
The Popper Container-native
Workflow Engine

Ivo Jimenez
<ivotron.me>

Research Scientist and CROSS Incubator Fellow
UC Santa Cruz

What is a container?

What is a container?

Main benefit of using containers

Bring Your Own Environment (BYOE) to shared infrastructure

Main benefit of using containers

Bring Your Own Environment (BYOE) to shared infrastructure

docker run mattrayner/lamp:latest-1804

Main benefit of using containers

Bring Your Own Environment (BYOE) to shared infrastructure

docker run tensorflow/tensorflow:2.1.1-gpu-jupyter

What is the container-native paradigm?

What is the container-native paradigm?

Use containers for everything:
•Build software, pre-process data, deploy software,
allocate compute resources, run tests, analyze data,
validate results, generate manuscripts, etc.

What is the container-native paradigm?

Use containers for everything:
•Build software, pre-process data, deploy software,
allocate compute resources, run tests, analyze data,
validate results, generate manuscripts, etc.

*other than personal productivity tools such as a text editor,
 web browser, email reader, calendar app, etc.

Software* doesn’t get installed directly on a host
machine; it is running in containers instead

Practical problems that arise when working
under the container-native paradigm

Practical problems that arise when working
under the container-native paradigm
•Dealing with multi-container workflows

• Lack of out-of-the-box support for complex
application testing and prototyping

Practical problems that arise when working
under the container-native paradigm
•Dealing with multi-container workflows

• Lack of out-of-the-box support for complex
application testing and prototyping

•Myriad of container runtimes and engines
•Docker, Podman, LXD, Singularity, Charliecloud, …

Practical problems that arise when working
under the container-native paradigm
•Dealing with multi-container workflows

• Lack of out-of-the-box support for complex
application testing and prototyping

•Myriad of container runtimes and engines
•Docker, Podman, LXD, Singularity, Charliecloud, …

• Lack of common orchestration platform support
• SLURM, Kubernetes, CI services, …

Practical problems that arise when working
under the container-native paradigm
•Dealing with multi-container workflows

• Lack of out-of-the-box support for complex
application testing and prototyping

•Myriad of container runtimes and engines
•Docker, Podman, LXD, Singularity, Charliecloud, …

• Lack of common orchestration platform support
• SLURM, Kubernetes, CI services, …

Practical problems that arise when working
under the container-native paradigm
•Dealing with multi-container workflows

• Lack of out-of-the-box support for complex
application testing and prototyping

•Myriad of container runtimes and engines
•Docker, Podman, LXD, Singularity, Charliecloud, …

• Lack of common orchestration platform support
• SLURM, Kubernetes, CI services, …

6https://github.com/getpopper/popper

6https://github.com/getpopper/popper

Practical problems that arise when working
under the container-native paradigm
•Dealing with multi-container workflows

•Complex application testing and prototyping
becomes difficult to reproduce if done by hand

•Myriad of container runtimes and engines
•Docker, Podman, LXD, Singularity, Charliecloud, …

• Lack of common orchestration platform support
• SLURM, Kubernetes, CI services, …

$> popper run

$> popper run —-engine podman

Practical problems that arise when working
under the container-native paradigm
•Dealing with multi-container workflows

•Complex application testing and prototyping
becomes difficult to reproduce if done by hand

•Myriad of container runtimes and engines
•Docker, Podman, LXD, Singularity, Charliecloud, …

• Lack of common orchestration platform support
• SLURM, Kubernetes, CI services, …

$> popper run

$> popper run —-resman slurm

$> popper ci --service travis

One workflow to rule them all

Example workflows

•Ceph benchmarking: deploy K8S on baremetal, Ceph via
Rook; run benchmarks, plot results on Jupyter notebooks
•C++ project: package dev environment in container ; build
and run unit tests; prepare and run non-functional tests
•Machine learning: build C++ library, install python
packages, download datasets, train and evaluate models,
show results.
•Others: genomics, computational science, geosciences, etc.

One workflow to rule them all

github.com/getpopper/popper

ivotron.me

https://ivotron.me

OSS Research Experience Project Ideas

• Support more container engines
•podman, charliecloud, lxd

• Support other resource managers
•Kubernetes, HTCondor, GridEngine

•Reproducible performance tests
•Ceph, SkyhookDM, SPDK, DPDK, Seastar, etc.

•Reproducible workflows in other domains:
•Computational research, machine learning, etc.

10+ Years of Mentoring Experience

One workflow to rule them all

github.com/getpopper/popper

ivotron@ucsc.edu

mailto:ivotron@ucsc.edu

