
Bringing great research ideas
into open source communities

Volume 2:3 October 2020 ISSN 2691-5278
Research Quarterly

RH
RQ

+

Machine learning
meets big data

Finding bugs in
parallel programs

Mental models

Václav
Matyáš

open source cybersecurity
and the next generation

A thread
model:
Daniel Bristot de
Oliveira on the
formal analysis
and verification
of the real-time
Linux kernel

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration.
Other brand and product names are trademarks of their respective companies. © 2020 SAS Institute Inc. All rights reserved. G131800.0620

DID YOU K NOW?

SAS® BRINGS ARTIFICIAL
INTELLIGENCE AND
ANALYTICS TO THE CLOUD.
You can run SAS on private, public or hybrid cloud infrastructures to
better manage how AI work is done. SAS works with all major cloud
providers to give you the power and freedom to innovate and be agile
in the cloud.

sas.com/discover

ABOUT RED HAT Red Hat is the world’s leading
provider of open source software solutions, using
a community-powered approach to provide reliable
and high-performing cloud, Linux, middleware,
storage, and virtualization technologies. Red Hat

also offers award-winning support, training, and consulting
services. As a connective hub in a global network of enterprises,
partners, and open source communities, Red Hat helps create
relevant, innovative technologies that liberate resources for
growth and prepare customers for the future of IT.

facebook.com/redhatinc

@redhatnews

linkedin.com/company/red-hat

Table of Contents

04

1 1

From the director

Departments

05 Column: Better together

06

News: Research at
Devconf.us

08 Machine learning meets
big data

Features

20 Open source cybersecurity
and the next generation:
an interview with Václav
Matyáš

16 Mental models

NORTH AMERICA
1 888 REDHAT1

EUROPE, MIDDLE EAST,
AND AFRICA
00800 7334 2835
europe@redhat.com

ASIA PACIFIC
+65 6490 4200
apac@redhat.com

LATIN AMERICA
+54 11 4329 7300
info-latam@redhat.com

34

1 1 Finding bugs in
parallel programs

30 A thread model for the
real-time Linux kernel

20

3016

THE
BUILDER

THE
GENERALIST

THE
MANAGER

Research project updates

RESEARCH
QUARTERLY

V O L U M E 2 : 3

https://twitter.com/redhatnews
http://Devconf.us

Other examinations of how to approach
complexity come in two articles on code analysis
and formal verification. Vladimír Štill examines
the long-running Brno research project DIVINE,
the subject of his and many others’ PhD work.
The project provides a new approach to the very
complex topic of debugging multi-threaded
programs. If the words “race condition” fill
you with cold dread, you will want to read this
piece. Meanwhile, Daniel Bristot de Oliviera
reviews his own PhD work on modelling the

Linux kernel using finite automata.
Breaking complexity into chunks of
observable behavior can make it
much easier to deal with, it turns out.

Our final piece on complexity,
from researcher and Red Hatter
Ilya Kolchinsky, surveys different
possible techniques for using
neural networks to solve machine-
native problems—problems that are
inherently too large or complex to
be solvable by a human. There are
many emerging possibilities here.

Reading articles like these gives me some hope
that we may be able to develop tools that will
help us untangle some of the complexity we
create. At the same time, we will of course
learn ways to build even more complex
systems, aided by these very same tools.

Perhaps some day we will build tools that actually
make things simpler? I’ll believe it when I see it…

research.redhat.com4

It is by now well understood that we humans
are capable of creating systems that are more
complex than we can understand. I would

venture to go a bit further with this and say
that many of us like creating complex systems,
the more complex the better, usually in the
service of trying to be both useful and elegant
at the same time. Nowhere is this truer than
in software development, where the toll of
complexity need not be paid until months or
even years after its creation, and even then
can be deferred by wrapping
an incomprehensible “black
box” with another layer that we
believe we understand. This
happens all too frequently, and
the end result can be systems so
complex that they can only be
understood by other systems.

It so happens that this issue of
RHRQ has several articles that
touch on different aspects of
this problem, beginning with
our interview with security
researcher Václav Matyáš. Professor Matyáš, who
specializes in computer security and, lately, in
the problem of usable security, has been working
with Red Hat for a very long time; he might, in
fact, be the very beginning of Red Hat Research
itself. Red Hat security architect Mike Bursell
spoke with him at length about the problem
of making computer security—an inherently
complex topic—simple enough to work for real
people, among many other interesting topics.

About the Author
Hugh Brock is the

Research Director for
Red Hat, coordinating

Red Hat research
and collaboration
with universities,

governments, and
industry worldwide.
A Red Hatter since
2002, Hugh brings

intimate knowledge
of the complex

relationship between
upstream projects

and shippable
products to the task

of finding research to
bring into the open

source world.

Untangling complex systems

From the Director

by Hugh Brock

RH
RQ

RESEARCH
QUARTERLY

V O L U M E 2 : 3

http://research.redhat.com

5research.redhat.com

Column

There’s been a lot of emphasis
placed on collaboration in the
workplace. And while it’s easy

to add collaboration to the ever-
growing list of important company-
wide objectives, implementing it
requires a more structured plan and
a clear understanding of current
employee workflows. When leaders
try to establish the reasons why
collaboration has not taken hold, more
often than not they find that it relates
to organization structure and how
information sharing is prioritized.

Red Hat is an open source company,
and our decentralized culture
encourages open collaboration, not
only internally, but with upstream
communities too. It is this open culture
that has contributed to our success as
an organization. Within the research
team, we encourage collaboration
through Research Interest Groups
(RIGs). The goal of each RIG is to
foster research that aligns with Red
Hat’s technical direction and open
source mission. Through the RIGs,
researchers at our partner universities
work collaboratively with Red Hat
teams and seek opportunities for

Better together

conducting innovative research on
specific technology topics. Some of
the topics we are currently exploring
together include operating systems,
machine learning and automation,
and cloud computing services.

Nonetheless, RIGs are not just
about adding more people. There is
certainly an art to this collaboration.
The Boston RIG, for example, has
attracted participation from professors,
engineers, PhD candidates, interns,
marketers, and patent lawyers. This
integration of varied perspectives
creates that sweet spot for taking
conventional ideas and applying them
to interesting problems in a novel way
to produce groundbreaking solutions.

The Greater Boston RIG has also
been able to take advantage of
partnerships with universities in the
area to tap into an excellent talent
pool of potential hires for engineering
and other technology roles. During
the course of this summer, we
worked with 140 interns who all got
an opportunity to share their project
ideas in the form of lightning talks.
These ten-minute sessions were

by Beverly Kodhek

meant to share the essence of an idea
and get more managers and engineers
involved in the projects. Not only that,
they were also a great opportunity to
build a community around projects.

So if you are looking to create the
next breakthrough product, teaming
up a group of specialists in novel
ways might be a good idea. Research
Interest Groups can help with that.
Even though we are not able to meet
in person now, we can still make
space for people to meet potential
collaborators they may not otherwise
run into. I urge you to organize a
Research Interest Group and foster
collaboration within your organization.

About the Author
Beverly Kodhek
is part of the
product marketing
team at Red Hat
Research. She
develops messaging
and implements strategic
initiatives to grow Red Hat Research
both internally at Red Hat and within
the broader ecosystem of partners.

RH
RQ

Thoughts on open source and open collaboration from
the Greater Boston Research Interest Group (RIG)

V O L U M E 2 : 3

RESEARCH
QUARTERLY

V O L U M E 2 : 3

RESEARCH
QUARTERLY

http://research.redhat.com

research.redhat.com6

Software foundations like operating
systems and hypervisors—to say
nothing of the server hardware itself—

are boring. Or at least that’s how almost
everyone working atop them wants them
to be. Who wants an exciting foundation
when you’re trying to get your job done?

But there’s still plenty of innovative engineering
work going on in those low layers, and cutting-
edge research too. The latter was highlighted at
Devconf.us in talks by PhD students at Boston
University including Ali Raza
and Tommy Unger, Han
Dong, and Parul Sohal.

LOW-LEVEL HARDWARE
AND SOFTWARE
OPTIMIZATIONS DON’T
TAKE ONE FORM
Ali Raza’s research
(research.redhat.com/
blog/research_project/
unikernel-linux/) focuses
on unikernels. The idea of the unikernel is
that you build your app with the kernel it’s
going to run on so that you’ve basically built a
bootable app. Advantages include fast booting,
a reduced attack surface, and a shorter path
from the app to system calls. The current Linux
kernel in this research hasn’t been slimmed
down to just the basics (library kernel) yet,
but a great deal of progress has been made.

Research at Devconf.us:
Optimizing and automating the
foundations of computing

Raza’s co-presenter, Tommy Unger, is working on
the hypervisor layer. Like unikernels, hypervisors
can be smaller and therefore offer a potentially
smaller attack surface than a full-blown operating
system kernel. Nonetheless, because they are
both ubiquitous and essential, they are security-
critical applications that make attractive targets
for potential attackers. Virtual devices are a
common site for security bugs in hypervisors.
Unger’s work has focused on a novel way of
fuzzing virtual devices (an automated software
testing technique) that combines a standard

coverage-guided strategy with
further guidance based on
hypervisor-specific behaviors.

Parul Sohal’s research interests
lie in the management of
resources at different levels of
the memory hierarchy (Quality
Of Service included). Her goal
is to achieve better resource
utilization and isolation so as
to avoid contention, which

causes application performance degradation below
a minimum quality of service. Sohal’s work takes
advantage of recent Intel processor features such
as reserving a subset of cache for a given program
and memory bandwidth throttling. Combined
with containers and control groups (Cgroups),
these features can help prevent programs
from interfering with each other, something
often called the noisy neighbor problem.

News

The current Linux kernel in
this research hasn’t been
slimmed down to just the
basics (library kernel) yet,

but a great deal of progress
has been made.

