely adopted

https://semver.org/

1.2.3

Separate talk about licenses coming up
In brief: pick an existing, OSI-approved popular license.
Early in project (hard to change later)

---

Consider a Code of Conduct
An example of a widely-used one is the “contributor covenant” (itself OSS)
Adopters include the linux kernel
Signals that your project is not a wild-west and potential contributors won’t end up in a 
saloon bar fight

---
Meaningful well understood semantics for versions
Users Planning upgrades etc
https://semver.org

https://opensource.org/licenses
https://www.contributor-covenant.org/
https://semver.org/
https://semver.org


Example Foundations

#0: Community Model

24

Apache Software Foundation

Pick an existing one
Pick a popular one

Pick an OSI-approved one

http://incubator.apache.org/

Eclipse Foundation

Becoming more common
Recently adopted by Linux

https://www.eclipse.org/org/foundation 

Free Software Foundation

Semantic versioning 
Widely adopted

https://www.gnu.org/help/evaluation.html 

Instead of starting your own community, how about trying to join an existing one?

Foundations offer a pre-baked community and often infrastructure and resources
Foundations impose requirements on the software (e.g. license requirements)
GNU requires candidates to not substantially overlap feature-wise with existing GNU 
programs

Foundations can also offer exposure

Your software may not be mature enough to be worthwhile (yet) submitting to a 
foundation; but, you could treat that as a goal and work towards it

If you are not interested in joining a foundation you may still wish to study them to see 
what of their governance etc. is worth stealing

Another:
https://www.freedesktop.org/wiki/

https://www.gnu.org/help/evaluation.html
https://www.eclipse.org/org/foundation/

http://incubator.apache.org/guides/proposal.html
https://www.eclipse.org/org/foundation
https://www.gnu.org/help/evaluation.html
https://www.freedesktop.org/wiki/
https://www.gnu.org/help/evaluation.html
https://www.eclipse.org/org/foundation/


Community model

Code

Make the code available!

In the “old days” this would mean creating archive snapshots of the code 
corresponding to releases and putting them on an FTP server which was part of an 
FTP mirror network

Archives of release code are still very useful. But people, especially contributors, 
expect more now. They want access to  your version control repository

There are many different version control systems. “Distributed” ones offer many 
advantages for open source projects over the more traditional centralised ones.



https://git-scm.com/

Let’s cut to the chase: use git.

Git is the runaway success in this space. Use it unless you have a very good reason 
not to. It’s what people will expect to interact with and anything else will be a pain 
point for people.

(note: OpenJDK uses mercurial)

If you are not yet familiar with VCS, DVCS and GIT respectively, there’s a bit of a hill 
to climb learning the concepts  but it’s time well invested.



Example Source Code hosting options

#1: Code

27

GitHub
Very popular

Owned by MIcrosoft
Private repositories

Issues, Pull Requests
https://github.com/ 

GitLab
“Open Core” - can be self hosted

Private repositories
Issues, Merge Requests

https://gitlab.com/

BitBucket
Private repositories

Offers Mercurial hosting

https://bitbucket.org

Gitea
Self hosted only

Open Source
Easy “mirroring”

https://gitea.io

There are many web sites/services that offer source code hosting via version control 
repositories for free. The most well known and popular at the moment is GitHub, 
which is a git-based service 

Git hosting
Archives from tags
Issue tracking
Pull requests

Gitlab is “open core” software and you can host your own /adapt your own instances if 
you want

Gitea is a purely self-hosted open source clone of github. It has a feature that it can 
mirror external git repositories (and it will automatically periodically fetch new 
commits)

If you have the means to self-host, even privately, then Gitea or similar may be useful 
as part of a backup strategy

GitHub (etc.) do occasionally go down!

https://github.com/
https://gitlab.com/
https://bitbucket.org
https://gitea.io


When to make the initial release?
?

when to initial release? It's important to have something functionally useful (if not 
"complete" in some sense). People are not going to be drawn to a project that is not 
practically useful in any way (yet)

