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Use containers for everything:
•Build software, pre-process data, deploy software, 
allocate compute resources, run tests, analyze data, 
validate results, generate manuscripts, etc.

*other than personal productivity tools such as a text editor, 
  web browser, email reader, calendar app, etc.

Software* doesn’t get installed directly on a host 
machine; it is running in containers instead
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Practical problems that arise when working 
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$> popper run



$> popper run —-resman slurm 





















$> popper ci --service travis
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Example workflows

•Ceph benchmarking: deploy K8S on baremetal, Ceph via 
Rook; run benchmarks, plot results on Jupyter notebooks
•C++ project: package dev environment in container ; build 
and run unit tests; prepare and run non-functional tests
•Machine learning: build C++ library, install python 
packages, download datasets, train and evaluate models, 
show results.
•Others: genomics, computational science, geosciences, etc.



One workflow to rule them all
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OSS Research Experience Project Ideas

• Support more container engines
•podman, charliecloud, lxd

• Support other resource managers
•Kubernetes, HTCondor, GridEngine

•Reproducible performance tests
•Ceph, SkyhookDM, SPDK, DPDK, Seastar, etc.

•Reproducible workflows in other domains:
•Computational research, machine learning, etc.
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