RESEARCH
QUARTERLY

V O L U M E 2 : 3

http://research.redhat.com
http://Devconf.us
https://research.redhat.com/blog/research_project/unikernel-linux/
https://research.redhat.com/blog/research_project/unikernel-linux/
https://research.redhat.com/blog/research_project/unikernel-linux/
https://research.redhat.com/blog/research_project/unikernel-linux/
https://research.redhat.com/blog/research_project/unikernel-linux/
https://research.redhat.com/blog/research_project/unikernel-linux/
https://research.redhat.com/blog/research_project/unikernel-linux/
http://research.redhat.com/blog/research_project/unikernel-linux/
http://research.redhat.com/blog/research_project/unikernel-linux/
http://research.redhat.com/blog/research_project/unikernel-linux/
http://Devconf.us:

7research.redhat.com 7research.redhat.com

Han Dong’s work highlights some of
the challenges of tuning software
and hardware. Dong observes that a
modern network interface card (NIC),
such as the Intel X520 10 GbE, is
complex, with thousands of hardware
registers that control every aspect
of the NIC’s operation, from device
initialization to dynamic runtime
configuration. That’s far too many
tuning parameters for a human to
manually configure, and only about
a third of them are even initialized
by today’s Linux kernel. The goal of
Dong’s research is to automate tuning
this NIC using machine learning.

WHAT HAPPENS AT THE
SYSTEM LEVEL?
However, if we now step back and
take a look at the bigger performance
and optimization picture, a challenge
emerges. While specific optimizations

often happen at a very detailed micro-
level—as in the case of the operating
system, hypervisor, processor cache,
or NIC—the real goal is to optimize at
the system (or even the datacenter)
level. And just as individual programs
can suboptimally compete for
resources on a single processor,
so too can individual low-level
optimizations lead to undesirable side
effects at the global system level.

As Red Hat Senior Distinguished
Engineer Larry Woodman puts it,
“Several new CPU/hardware features
whose implementation is not yet well
understood are likely to conflict with
each other when running different
applications and benchmarks, causing
nondeterministic performance behavior.

“Understanding these patterns given
so many variables soon becomes a

daunting task for anyone. For this reason
it’s likely that Red Hat Research will
investigate automating this process
by deploying artificial intelligence /
machine learning (AI/ML) techniques
and algorithms to uncover and attempt
to fix a wide range of scenarios. A
future project Red Hat Research
is investigating involves using AI/
ML for overall system configuration
and, ultimately, automated tuning.
There are so many parameters that
adversely affect each other that
manual or even profile-based tuning
is not effective or even possible.”

You can follow Red Hat Research
projects, and even suggest a project
based on open source software, at
research.redhat.com. Recordings
of Devconf presentations are
available at www.youtube.com/c/
DevConf_INFO/playlists.

RH
RQ

V O L U M E 2 : 3

RESEARCH
QUARTERLY

V O L U M E 2 : 3

RESEARCH
QUARTERLY

http://research.redhat.com
http://research.redhat.com
http://research.redhat.com
https://www.youtube.com/c/DevConf_INFO/playlists
https://www.youtube.com/c/DevConf_INFO/playlists
https://www.youtube.com/c/DevConf_INFO/playlists
https://www.youtube.com/c/DevConf_INFO/playlists
https://www.youtube.com/c/DevConf_INFO/playlists
https://www.youtube.com/c/DevConf_INFO/playlists
https://www.youtube.com/c/DevConf_INFO/playlists
https://www.youtube.com/c/DevConf_INFO/playlists
https://www.youtube.com/c/DevConf_INFO/playlists
https://www.youtube.com/c/DevConf_INFO/playlists
https://www.youtube.com/c/DevConf_INFO/playlists
https://www.youtube.com/c/DevConf_INFO/playlists
https://www.youtube.com/c/DevConf_INFO/playlists

research.redhat.com8

About the Author
Ilya Kolchinsky is a

research scientist with
Red Hat Research

and Technion, Israel
Institute of Technology.

He has a PhD and
BSc in Computer

Science, both from
the Technion. Ilya’s

research interests span
a wide range of topics
in big data processing,

such as distributed
event-based systems,

data stream mining,
and applications

of AI and machine
learning in stream

processing engines.

When machine learning meets big data
processing: From human-native tasks to
machine-native tasks

Feature

Since the inception of artificial intelligence research,
computer scientists have aimed to devise machines that
think and learn like human beings. What else could AI do?

by Ilya Kolchinsky

Image classification, language-to-language
translation, and speech recognition are
some of the most prominent examples

of major tasks attributed to humans in
which great success has been achieved by
modern machine learning technologies.

Unfortunately, as a consequence of this
vision, important tasks that are not perceived
as human native are commonly neglected
by most AI-related research communities.
This category of problems, which we call
machine native, is characterized by: 1) being
unsolvable by a human without the aid of a
computer, and 2) the existence of a known,
not necessarily efficient algorithm capable
of solving the problem. Hard combinatorial
optimization problems such as the traveling
salesman problem or finding the maximum
clique in a graph are obvious examples of this
category. Many practical machine-native tasks
have virtually no known efficient solutions
and could benefit greatly from approaches
based on the recent groundbreaking
achievements in machine learning.

In this article, we will provide a glimpse into a
number of ongoing research directions addressing
this second type of AI-assisted tasks in the
context of the category of computer systems
collectively known as big data processing systems.

BIG DATA (STREAM) PROCESSING
As we enter the era of big data, a large number
of data-driven systems and applications have
become an integral part of our daily lives, and
this trend is accelerating dramatically. It is
estimated that 1.7MB of data are created every
second for every person on earth, for a total of
over 2.5 quintillion bytes of new data every day,
reaching 163 zettabytes by 2025 according to the
International Data Corporation. Many practical
challenges encountered by modern big data
systems are further exacerbated by the growing
volume, velocity, and variety of continuously
generated data, presented to them in the form
of near-infinite data streams. The complexity of
big data processing systems grows over time,
together with user requirements and data volume,
and increases exponentially with system scale.

RESEARCH
QUARTERLY

V O L U M E 2 : 3

http://research.redhat.com

research.redhat.com 9

to scan the huge plan space or a substantial
fraction thereof and is instead forced to utilize
heuristics, which might or might not work.

One approach that could come to the rescue here
is known as deep reinforcement learning—the very
same method that gained fame as the driving
force behind AI-based chess, backgammon, and
Go players. In reinforcement learning, the trained
model learns to perform sequences of moves
leading to states providing maximum reward,
such as a victory in a game. The learning process
is performed by way of trial and error, and deep
neural networks are utilized to handle the huge
possible state space. In the data processing
optimization domain, the process of crafting
an efficient query evaluation plan could be
considered a “game,” with a set of “moves” defined
as all possible selections and placements of an
operator in a particular position. By continuously
creating plans, applying them on sample data,
and measuring the resulting performance, an
optimizer implementing this paradigm could
gradually learn the most efficient plans.

DEEP NEURAL NETWORKS AS AN
EFFICIENT ALTERNATIVE TO TRADITIONAL
BIG DATA PROCESSING MECHANISMS
One could suggest an alternative approach
to the query processing optimization problem
discussed above. Instead of devising smart
algorithms for arranging the operators into
an efficient evaluation plan, why not take
a step further and replace the entire data
processing engine with a pretrained deep neural
network capable of answering the query?

While seemingly unrealistic at first, this idea has a
number of clear advantages. First, since a neural
network merely approximates the expensive
computation that a query processing engine
directly performs, the former is expected to run

A typical big data processing application
involves hundreds to thousands of operators
connected by communication channels to form
a directed graph referred to as a data processing
network. This network is constructed according
to the dedicated query evaluation plan, which
is derived from the queries submitted by the
system users. For the most part, each operator
is relatively simple and serves a generic purpose,
whereas their composition in every segment
of the data processing network implements
an application-specific requirement.

BIG DATA PROCESSING OPTIMIZATION
USING DEEP REINFORCEMENT LEARNING
The problem of data processing optimization dates
back to the inception of early database systems.
The input to this problem is a user query scheduled
for execution, and the task is to convert this query
into a series of low-level operations comprising an
evaluation plan. The same query could correspond
to multiple possible evaluation plans. For example,
if a user wishes to extract and combine data from n
tables, there are n! orders of accessing these tables.
Even more possibilities are introduced if the target
system contains multiple implementation options
for some of the operators, if the computation can
be distributed over multiple nodes, etc. As different
plans could have differences of a few orders of
magnitude in their performance characteristics,
such as execution time and resource consumption,
the task of selecting the optimal plan is of utmost
importance for any data processing system.

Picking the best performing evaluation plan is
a challenging task due to the extremely high
number of possible solutions. Since the early
70s, a plethora of methods and algorithms has
been developed to attempt to solve this problem.
In spite of these efforts, existing solutions
often prove either inefficient or imprecise.
A plan optimization algorithm cannot afford

V O L U M E 2 : 3

RESEARCH
QUARTERLY

V O L U M E 2 : 3

RESEARCH
QUARTERLY

http://research.redhat.com

10 research.redhat.com

remarkable success in learning the data
trends and predicting the future data
stream content based on past history.
While many data analytics and stream
analytics frameworks provide time
series forecasting as a separate feature,
typically as a part of a larger data mining
package, incorporating this technology
into the core of the query processing
engine is yet to become a major trend.

By combining a state-of-the-art time
series forecasting method and an
efficient mechanism for processing
the raw data and acquiring the query
results (such as one of those described
above), a future generation of big data
processing engines could offer a new
capability of accurately predicting query
answers that will enhance the proactive
response abilities of user applications.

WHAT DOES THE FUTURE HOLD?
In this short article, we have barely
scratched the surface of the immense
unrealized potential of machine learning
in the area of big data processing. In
the Technion University research team,
undergraduate and graduate students
are working side by side to produce
innovative solutions for these and many
other open challenges for practical
problems in human-native, machine-
native, and hybrid problem domains.