GCC 1: initial release entirely by rms:: it compiled code, generated executables (for a 
single architecture only), bears little resemblance to the later GCC and was inflexible 
in many ways, but fundamentally it did something useful

Initial linux release did something useful

(with thanks to Andrew Haley)



Community model

Code

Documentation

I’ve talked about how important the community model is

Documentation is where you actually describe your community model, as well as the 
code

What is it 
How do I use it
FAQ
How do I report bugs with it

I recommend putting the documentation as close to the source code as possible. 
Ideally, in the same version control repository

There are a number of tools/services that let you generate documentation from a 
source repository and host it for you

GitHub offers this with “GitHub pages” - you have the source code to a website 
located in a “docs” folder within the very same repository

Advantages: when someone makes a change to the code, you can insist that they 
update the docs at the same time, in the same pull request

Larger projects may outgrow this and need to move the documentation out - which 
introduces synchronisation issues/processes. But cross that bridge as late as possible



Alternatives: readthedocs.io

Wikis

Don’t bury the ABOUT page

https://www.gnu.org/software/hello/ - some example of how to lay out stuff

Yes: README COPYING INSTALL
Maybe: AUTHORS THANKS
I argued No: ChangeLog

Some discusson about ChangeLog from when this was delivered: an “old style” 
ChangeLog, has effectively been replaced by your VCS history
A ChangeLog is still useful to summarize what has gone into individual releases

https://www.gnu.org/software/hello/


Wikis

Ultra-low barrier content management system
Anyone can edit; any page can be created etc

E.g. GitHub offer wikis

What makes Wikis interesting is as a communication tool too
(about to talk about communication)

Consider Wikipedia and similar mediawiki projects: they run their governance and do 
their discussions (the “meta” stuff) within the wiki itself: they do not rely upon an 
external communication channel for running (most of?)) their governance processes.



Community model

Code

Documentation

Communication

Mailing lists

Chat
IRC, Slack, etc

Forums

Don’t get fixated on a particular solution. A solution is better than none, and there’s 
often no “right” answer

Different types of potential contributors will engage better with different things

Old-timers mailing lists, younger people not so much (written as someone who prefers 
mailing lists)

Don’t worry about having duplication either: two or more solutions seemingly 
competing with each other; due to the fact different things will play better with different 
types of contributor this is not necessarily a problem. (It’s a high-quality problem: if 
you are worried about this, it means you’ve got a community!)



#3: Communication

32

Face-to-face meetings

“
Stock-photo guy
Some agency, probably

If it’s not on the mailing 
list, it does not exist ”

Risks of in-person meetings: don’t be dependent on them or disadvantage people 
who cannot attend
Try to provide summaries of all discussions that took place, useful information etc., to 
“catch people up”

If you organise governance meetings on a real time chat service, make sure its 
logged and publish the logs, so all decision making is transparent and recorded

Try to avoid disadvantaging contributors who are unable to communicate in real-time

“If it’s not on the mailing list, it doesn’t exist”
“If it’s not on the wiki, it doesn’t exist”



Conferences & FOSDEM

https://fosdem.org/

Conferences are a great way to get to meet people face-to-face, even if you are all 
individually at the conference for different reasons

Exemplar conference for free software:

FOSDEM
https://fosdem.org/
Free to attend
All presentations recorded and distributed for free
Enormous!

(also good for publicity)

https://fosdem.org/


Community model

Code

Documentation

Communication

Publicity

The outer shell. It’s easy to over-estimate the importance of promoting your open 
source project at the beginning, but it really is not as important as getting the 
governance model right, sorting out access to the source code, documentation etc.

The centre of gravity is the community and the code; they will be the strong attractors 
for contributors

But obviously contributors need to have heard of your project!

Blogs

Twitter, facebook,..
Face to face (probably belong in previous section) 
Conferences (probably belong in previous section)
Citations



Blogging & social media

Consider focussing on writing republishable content such as on a blog: this could be 
picked up and form the basis of articles by tech journalists,
Or be shared on social media directly

The blog could live within your project documentation 
Twitter, facebook, Mastodon… instagram?
Changing landscape...



Downstreams

#4: Publicity

36

Container registries

https://quay.io
https://operatorhub.io/ 
https://hub.docker.com/
https://flathub.org/home 

etc

Distributions

Fedora, Debian, Ubuntu, CentOS (EPEL), Alpine, 
Gentoo…

FreeBSD, OpenBSD…

Etc etc

Sources:
https://github.com/kubernetes/kubernetes/blob/master/logo/LICENSE
https://fedoraproject.org/wiki/Logo
https://www.debian.org/logos/

You may end up with “downstream” distributors wanting to distribute your software

That can be great for exposure, more users, etc.

You lose some control: downstreams may adapt your software to meet their goals
(subject to their rights under open source license)

It’s often handy to reach out to downstream distributors to establish a personal 
relationship

Keep an eye on their bug trackers etc.

If you use a distribution or container tool, you could consider preparing 
packages/container images yourself
If so, bear in mind the norms of those communities may differ from yours
(things like: where files go, what your software can do out of the box, etc.)

If you don’t use a distribution or container tool yourself, I would advise you NOT to 
attempt to produce packages/images for them
It’s easy to do this wrong and cause harm (e.g. packages that interact badly with a 
distributions native packages, break upgrades etc)
Leave it to someone who does

https://quay.io
https://operatorhub.io/
https://hub.docker.com/
https://flathub.org/home
https://github.com/kubernetes/kubernetes/blob/master/logo/LICENSE
https://fedoraproject.org/wiki/Logo


Citations

#4: Publicity

 ▶ ./parallel
Academic tradition requires you to cite works you base your article on.
If you use programs that use GNU Parallel to process data for an article in a
scientific publication, please cite:

  O. Tange (2018): GNU Parallel 2018, Mar 2018, ISBN 9781387509881,
  DOI https://doi.org/10.5281/zenodo.1146014

This helps funding further development; AND IT WON'T COST YOU A CENT.
If you pay 10000 EUR you should feel free to use GNU Parallel without citing.

More about funding GNU Parallel and the citation notice:
https://www.gnu.org/software/parallel/parallel_design.html#Citation-notice

To silence this citation notice: run 'parallel --citation' once.

If you are writing papers and relying on software for your work, you could consider 
citing that software to help raise awareness

If you are authoring software that you think will be used to support academic work, 
you could request that people cite your software

Requesting is fine.

Here’s an example of what greets you when you first invoke the GNU “parallel” 
program

My advice is don’t do this in the program itself; don’t interrupt the use of the program, 
leave it in the docs



Summary

1. Community model

2. Code

3. Documentation

4. Communication

5. Publicity

Wrap up



Resources

Oss watch - http://oss-watch.ac.uk/

…

J. Bacon. The Art of Community: Building the New Age of Participation . O'Reilly Media, 
2012. https://www.jonobacon.com/books/artofcommunity/ 

https://community.redhat.com/

https://www.gnu.org/software/hello/ — GNU Hello World

https://github.com/cortexproject/cortex/blob/master/GOVERNANCE.md (off-the-shelf 
community model starter)
http://incubator.apache.org/guides/proposal.html

https://www.gnu.org/help/evaluation.html
https://www.eclipse.org/org/foundation/

http://oss-watch.ac.uk/
https://www.jonobacon.com/books/artofcommunity/
https://community.redhat.com/
https://www.gnu.org/software/hello/
https://github.com/cortexproject/cortex/blob/master/GOVERNANCE.md
http://incubator.apache.org/guides/proposal.html
https://www.gnu.org/help/evaluation.html
https://www.eclipse.org/org/foundation/


linkedin.com/company/red-hat

youtube.com/user/RedHatVideos

facebook.com/redhatinc

twitter.com/RedHat

Red Hat is the world’s leading provider of 

enterprise open source software solutions. 

Award-winning support, training, and consulting 

services make 

Red Hat a trusted adviser to the Fortune 500. 

Thank you

40