We are looking for projects that will
help us test these techniques. Those
interested in finding out more about
our project ideas and/or looking
for collaboration opportunities are
kindly invited to contact Dr. Ilya
Kolchinsky at ikolchin@redhat.com.

could be highly beneficial in real-time
processing scenarios where a particular
action must be triggered and promptly
executed immediately (typically within
milliseconds) following an occurrence of
a particular data item or a combination
thereof, and where even the most
prolific data processing techniques fail
to provide a sufficiently small detection
latency. Furthermore, in some situations
the goal is to prevent a certain event
from occurring rather than react to
it, a use case that cannot be realized
without an ability to predict the future
state with some degree of confidence.

For a data processing system to provide
future query answers, there is a need to
get a snapshot of the expected future
data values. The long-established field
of time series forecasting was designed
to do exactly that. An increasingly
active area of research, it received an
unprecedented boost in recent years
following a breakthrough in deep learning.
It was demonstrated by multiple research
teams around the world that certain
types of neural networks (such as LSTM,
TCN, and Transformer) could achieve RH

RQ

...a future generation of big
data processing engines

could offer a new capability
of accurately predicting query
answers that will enhance the
proactive response abilities of

user applications.

considerably faster and to consume
fewer resources. For example, if the user-
defined query is to correlate between two
data streams A and B and to find all pairs
of A’s and B’s satisfying a predefined
condition, the neural network will not
have to actually compare between all
candidate A-B pairs but instead will settle
for a cheaper computation based on
the function it learned during training.
Second, since the inference time (i.e.,
the time required to provide an output
given an input) of a trained network is
constant, the need for using complex
optimization methods and algorithms for
maximizing the performance of a query
evaluation plan would become obsolete.

The main disadvantage of the neural
network-based data processing
approach is the possibility of returning
imprecise or erroneous results due to
the imperfection of the learning process.
An ongoing challenge for research is
to find ways to achieve high levels of
precision by utilizing ensemble methods
or other novel regularization techniques.
In addition, trading off result accuracy
(up to a certain level) for performance
is acceptable or even highly desirable
in many modern big data applications.

PREDICTING FUTURE BIG DATA
STREAM QUERY RESULTS
As indicated above, the primary task of
a big data engine is to deliver up-to-
date query results to the end users. It
might be even more useful to go a few
steps forward and predict the future
returned values based on the observed
trends in the continuously generated
streaming data. Such functionality

RESEARCH
QUARTERLY

V O L U M E 2 : 3

RESEARCH
QUARTERLY

V O L U M E 2 : 3

http://research.redhat.com
mailto:ikolchin@redhat.com
mailto:ikolchin@redhat.com
mailto:ikolchin@redhat.com
mailto:ikolchin@redhat.com
mailto:ikolchin@redhat.com

research.redhat.com 11

About the Author
Vladimír Štill is
a PhD candidate
at the Faculty of
Informatics, Masaryk
University in Brno. His
research topic is the
correctness analysis
of parallel programs
written in C and C++.
His work includes
finding new analysis
techniques and their
implementation in
the DIVINE tool.

Feature

Finding bugs in parallel programs with
heavy-duty program analysis
Parallelism promises to make programs faster, yet it also opens
many new pitfalls and makes testing programs much harder.

By Vladimír Štill

Anyone who has ever tried to write a piece
of parallel software knows it is not an
easy task. Parallelism promises to make

programs faster, yet it also opens many new
pitfalls and makes testing programs much harder.
For example, writing and reading a variable in
parallel from two threads may seem to work, but
it will backfire sooner or later unless the variable
is somehow protected by a lock or using some
language primitives to make the accesses atomic.

The worst part about these problems is that they
often manifest themselves only under specific
timing of the involved threads or on a particular
platform. Therefore, a program might run smoothly
most of the time, but might fail once every few
minutes or even once every few months. A service
failing once every few months on a customer’s
server is surely among developers’ worst
nightmares. Knowing this problem exists, can we
help developers find problems in parallel software?

We believe heavy-duty program analysis
is one option that can help.

THE PROBLEM
To meaningfully use parallelism, threads of a
parallel program often need to communicate with
each other. In this case, it is the responsibility

of programmers to ensure that all of the
communicating threads have a consistent view
of the memory and therefore can work correctly.
For example, consider an insertion to a doubly
linked list. The thread that performs the
insertion will create a new node, set its value,
and set the pointers to the previous and next
node inside the node-to-be-added. So far
no problem can happen in parallel execution:
the new node is not yet visible to the other
threads, and it is not linked into the list.

However, consider that at this point another
thread performs insertion to the same place in
the linked list. Now the list has changed, but the
pointers in the node-to-be-added do not reflect
this change. If the node is inserted anyway, we
will get an inconsistent list. We might miss some
of the inserted elements when iterating over it,
or even find different elements when iterating
forward and when iterating backward. The root
cause of this problem is that the addition of a
node to the linked list is not an atomic operation.
That is, it can be completed partially, and other
threads might be affected by this partial result.

There is no single solution to our example problem.
It might be possible to avoid accessing the list
from multiple threads altogether. It might also be

V O L U M E 2 : 3

RESEARCH
QUARTERLY

http://research.redhat.com

12 research.redhat.com

Heavy-duty tools promise to check that
a program does not do anything wrong
(e.g., trigger an assert, access freed
memory) regardless of the timing of
threads. They can also take into account
more advanced behaviors of the system,
for example, relaxed memory present
in most contemporary processors.
Automated heavy-duty tools do this
using many different basic techniques,
such as stateless model checking,
explicit-state model checking, symbolic
model checking, and symbolic execution.
But in essence, they explore all the
possibilities for the timing of threads
that can lead to different outcomes.
The main difference between these
techniques is in their basic approach
to the complexity of the analysis. Each
of these techniques comes with their
limitations, and it is important to keep
in mind that they are trying to solve a
problem that is probably not solvable
for every case. There will always be
programs for which tools will fail or
require many more resources than
available. There are also similar tools
that can explore all behaviors of the
program based on all its possible inputs,
and tools that combine both capabilities.

THE DIVINE ANALYZER
DIVINE is one of the heavy-duty
analysis tools that can be applied to
parallel programs. It was developed in
the Parallel and Distributed Systems
Laboratory at the Faculty of Informatics
at Masaryk University in Brno, Czech
Republic. DIVINE specializes in analysis
of programs written in C++ (and C)
and can handle both sequential and
parallel programs. It can detect various

sufficient to add a lock that protects
accesses to the list or to make the
list use locks internally. Such locks will
prevent two threads from inserting at
once into the same list. It might also be
necessary to design the whole program
in such a way that it can use some high-
performance lock-free data structures
for the communication. In all but the
first case, we are entering the realm of
parallel programming, and we need to
consider all its implications and risks.

One of the significant difficulties with
parallel programs is that they are hard
to test. This problem is caused by their
dependence on timing. For example,
our linked list example might work
just fine if it so happened that the
insertions are never executed at the
same time during our testing. However,
this does not mean that they cannot
be executed at the same time. For
this reason, tests might not fail for a
buggy program, or they might fail only
sometimes, making debugging harder.

Therefore, there is a need for tools
that can help test parallel programs.

HEAVY-DUTY PROGRAM
ANALYSIS
Many techniques that can improve
testing parallel programs have been
introduced. They have a wide range
of complexity: from relatively fast
code-analysis techniques, similar to
compiler warnings, to more involved
techniques like various thread sanitizers
that can detect unsynchronised
access to the same memory region
from multiple threads. At the far
end of the spectrum, there are
heavy-duty analyses that essentially
explore all possible executions of the
parallel program. While the first two
categories are relatively simple to
use by developers, heavy-duty tools
are still mostly academic projects
that come with specific limitations.
However, we believe their promises
should not be ignored, even if they
are far from being silver bullets.

DIVINE is a modern, explicit-state model checker. Based on
the LLVM toolchain, it can verify programs written in multiple
real-world programming languages, including C and C++. The
verification core is built on a foundation of high -per for mance
algorithms and data structures, scaling all the way from a laptop
to a high-end cluster. The name “LLVM” itself is not an acronym;
it is the full name of the open source project (see llvm.org).

DIVINE is free software, distributed under the ISC licence
(2-clause BSD). You can find more information about
this project, download the software, or simply follow our
progress at https://divine.fi.muni.cz/index.html.

RESEARCH
QUARTERLY

V O L U M E 2 : 3

http://research.redhat.com
http://llvm.org
https://divine.fi.muni.cz/index.html

research.redhat.com 13

bugs including assertion violations, access out
of memory bounds or to freed memory, use
of uninitialized memory, and memory leaks.

To run DIVINE, it needs a test, and it can only
detect problems that can happen in some
execution of the test—i.e., it can try all possible ways
that timing of threads and input data can influence
the run of the test. This enables an entirely new
way of writing tests of parallel programs. For
example, instead of having to exercise the data
structure with millions of elements inserted
from several threads in the hope of triggering an
elusive bug, it is sufficient to try it only with a few
elements from two or three threads. DIVINE’s
ability to explore all possible outcomes will mean
such a test is sufficient (provided it exercises all
features of the data structure, such as triggering
growth in a test of a thread-safe hashset).
Indeed, due to the computational complexity
of program analysis, it is desirable to write tests
for DIVINE that are as small as possible.

We will now look at some interesting
recent additions to DIVINE with
regards to parallel programs.

RELAXED MEMORY
In the struggle to construct more and more
powerful processors, processor designers
sometimes make decisions that make
programmers’ lives harder. One of them is the
use of relaxed memory to speed up memory
access. Processors use caches, out-of-order
execution, and speculative execution to mask the
latency of the main memory. On most processor
architectures, the presence of these mechanisms
is observable by parallel programs. Maybe you
have heard about the Meltdown and Spectre
security vulnerabilities? They are caused by the
same mechanisms that result in relaxed memory.
While Meltdown and Spectre affect the security

of programs and operating systems, relaxed
memory affects only parallel programs, but can
cause them to crash or produce incorrect results.

Relaxed memory manifests itself differently
on different hardware platforms. For the sake
of simplicity, we will consider the x86-64
processors manufactured by Intel and AMD.
These processors power most modern laptops,
desktops, and servers. Other processors, e.g.
high-performance ARM, are often even more
relaxed. On an x86-64 processor, when a program
stores data to a certain memory location, the
processor does not wait for the store to finish
before it executes the next instruction. Instead, it
saves the stored value and its address internally
into a store buffer that holds it until the store
is committed to the memory. If the same CPU
core that saved it reads the given location, it will
get the value from the store buffer. Therefore,
single-threaded programs behave as expected.
However, if the same location is accessed
by another thread running on another core
while the store is in the store buffer, the new
value is not yet visible to the other thread.

This can lead to very unintuitive behaviour. For
example, consider a very simple program with
two threads T1 and T2 and two global variables
x and y (initialized to 0). Thread T1 performs
two actions: it assigns 1 to x (x f1) and reads y
(read y). Thread T2 has the variables switched:
it performs y f 1 and reads y. The question
is what happens if both reads can read 0?

If we tried simulating these threads, we would
probably conclude this cannot happen. At least
one of the assignments has to happen before
both of the reads, and therefore at least one of
the variables has to be 1. However, thanks to the
store buffers, both reads can return 0 on x86-64.
For example, we can first execute all actions of

V O L U M E 2 : 3

RESEARCH
QUARTERLY

http://research.redhat.com

14 research.redhat.com

T1 : x f 1; read y, clearly, the read
returns 0. However, on x86-64, it is now
possible the value 1 for variable x is not
yet saved in the memory but instead is
in the store buffer corresponding to T1 .
Therefore the memory still contains
value 0 for x. Now we execute T2 : y f 1;
read x. Unless the store x f 1
was already propagated to the
memory, the read would return 0: a
value which seem to be impossible
from the inspection of the program.

Figure 1 (below) shows the
actions against the store
buffers as described above.

Programs have to use some sort of
synchronization to prevent relaxed
behaviour from breaking their
programs. One option is to use locks:
locks not only prevent two parts of the
program that use the same lock from
running at the same time, but they also
ensure that all modifications performed
before a lock is released will be visible
after it is acquired, even if each
operation happens in different threads.
However, locks can slow the program

significantly, especially if they are
used for long stretches of code or very
often. An alternative approach is to
use atomic accesses provided by the
platform or programming language.
These are faster than locks, but
slower than unsynchronised access

and can only operate on a single
memory area of limited size (e.g., 8
bytes on 64-bit platforms). Atomic
accesses are often used to implement
high-performance thread-safe data
structures that can be accessed
from many threads at once. If the
programmer chooses to use atomic
accesses, they will have to consider

the possible ordering of events very
carefully and always keep in mind that
it does not behave as expected.

Furthermore, testing program
behaviour under relaxed memory is
especially hard. Not only do we have
all the problems already mentioned for
parallel programs, but an improperly
synchronised program can also be very
susceptible to minor modifications. For
example, a tool that tracks memory
accesses to detect unsynchronised
parallel access can also easily mask
relaxed behaviour and related errors.

In 2018, we published an extension
of DIVINE1 that allows it to analyze
programs running under the x86-
TSO memory model that describes
relaxed behaviour of x86-64
processors and therefore should
encompass behaviour of both current
and future x86-64 processors. With
this extension, DIVINE can find bugs
caused by relaxed behaviour that
would manifest on these processors.

While DIVINE is undoubtedly not the
only tool that can analyze programs
running under relaxed memory, we
have shown that its performance is
comparable to the best tools that
handle x86-TSO and that each kind of
tool seems to have different strengths
and weaknesses (i.e. they can handle
different kinds of programs well). We
believe that DIVINE, with the wide range

While DIVINE is undoubtedly
not the only tool that can
analyze programs running

under relaxed memory,
we have shown that its

performance is comparable
to the best tools

int x = 0;
int y = 0;

void T1() {
y = 1;
int a = x;

}
void T2() {

x = 1;
int b = y;

}

Is a = 0 ∧ b = 0 reachable?

shared memory

x 0
y 0 store buffer store buffer

y 1 x 1

thread T1

y = 1;
load x; →0

thread T2

x = 1;
load y; →0

Figure 1. A variable in the store buffer has not yet been saved in the memory.

1Vladimír Štill and Jiří Barnat, “Model Checking

of C++ Programs Under the x86-TSO Memory

Model,” DIVINE 4, divine.fi.muni.cz/2018/x86tso

RESEARCH
QUARTERLY

V O L U M E 2 : 3

http://research.redhat.com
https://divine.fi.muni.cz/2018/x86tso
https://divine.fi.muni.cz/2018/x86tso
https://divine.fi.muni.cz/2018/x86tso
https://divine.fi.muni.cz/2018/x86tso
https://divine.fi.muni.cz/2018/x86tso
https://divine.fi.muni.cz/2018/x86tso
https://divine.fi.muni.cz/2018/x86tso
https://divine.fi.muni.cz/2018/x86tso
https://divine.fi.muni.cz/2018/x86tso
https://divine.fi.muni.cz/2018/x86tso
https://divine.fi.muni.cz/2018/x86tso

15research.redhat.com

of bugs it can detect and with good
support for C++, can be a useful tool for
analysis of thread-safe data structures.

DETECTING NONTERMINATING
PARTS OF PROGRAMS
Another interesting problem in parallel
software is termination. It often
happens that one action waits until the
other finishes. For example, getting
an element from a thread-safe queue
might wait for an element to become
available, or entering a critical section
must wait until another thread leaves
it. Furthermore, we are often not
interested in termination of the whole
program. It might be a daemon or
server (or its event loop in the test).

Research in this area is much
less intensive than in the case of
relaxed memory. Most approaches
to termination focus on sequential
programs, or on specialized modeling
languages for parallel programs. Even
the approaches that target parallel
programs in realistic programming
languages are often focused on the
termination of the whole program.

In 2019, we published a paper about an
extension of DIVINE that allows it to
find nonterminating parts of programs.2

To know which parts of the program
must terminate, we use the notion of
resource sections, essentially a piece
of code with specified entry and exit
points, such as a function or its part.

With these resource sections marked
in the program, the extended DIVINE
can check that the program cannot
get stuck inside any of these resource
sections. Some resource sections can
be marked automatically by DIVINE.
These include waiting for locks, critical
sections of locks, waiting for condition
variables, and waiting for thread joins.
The user is also able to insert new
resource sections in their code by
simple annotations. For example, an
author of a thread-safe queue with
a blocking dequeue operation might
want to mark it as a resource section.

WHERE IS DIVINE HEADED NEXT?
Research around the DIVINE analyzer
also focuses on other topics, currently
mostly on a symbolic and abstract
representation of data. This allows
DIVINE to handle programs in which
some variables have arbitrary values
or some inputs contain arbitrary data.
DIVINE can then decide if the program
is correct for all possible values of
such data. These kinds of analyses
come with a significant increase
in computational complexity, and
some of the contemporary research
in our group focuses on ways to
improve its efficiency through the
use of lossy abstractions and their
iterative refinement. Further research
in our group includes enabling the
decompilation of x86-64 binaries
into LLVM, which would allow DIVINE
to analyze native binaries. There is
also research on the use of symbolic
data in decompilation. However,
the research into decompilation
is in quite early stages.

T

We believe that DIVINE,
with the wide range of
bugs it can detect and
with good support for

C++, can be a useful tool
for analysis of thread-
safe data structures.

RH
RQ

2Štill and Barnat, “Local Nontermination

Detection for Parallel C++ Programs,”

DIVINE 4, divine.fi.muni.cz/2019/lnterm

V O L U M E 2 : 3

RESEARCH
QUARTERLY

http://research.redhat.com
http://divine.fi.muni.cz/2019/lnterm

research.redhat.com16

Mental models: Qualitative research to
design for Red Hat OpenShift users

Feature

To design effectively for our users, we need to learn more about them.
If we don’t, we may make a product that our users can’t be efficient in,
or worse, a product that our users have no need for in the first place.
Our group within Red Hat’s User Experience Design (UXD) team
works specifically on the part of Red Hat OpenShift that operators
(or system administrators) use to deliver the OpenShift platform
on which developers create applications. We wanted to get a firmer
understanding of who our users are. What do the users do every day?
What motivates them? What challenges do they face? The operator’s
problem space is complex, especially to those without a background in
system administration.

By Carl Pearson and Sarahjane Clark (Red
Hat UXD Research), with Brian Dellascio
(Red Hat UXD Visual)

One way that our UXD team can be sure
we’re starting with our users in the design
process is by using a set of personas.

A persona is a summarization of a segment of
users or customers. Each persona segment
typically gets a name, a picture, generic attributes
(such as income and age), and highlights
about their attitudes, needs, and beliefs.

The marketing field has used personas for decades
in their work. For our UXD team, we needed to
go even deeper into our users’ backgrounds and
work than a typical marketing approach. Because
the UXD team designs all minute interactions
within a visual interface, we decided to use
a specialized persona creation process that

prioritizes day-to-day tasks of our users over
high-level attributes and beliefs. The mental model
approach by Indi Young (indiyoung.com/examples)
is a robust technique to visualize the complexity
of a job like that of an OpenShift operator.

MENTAL MODEL RESEARCH PROCESS
The mental model approach uses qualitative
interviewing to uncover nearly all tasks related
to a user’s main job (in this case, the job of
delivering a cloud platform). A task in this
case is simply something a user completes
for their job that focuses on their goal and
not the underlying technology used to do it
(write documentation, create a cluster, send an
outage message to a customer, and more).

RESEARCH
QUARTERLY

V O L U M E 2 : 3

http://research.redhat.com
https://indiyoung.com/building-mental-model-diagrams/
https://indiyoung.com/building-mental-model-diagrams/
https://indiyoung.com/building-mental-model-diagrams/
https://indiyoung.com/building-mental-model-diagrams/
https://indiyoung.com/building-mental-model-diagrams/
https://indiyoung.com/building-mental-model-diagrams/
https://indiyoung.com/building-mental-model-diagrams/
https://indiyoung.com/building-mental-model-diagrams/
https://indiyoung.com/building-mental-model-diagrams/
https://indiyoung.com/building-mental-model-diagrams/
https://indiyoung.com/building-mental-model-diagrams/
https://indiyoung.com/building-mental-model-diagrams/
http://indiyoung.com/examples

17research.redhat.com

The interview approach we used focused
on exploration rather than confirmation.
We aimed to uncover tasks that our
users regularly complete that we didn’t
already know about. For this reason, our
interviews were semi-structured: they
had loose prompts but not a checklist of
questions we asked. This allowed users
to drive the interviews towards what they
do in a naturalistic way. We interviewed
nine OpenShift users, with a mix of titles
and backgrounds, but all worked on
OpenShift or Kubernetes platforms.

To analyze the data, we manually
extracted every single task that was
mentioned in an interview. We reduced
hundreds of tasks to remove duplicates
and ended up with over 200 tasks.
Scanning a list of 200 tasks is nearly
impossible to make sense of, so we
grouped the tasks into “task towers” and
“mental spaces.” A task tower is a set
of highly related tasks (platform health
monitoring or scaling the platform). Task
towers then fall into a broader grouping

of a mental space. This is higher level
categorization, such as platform
management. Ultimately, the final mental
model map is a rich, organized set of
all the tasks our users complete in their
work. The mental spaces and task towers
can be used to navigate the complex
space that our users work in. Figure 1
(below) shows our mental model map.

In this map, each card is a task. Each
vertical stack is a task tower, and
each gray horizontal bar is a mental
space that groups tasks towers. This
map was originally all gray until we
incorporated our next step, personas.

The mental model map can be used
in a number of ways by designers,
product managers, or anyone who wants
to explore the full context of users.
One typical activity is to map existing
product features vertically above each
tower where a user goal is met. This can
illuminate areas where new features
may be needed. Another activity would

Figure 1. The mental model map

be a design thinking workshop, a group
activity where designers and engineers
create solutions to problems. In order
to create good solutions, it helps to
know where real problems are, and
this map can help design thinking
workshop participants understand
where the problems might be.

THE PERSONA PROCESS
The mental model alone doesn’t
segment the map into who may be more
or less likely to spend time on each task.
We also developed a set of personas
to segment the tasks and clarify how
certain users may vary across the map.
This is critical for our UXD team because
we know that OpenShift users have a
variety of goals for typical tasks. We
wanted to ensure we could properly
design for unique use cases depending
on the goals of certain groups of users,
for example, developing platform
features more often or monitoring
platform operations more often.

Using themes drawn from the task
towers and mental spaces, we created
a set of behavioral variables (from
Alan Cooper’s About Face) that

The mental model map
can be used in a number of
ways by designers, product
managers, or anyone who
wants to explore the full

context of users.

V O L U M E 2 : 3

RESEARCH
QUARTERLY

http://research.redhat.com
https://www.wiley.com/en-us/About+Face%3A+The+Essentials+of+Interaction+Design%2C+4th+Edition-p-9781118766576
https://www.wiley.com/en-us/About+Face%3A+The+Essentials+of+Interaction+Design%2C+4th+Edition-p-9781118766576
https://www.wiley.com/en-us/About+Face%3A+The+Essentials+of+Interaction+Design%2C+4th+Edition-p-9781118766576

research.redhat.com18

On the opposite page, we give a snapshot of each
persona, but it’s best to get into the full PDF to learn
about all the details of a typical OpenShift operator.

PUTTING MENTAL MODELS TO WORK
We built this set of personas based on data from real
users and a rigorous qualitative data analysis process.
These personas haven’t been quantitatively validated,
but they’re rooted in the real experience of those using
OpenShift/Kubernetes. So far, the UXD team has used
these results to jump start ideation work in the creation
of new, innovative features for our OpenShift operator
customers. The mental models and personas have also
begun to serve as a platform for quickly bringing new
designers up to speed in our highly technical space.

As with any good research project, our work opened
up new questions. Our follow up is to explore a
gap with an Operations persona, someone mostly
concerned with monitoring and troubleshooting
production clusters rather than building new
cluster features. It’s likely they will not have any
fundamentally different atomic tasks to add to
our mental model, but will result in a new persona
based on how often they do certain tasks.

The mental model map and subsequent personas are a
useful set of methods, especially for anyone designing
in a technical user space. Our evergreen results speak
to the broader nature of being a system administrator
and will hold true for many years to come. RH

RQ

represented the spectrum of possible behaviors
across our participants. We placed each participant
on the variable spectrums. Then we qualitatively
assessed how our participants clustered together.
These formed the basis for how many personas
we developed and what they represented.

After splitting up our participants into three
personas, we dove back into verbatim quotes to
form typical background characteristics, technical
environments, goals, challenges, learning strategies,
and team networks. We also coded the tasks from
the mental model map to show which personas
were more likely to complete each task.

Figure 3. Example layout from The Generalist persona

Figure 2. Behavioral variable examples

RESEARCH
QUARTERLY

V O L U M E 2 : 3

http://research.redhat.com

19research.redhat.com

Carl Pearson joined
Red Hat as a user
researcher after
earning his PhD
in human factors

psychology at
North Carolina State

University. He employs
a mixed-method research approach to
uncover the core needs of OpenShift
operators and how they use OpenShift.

This persona is most concerned
with initial building of the
cluster and how it will fit
into a company environment
(consultant is a common role).

Key goals: researching new
distributions and features to create
PoC clusters or initial configurations
to hand off to operators.

Key challenges: working to
support an operations team
that may lack their OpenShift
sophistication and having to keep
up with documentation writing.

This persona is who we may think
of most commonly as an OpenShift
operator. They are capable of
building initial clusters and being
the expert in their operations
as well (SRE is a common role).

Key goals: automating everything
possible to open up time for more
platform development and to ensure
their platform is developed and
operated in compliance with the
security organization’s requirements.

Key challenges: ensuring
developers are enabled to be
successful on the platform and
navigating scheduling with dozens
of different teams using their
platform during upgrades/patches.

This persona leads a team of SREs
and sometimes dedicated operations
engineers. They are tied closely to
the business needs around their
platform but also able to get hands-
on in the UI/CLI when necessary.

Key goals: guiding their team
to prioritize automation and to
advocate for technology choices
with VP level management.

Key challenges: keeping
their high expertise SREs from
having to spend too much time
troubleshooting small issues
and keeping costs balanced with
optimal platform processes.

THE BUILDER THE GENERALIST THE MANAGER

Brian Dellascio
is a principal
user experience
visual designer
at Red Hat.

He feels
that beautiful

design gets out of
the way and becomes a vehicle to
disseminate large/complex data sets.

Sarahjane Clark is a senior
user experience researcher
at Red Hat, supporting
Red Hat OpenShift.
Her focus on finding

deep insights through
qualitative research studies,

backed by solid quantitative
data, helps teams design and build products
that make operators, system administrators,
and developers successful in their work.

About the Authors

V O L U M E 2 : 3

RESEARCH
QUARTERLY

http://research.redhat.com

research.redhat.com20

About the Author
Chief security architect

Mike Bursell joined Red
Hat in August 2016 in

the Office of the CTO,
following roles working on

security, virtualisation, and
networking. After training

in software engineering,
he specialised in

distributed systems and
security, and has worked in
architecture and technical

strategy for the past few
years. His responsibilities

at Red Hat include
security strategy, external
and internal visibility, and
thought leadership. He is

one of the co-founders of
the Enarx project (https://

enarx.dev). He regularly
speaks at industry events
in Europe, North America,
and APAC. He is currenty

writing a book for Wiley
on Trust in Computing

and the Cloud.

Open source cybersecurity and the
next generation of computer scientists

Interview

by Mike Bursell

Mike Bursell: First of all, tell me about
how you got involved with open source.

Václav Matyáš: That’s a good question,
and it goes well over ten years back in
history. In the Faculty of Informatics
[at Masaryk University], while working
ad hoc with various industrial partners
in Brno, we decided to put some form
and coherent structure to our industry
cooperation. So we surveyed the
town, and since we had been keen on
open source since our establishment,
twenty-five years back, we found the
most natural vibe with what we were
doing and thinking in Red Hat.

We thought, okay, Red Hat is the place
to discuss more systematic and even
wider cooperation. We found the people
that were keen to discuss it, like [Red Hat
engineer] Radek Vokál and others, and it
made sense, it fit, and it started working.

Mike Bursell: Excellent. Twenty-five
years of open source, that’s a long time.

Is that open source commitment a decision that
your faculty made, or the university made?

Václav Matyáš: Another good question, and
I don’t know the answer. I can only speculate,
and my speculation would be that it was in the
blood and ideas that we started the faculty with,
twenty-five years back. I was a PhD student then,
and we always tried to have the publications
open. We wanted to see the software working,
wherever it was possible, and we wanted to
get feedback with respect to that software.

Mike Bursell: You got involved with open
source as a PhD student, or even before that?

Václav Matyáš: During my PhD studies. There
were many more people within the Faculty of
Informatics then that were already contributors
to open source. I was just a user and observer.

Mike Bursell: It wasn’t on my list of questions, but
I’m very interested in open source and security,
specifically. Do you have any strong feelings about
the position of open source and security, or maybe
the other way around, security and open source?

Red Hat Research Quarterly invited Mike Bursell, Red Hat’s Chief Security
Architect, to chat with Václav Matyáš, Professor with the Centre for Research
on Cryptography and Security at the Faculty of Informatics, Masaryk University,

about his focus on cybersecurity education and how he has leveraged open source
software projects as the laboratories and proving grounds for his students’ work.

RESEARCH
QUARTERLY

V O L U M E 2 : 3

http://research.redhat.com
https://enarx.dev
https://enarx.dev

research.redhat.com 21

Two of Harvard University’s leaders in data sharing and privacy preservation in scientific and computer technology,
Mercè Crosas (left) and James Honaker (right), talk about open source solutions with Red Hat’s Sherard Griffin.

Václav Matyáš is a Professor at Masaryk
University, Brno, CZ, acting as the Vice-
Dean for Alumni Relations and Lifelong
Learning at the Faculty of Informatics. His
research interests are related to applied
cryptography and security; he has published
well over 170 peer-reviewed papers and
articles and has co-authored several books.
He worked in the past with Red Hat Czech,
CyLab at Carnegie Mellon University, as a
Fulbright-Masaryk Visiting Scholar at the
Center for Research on Computation and
Society of Harvard University, Microsoft
Research Cambridge, University College
Dublin, Ubilab at UBS AG, and as a Royal
Society Postdoctoral Fellow with the
Cambridge University Computer Lab.
Václav also worked on the Common
Criteria and in ISO/IEC JTC1 SC27.

V O L U M E 2 : 3

RESEARCH
QUARTERLY

http://research.redhat.com

research.redhat.com22

Václav Matyáš: I do. I have a very funny story.
There is a small association of industrial players
that is hosted by the university, and it tries
to play some role in cybersecurity education
at secondary schools. They came out with a
publication, a few weeks back, where they took
a position that basically dates to the previous
century: “open source is not reliable because

nobody is supporting it, and you cannot really
trust it, so therefore it should not be used for
security purposes.” When I read that, I thought—
okay, this must have been written by somebody
who still wears the same glasses as in the 1990s.

So today we had a very nice discussion with a
couple folks from the town, and also from Prague,

RESEARCH
QUARTERLY

V O L U M E 2 : 3

http://research.redhat.com

23research.redhat.com

on openness, confidentiality, and open
source—not only open source software,
but also open hardware. It was very
useful for us, because many of the
discussions went back to factors that
were true deep in the last century.

Today the situation is like this: You have
an algorithm, mathematically proven,
sound under various constraints, okay,
nice, but then there is some logic with
which you implement it, maybe even
in some dedicated hardware. Then
come the questions: Where did the
hardware come from, what are the
impossible vectors in that, what do you
know about that hardware? Then you
realize that you know much less about
the hardware than you know about
most of the software. Why would you
scrutinize software so much in terms
of algorithmic complexity, maybe even
performance, and look at it from various
angles, security being one of them,
before you say okay, this software is
good enough to run, but then you run
it on hardware about which you know
nothing? I am definitely a keen promoter
of open insight into security solutions.

Mike Bursell: I was looking through
some of the work you’ve been doing
on your academic page, and I noticed
a piece of work you did on the usability
of OpenSSL. Tell me a bit about
that, and why that’s important.

Václav Matyáš: We came to that
about four years back when we
realized that OpenSSL has got well
over twenty years of history, but for
people who don’t use it every day,

there’s much too much to learn just
to do basically primitive functions.

From that we thought, okay, let’s
examine this systematically. This was
an area that started booming about ten
years back, with end users and usability.
We thought, everybody does that, so
let’s look at this from a different angle.
We have users of the library that are
developers and skilled IT folks, and we

tell them to use OpenSSL for this and
that. So they are using this famous
security library. Then we’d measure
what they like about it, what they don’t
like, what is easy to do. We did the
first evaluations, and then we figured
out that the scope was too broad, so
we narrowed it down to the work with
public e-certificates. Even just that
will be a pretty good PhD thesis.

My student, Martin Ukrop—I believe he
has an article in the last issue of RHRQ
(https://research.redhat.com/research-
quarterly-2-2, “Don’t Blame The
Developers” — Ed.)—was a very good
and natural pick to be the PhD working
on this, and with him we designed

the experiments. Of course, after the
experiment, you will not only learn the
results, but you will learn everything you
did badly in designing the experiment,
how it should be better next time. We
repeat this in basically annual cycles.

Mike Bursell: It’s not just how you
create certificates, but how you use
them and how they’re trusted. Could
you talk a bit about that? Because
it underpins so much of what we
do on the internet these days.

Václav Matyáš: Definitely. Certificates
have been around for about two
decades, but still a majority of people
who are using them and relying on them
misunderstand what they are good for,
and how they work. Our experiments
showed this clearly, even with the skilled
people who are IT pros. They don’t
understand what the OpenSSL system
is telling them about why a particular
certificate is good for this, and not
good for that. We realized it’s actually
a lot of stuff that goes beyond code,
to documentation error messages.

Most of the research that we did in the
past three years is now public, and it
went through some nice publications.
Now we’re working on another, which
will be Martin Ukrop’s final paper, that
shows our effort and improvements
we did to redesign error messages and
redesign documentation. We actually
have very nice support from Red Hat
staff. So the last paper will be showing
positive outcomes: not only what the
problems are with SSL, but what we
could improve, what we did improve,

...we realized that OpenSSL
has got well over twenty
years of history, but for
people who don’t use it

every day, there’s much too
much to learn just to do

basically primitive functions.

V O L U M E 2 : 3

RESEARCH
QUARTERLY

http://research.redhat.com
https://research.redhat.com/research-quarterly-2-2
https://research.redhat.com/research-quarterly-2-2
https://research.redhat.com/research-quarterly-2-2
https://research.redhat.com/research-quarterly-2-2
https://research.redhat.com/research-quarterly-2-2
https://research.redhat.com/research-quarterly-2-2
https://research.redhat.com/research-quarterly-2-2
https://research.redhat.com/research-quarterly-2-2
https://research.redhat.com/research-quarterly-2-2
https://research.redhat.com/research-quarterly-2-2
https://research.redhat.com/research-quarterly-2-2
https://research.redhat.com/research-quarterly-2-2

24 research.redhat.com

Mike Bursell: For me this is how open
source should work. It’s contributing
not just code, but knowing you can
contribute code, and audit code, and
test, and make sure that the ideas
and the theories are also all in there.
I love how that fits at several layers.

I was looking at the other work
you’ve done in crypto primitives.
Could you talk about that?

Václav Matyáš: This comes from a
series of projects that we had, both with
the Czech National Security Agency of
that time, and industrial partners. We
found that we often work with computer
systems, typically small hardware like
smart cards, where we cannot check
what they actually run, but we can
observe through various side channels
how they run things, whether they
run things one way or another. Even if
we do not know exactly how they run
things we can watch the output, so we
then became obsessed with watching
output. We got a crazy idea: okay, we
do not know how these designers of
these hardware pieces—not just smart
cards—do that, but let’s have these

things running for weeks in clusters, and
let’s generate millions of keys out of that.

We later repeated the same effort
with the crypto libraries, where it
was much easier, but the inspiration
came from closed hardware. Then
we thought if we generate these
millions of keys— it was actually tens
of millions of keys ultimately—then
we can run various checks, look for
patterns. We figured out some things
that were not expected at all: where
people expected some particular data,
particular components, or cryptographic
keys to be random, we were able to
show visually and numerically that
clearly these are not random.

Mike Bursell: Explain to people who
may not technically know as much about
security why that’s important, why the
randomness of these things is important?

Václav Matyáš: It’s important for
a very simple reason. If you see
somebody tossing a coin, and you see
five times head, head, head, head, what
do you expect the sixth attempt?

The mathematician will tell you the
likelihood is still one-to-one. The naive
person will tell you it’s definitely going
to be a tail. And the security person
will tell you it’s a biased coin, so it’s
definitely going to be a head again. You
have the same situation, three different
backgrounds, and three different
answers to the question. The importance
in security is best explained like so:
Imagine that someone could choose a
key that was created now or at any time

and where we still feel some debt to
the project. We did not have the power
to finalize the improvements, and we
hope other people can follow up.

Mike Bursell: Do you often work with
Red Hat when you find these sorts of
things where improvements could be
made? Obviously you’re interested
in not just pointing out problems
but improving security. How do you
work with Red Hat, and what other
routes do you take in the faculty?

Václav Matyáš: Why and where
with Red Hat? One reason is
open source: we want to see the
improvements happening, and as
much any academician we want to see
things working and be published.

With some companies that takes years.
For me as a researcher, on one hand it’s
positive, on the other hand frustrating
to give someone an idea that they don’t
implement, then four years later they
decide that it’s a very good thing and
they use it in another project later on.
Whereas in open source, you can see
whether the thing is useful right now,
and we can actually go forward and help.

We are not afraid of coding, so when
we see that things can be adjusted in
this way or that way, we can do that.
With a company that has proprietary
software, sometimes even under NDA
for both sides, we cannot make this
step forward. From this perspective, our
work with Red Hat fills these academic
expectations, and makes us happier to
work with projects that are open source.

Why and where with Red
Hat? One reason is open

source: we want to see the
improvements happening,

and as much any academician
we want to see things

working and be published.

RESEARCH
QUARTERLY

V O L U M E 2 : 3

http://research.redhat.com

research.redhat.com 25

in the past, and your goal is to determine when
the key was created. If you have no clue, and
the chances of the key being created now or 50
million years ago are the same, then it’s impossible
to determine the time of the key generation.
However, if it’s not really random and the chances
are not the same—for example you know that it
has been generated today—then you definitely will
not be guessing for the previous millions and tens
of millions of years. You have a much more narrow
subset of choices to make, and your chances to
win this bet and find the right key are much higher.

Mike Bursell: The bet is basically that they can
decrypt when you send your credit card to an
online retailer, and they can maybe get your credit
card because they have enough information
to bet or to guess when it was encrypted?

Václav Matyáš: Exactly. It ties also to the non-
crypto system security. If I have an unlimited
number of guesses that only cost me some
computing time, then I will try all the possible time
expressions for today, and I will do what we call
brute force it. If I know the key has been generated
today, I can definitely guess the time if I’m not
extremely limited in my number of choices.

But if the entire universe of time
expressions was available ...

Mike Bursell: You’d be guessing for a long time.

Václav Matyáš: I can’t do it.

Mike Bursell: Yes. Excellent. I wanted to
talk about another thing, which I understand
you’re interested in, which is girls and
women in tech. What do you do there?

Václav Matyáš: It’s a loss of human talent,
I would say. I’ve got three kids, and one of

V O L U M E 2 : 3

RESEARCH
QUARTERLY

http://research.redhat.com

research.redhat.com26

them is a girl, or a woman now. I can see that
when it comes to elementary school, and
then sometimes even unfortunately high
school, girls get the message, “Mathematics
is not exactly for you, and computers, no, this
is not for you at all. You will definitely find
other subjects where you will excel better.”

Making these statements just based on sex is,
a) of course, unfair, but b) it’s harming the entire
human population, because from my experience
women and girls have been successful in coding,
successful in proposing computer systems,
successful in history in running computer systems.
Look at the World War II examples. I see no
natural constraint that would make me claim
there is some area of computer science where
women are systematically worse than men.

I believe, given the different treatment of women
in many ways, that at the age of productivity, after
high school or university, the mindsets of women
will be somewhat different than the mindsets
of men, in some aspects. I’m generalizing now
a lot, I understand, but having a different angle
and different view of the problem helps a lot,
particularly in security. If we deprive ourselves
of this different look at the matter, then we are
losing. We can have an attacker that may say,
let’s have this group of people like women—or
another group—looking into this, and they will
see the mistake that we did, that we missed.

Mike Bursell: Indeed. I agree, this is
very important. What does your faculty
do? Do you do anything with Red Hat
to encourage women and girls?

Václav Matyáš: I believe that I can say that we
try to do a lot. Out of the universities in the wide
region of the Czech Republic, when speaking
of similar faculties or schools, our numbers are

impressive, but still not impressive enough for me.
I mean we are now around 20 percent—sometimes
we go to 22 percent, sometimes 19 percent—but
around 20 percent of our intake to programs
are women. This is better than other technical
computer science and engineering faculties in the
region, but it still can be improved significantly.

We hosted for many years the association that is
fairly well known in Czech and Slovak Republics,
Czechitas, the young ladies that actually have
their primary mission to increase the number of
women that are engaged in IT. Now they’ve gone
to bigger offices than we can provide, but still we
host a lot of their seminars. I was with them for
some discussions just last week, when they had
some trainings at our university, and we tried to
cooperate with them as much as possible. We are
meeting Red Hatters at these occasions quite a
lot, actually, so thanks a lot to Red Hat for that.

Mike Bursell: If I were a person who’s not got a
security background—I might be an undergraduate,
I might be someone looking at moving in IT
to something different—but I’m interested in
security, where would you say I should start? Are
there any books, are there any things I should
read, are there any films I should watch?

Václav Matyáš: If it’s a university student
already, then I would say grab a copy of Ross
Andersen’s Building Distributed Systems
book. For that you need the person to
understand the basics of computer systems,
and appreciate some factors of everyday life.
This is not a book that I would recommend
to a high school student, by any means.

For a high school student, then it actually
depends. We do a lot of things with talented
high school students, but these are students
that were selected typically by their teachers of

T

...having a
different
angle and
different

view of the
problem

helps a lot,
particularly
in security.

RESEARCH
QUARTERLY

V O L U M E 2 : 3

http://research.redhat.com

27research.redhat.com

computer systems, or they came to
computer science from discussions
with their parents or something.
They already believe that computers
are something that is maybe good
for their future career. For these
people, we already treat them nearly
the same way as we do university
students. We give them very specific
tasks, we provide them with more
guidance how to get to the solution,
but still we do not provide much of a
narrative how or why to do security.

Whereas, if we have discussions with
general student groups in various high
schools who are not these selected
highly talented students, I would
suggest probably another book where a
lot of stories and interesting ideas come
from, and it’s tied to history: The Code
Book from Simon Singh. These students
will typically not be up to reading David
Kahn. Giving them David Kahn is a
very good option, but some may not
read a book that thick. Singh is much
shorter, and serves this purpose well.

Mike Bursell: I agree, it’s a very good
book. I sometimes tell people if they’re
looking for fiction and they want a
big book then Cryptonomicon is a
fascinating introduction to the world
of how people think about it. There’s
lots of stuff about World War II and
modern things as well, but it’s a fun
read, so that’s another place I start.

Václav Matyáš: That’s a very
good read, too. You are right.

Mike Bursell: Can you give me some

examples of the things that you’re
doing in the faculty at the moment
that you might point someone at?

Václav Matyáš: One of the things
is a set of tools. It ties to the crypto
primitives and helps one to check
whether the crypto primitives,
whether in hardware or software,
have been implemented correctly.
We have been redesigning many of
them for quite a few years, providing
them of course as open source and
supporting them as well. This is
definitely something that we believe
in. The ultimate expectation is that
you will have a semi-automated
system to which you can give
an implementation, whether in
software and maybe in the future
hardware as well, and it will not only
tell you whether the functionality,
let’s say output of cryptography,
is wrong or right, but if it’s wrong
it will give you a few hints as to
what may have been the causes.

This is challenging. It will probably
take a decade or two, but I believe
that in the future these will be the
first steps of cryptoanalysis. The
way we do cryptoanalysis now, we
do various tests, then we check
the outputs with NIST and so on.
In the future we are running pieces
of software, and there is already
enough knowledge to see that not
only we run pieces of software, but
that software—if we have reached
enough data—tells us that there
has been something fishy, and
maybe why it has been fishy.

Mike Bursell: Yep, yep.

Václav Matyáš: So that’s one. Another
is the one we already discussed, and
that’s usable security. There we can
document for the student, “This is the
problem with public e-certificates, about
which we told you about in class. These
are the experiments that we did—you
can easily read about them—and this
is what we do now improving error
messages.” It’s not just looking out of
the window and just by the weather
deciding how to redesign it; there is
some systematic effort that we learn
from psychologists how to work with
people, how to experiment, and how to
get to a better version. Similarly, I’ll go
through about three or four other areas.

Mike Bursell: Another question
I was going to ask is, let’s assume
that I’m a talented MA student, or
undergraduate student, and I come
to you and ask which areas are going
to be important in security in the next
ten to twenty years? Which subjects
would you say will be really interesting?

Václav Matyáš: That’s a good question.
We usually are very pragmatic. I
mean you have two sorts of people.
One sort comes with their idea
and their problem already, and you
have to nurture them, help them.

For example: We have a new PhD
student that will be supported by Red
Hat, starting in September. When I first
met him about four or five years ago,
he was an undergrad student, first year,
and he came with a very interesting

V O L U M E 2 : 3

RESEARCH
QUARTERLY

http://research.redhat.com

28 research.redhat.com

challenge. He said, “I am from this city in
Slovakia, from Žilina, and we managed
to break into their transport ticketing
system. We reported the problems to
them, and what we heard back was
threatening by lawyers, and that we
should not disclose this error to anybody.”

I told him okay, I will help, but you have
to pay for it, and you have to pay by
working on the problem, describing it
in detail, considering other angles and
variants of the attacks, and documenting
it. I took this student for a graduate
course, where he wrote this report,
and then we provided the report to
the city transport company, giving
them two months’ leeway to have their
problems fixed before the report goes
public. As a report of a student it enjoys
academic freedom under our laws, so
it could be made public. Two months’
time was more than sufficient to fix
these mistakes, and by supporting this
student in that particular scope of work,
he now enjoys a lot of things that we
do in the lab, and now he’s working on
other things that we already see as
very good prospects for the future.

The other type of student just comes
with open hands, and asks the way that
you asked me. Then we say okay, we
have these projects that we are running
in the lab, and by running them it means
that we are spending our effort on
them, and that means that we believe
that they will be useful. You see us and
our people with whom we work at the
university spending our time on this,
so we suggest that you consider one
of these things that we are doing. RH

RQ

Red-Hat_RHRQ_fullpage_ad.pdf 1 8/11/20 11:14 AM

RESEARCH
QUARTERLY

V O L U M E 2 : 3

http://research.redhat.com

Red-Hat_RHRQ_fullpage_ad.pdf 1 8/11/20 11:14 AM

research.redhat.com30

This is the first in a series of three articles
about the formal analysis and verification
of the real-time Linux kernel.

Real-time systems are computing systems
whose correct behavior depends not
only on logical behavior but also on

timing behavior. For example, the detection
of an obstacle in an autonomous vehicle
should result in a set of actions that need
to be taken in time to avoid a collision.

Linux was not designed as a real-time operating
system (RTOS) from scratch. Instead, it was
adapted to become one. Nowadays, Linux
has a set of advanced RTOS features. For
example, it can schedule tasks using an
advanced deadline-based scheduler (SCHED_
DEADLINE) and react to external events within
fewer microseconds with the PREEMPT_RT

About the Author
Daniel Bristot de

Oliveira is a principal
software engineer

at Red Hat, working
in the development

of real-time features
of the Linux kernel.

Daniel has a joint
PhD degree in

Automation and
Systems Engineering

at UFSC (BRA) and in
Embedded Systems at

the Scuola Superiore
Sant’Anna (ITA).

A thread model for the real-time
Linux kernel

patchset. Such features enabled a vast set
of applications, from high-frequency trading
systems to low-latency network communication.

However, the path taken by Linux developers in
the analysis of the system differs from the method
used by real-time researchers. The challenge for
real-time researchers is to demonstrate that the
coordinated behavior of the system produces
results for all tasks before their respective
deadlines, in the worst case. A common approach
for such a demonstration starts with the analysis
of the specification of the system and the formal
definitions of the system properties. These
properties are then translated into a set of
variables that are used on mathematical analysis
of the response time of the tasks of a system.

The evaluation of the real-time features of Linux
took a more experimental approach: developing

Feature

The recent advances in AI and telecommunications are enabling
a new set of complex cyber-physical systems, including those for
safety-critical applications. Safety-critical systems are systems whose
failure can result in significant damage, including loss of life. This class
of systems ranges from medical devices up to advanced driver-
assistance systems (ADAS) for vehicles. Some of these advances rely
on a sophisticated software stack, requiring full-featured operating
systems such as Linux. Among the features enabling Linux in such
environments are the real-time Linux kernel features.

by Daniel Bristot de Oliveira

RESEARCH
QUARTERLY

V O L U M E 2 : 3

http://research.redhat.com

31research.redhat.com

tools to simulate real-time workloads,
measuring the response time for their
requests, and not explicitly evaluating
the internals of the OS kernel. The
problem with such an approach is that
it is not enough to provide any strong
evidence that the worst-case scenarios
were found. Moreover, the absence
of a formal analysis of the timing
behavior of Linux, in the terms used in
the real-time scheduling theory, is a
challenge for the application of Linux
on safety-critical systems where such
sophisticated analysis is required.

The reason Linux developers use
this approach has its roots in the
Linux kernel complexity. The amount
of effort required to understand
all the constraints imposed by
the synchronization mechanism
on real-time tasks on Linux is not
negligible. The understanding of
the synchronization primitives and
how they affect the timing behavior
of a thread is fundamental for the
definition of Linux in terms of real-
time scheduling. The challenge is then
to describe such operations using a
level of abstraction that removes the
complexity of the in-kernel code, and
to do this in a format that facilitates
the understanding of Linux dynamics
for real-time researchers, without
being too far from the way developers
observe and improve Linux.

FORMAL MODELING
A model is an abstraction of a system.
The process of modeling a system
involves the definition of a set of
measurable variables associated with

the given system. The subset of variables
acting on the system from outside are
considered input variables, while the
subset of variables that are possible
to measure while varying the input are
defined as the set of output variables,
as in Figure 1. The modeling phase of
a system also comprises the definition
of the mathematical relationship
between the input and the output.

Figure 1. System and model

The use of mathematical notation
removes the ambiguous nature of natural
language and enables the application
of a more sophisticated analysis of the
runtime behavior of Linux. The problem
is, which mathematical method could
be used to model the Linux behavior?

The developers of Linux observe and
debug the timing properties of Linux
using the tracing features present in
the kernel. For example, they interpret
a chain of events, trying to identify

the states that cause delays in the
activation of the highest priority
thread, and then try to change kernel
algorithms to avoid such delays. The
notion of events, traces, and states used
by developers is common to Discrete
Event Systems (DES), which present
automata as a modeling formalism.

The automata formalism is well
established as a language for the
modeling and verification of systems.
Automata are characterized by the
directed graph or state transition
diagram representation, as in Figure
2, where the arcs represent the events,
and circles mean the states. This simple
format hides the complexity of the
mathematical definition, which allows
the use of sophisticated operations
and analysis while allowing an intuitive
way for reasoning about the property
being specified, close to the way that
the kernel developers already use while
analyzing the traces of the system.

Figure 2. Automaton example

MODELING LINUX’S
THREAD BEHAVIOR
To enable the use of a more
sophisticated analysis of the timing
behavior of Linux tasks, we proposed
an automata-based model for Linux
threads (which are the Linux task’s

V O L U M E 2 : 3

RESEARCH
QUARTERLY

V O L U M E 2 : 3

RESEARCH
QUARTERLY

http://research.redhat.com

research.redhat.com32

entities). The model aims to remove the code
complexity of Linux by presenting a simplified
view of the system, but still using the same
set of abstractions used by kernel developers,
enabling efficient communication between
kernel developers and real-time researchers.

The approach used in the PREEMPT_RT Thread
model development is presented in Figure 3:

Figure 3. The modeling approach

The informal knowledge about the timing
behavior of the Linux tasks was modeled as a
set of formal specifications using the automata
theory. The model was built upon a set of
events used by kernel developers to analyze
and describe the evolution of Linux threads.
These events can be observed and analyzed
using the Linux kernel tracing features.

The final version of the model was composed of
34 events, 9,017 states, and 20,103 transitions,
demonstrating how complex the timing behavior
of Linux threads is. However, the model was
not built as a single monolithic automaton.
Instead, the model was created using a modular
approach, in which the final model is composed
of the synchronization of a set of small models.
These small models are divided into two classes.
The generators represent the independent
actions of the system. For example, IRQs can
be disabled and enabled (Figure 4), and the

scheduler can be called and returned (Figure
5). The specifications describe the coordinated
behavior of the generators. For example, the model
presented in Figure 6 specifies that the scheduler
cannot be called while interrupts are disabled.

Figure 4. generator: irq disabled and enabled

Figure 5. Generator: scheduler generator

Figure 6. Specification: cannot schedule while IRQs are disabled

The final model is composed of 12 generators
and 33 specifications. The vast majority of the
generators and specifications are modeled with
only two or three states, while the largest has
only eight states. This is an essential factor:
in the end, the complexity of Linux is indeed
composed of a set of small specifications.

MODEL VALIDATION
The validation of the model was done using both
the analysis of the properties of the automata,
as well as a comparison of the model against
the trace of the execution of the system.

RESEARCH
QUARTERLY

V O L U M E 2 : 3

RESEARCH
QUARTERLY

V O L U M E 2 : 3

http://research.redhat.com

research.redhat.com 33

The automata format allowed the analysis of
the non-functional properties of the model.
For example, the thread model is deterministic,
meaning that one event can lead the system
to a single conclusion. The model is free of
deadlocks and livelocks, and it is possible
to reach a safe state (in this model, the
initial state) from all states of the system.

One of the main benefits of using the common
event abstraction is that it facilitated the
automatic validation of the model. During the
development of the model, the perf tracing tool
was extended to enable the
execution of the automaton
by using the events generated
by a real implementation of
the system. Initially, the tool
pointed to many cases that
were not initially covered by
the model. However, at a given
point, the tool started to unveil
points in the Linux kernel code
that were not following the
specifications. Such cases
were analyzed and reported to the kernel
community, which confirmed three bugs in the
kernel, evidencing the model’s adequacy.

USAGE OF THE MODEL
The model has found two main applications:
the runtime verification of formal specifications
and the timing analysis of the Linux kernel.

The discovery of kernel bugs using the
automata-based models motivated the
usage of formal specifications for the
runtime verification of the kernel. Indeed,
the specifications presented in this
research were later used as the basis for the
development of an efficient method for the
formal verification of the Linux kernel.

The model was also used as the base for
the formal definition of the real-time Linux
scheduling latency components, using the
same mathematical approach used in the real-
time scheduling theory, allowing a new set of
timing analyses for the real-time Linux kernel.

FINAL REMARKS
Linux is a sophisticated real-time operating
system and is enabling the development of a
new set of cyber-physical systems, many of them
with safety-critical and real-time requirements.
Such a class of systems requires the application

of sophisticated analysis that
evidences the correct behavior
of the system, both in the
logical and timing perspectives.
Automata-based model
usage allowed the formal
specification of an intricate part
of the Linux kernel, enabling the
unambiguous understanding
of the system behavior from
the real-time systems theory
perspective and the runtime

verification of the adherence of the kernel
code to the expected behavior. The details of
the analysis enabled by the automata model
will be the subject of future articles in RHRQ.

This research was done in a collaboration
of Red Hat with Prof. Rômulo Silva de
Oliveira (Universidade Federal de Santa
Catarina) and Prof. Tommaso Cucinotta
(Scuola Superiore Sant’Anna).

More details of this research can be found in
this paper: Daniel B. de Oliveira, Rômulo S. de
Oliveira, and Tommaso Cucinotta, “A Thread
Synchronization Model for the PREEMPT_RT
Linux Kernel,” Journal of Systems Architecture
107 (2020). DOI: 10.1016/j.sysarc.2020.101729.

The model has found
two main applications:

the runtime verification
of formal specifications
and the timing analysis

of the Linux kernel.

RH
RQ

V O L U M E 2 : 3

RESEARCH
QUARTERLY

V O L U M E 2 : 3

RESEARCH
QUARTERLY

http://research.redhat.com

research.redhat.com34

Project Updates

Faculty, PhD students, and US Red Hat associates in Israel are
collaborating actively on the following research projects. This quarter we
highlight collaborative projects at Technion University, Tel Aviv University,
and The Interdisciplinary Center Herzliya. We will highlight research
collaborations from other parts of the world in future editions of the
Research Quarterly. Contact academic@redhat.com for more information
on any project described here.

Research project updates

In Red Hat Research Quarterly 2:1, investigators
described their plan to build a scalable, real-
time, cloud-based CEP engine capable of
efficiently detecting arbitrarily complex patterns
in high-volume data streams. The engine was
designed to be implemented on top of Red
Hat© OpenShift© Container Platform and to be
applicable to any domain where event-based
streaming data is present. Researchers aim
to create an open source project/community
based on the engine. They also hope to
advance the state of the art in the area of
complex event processing and combining
academic research with the implementation
and deployment of novel CEP mechanisms
and techniques in the above framework.

PROJECT: OpenCEP: An
Advanced Open Source Complex
Event Processing Engine

ACADEMIC INVESTIGATORS:
Prof. Assaf Schuster (Technion)

RED HAT INVESTIGATORS:
Ilya Kolchinsky

Now the first version of the OpenCEP,
an advanced open source complex event
processing framework with cutting-edge pattern
detection capabilities, is officially available
for use. The next development iteration is
underway and is expected to end in January.

This research project aims to provide better and
more balanced service discovery capabilities
for Kubernetes multi-cluster deployments.
Currently, the service discovery in this space
is very basic. The project aims to investigate
and assess different approaches for improving
it by making it more balanced, reducing
bottlenecks, and improving latency.

PROJECT: Kubernetes Optimized
Service Discovery Across Clusters

ACADEMIC INVESTIGATORS:
Prof. Anat Bremler-Barr and Daniel Bachar,
The Interdisciplinary Center Herzliya

RED HAT INVESTIGATORS:
Mike Kolesnik

RESEARCH
QUARTERLY

V O L U M E 2 : 3

http://research.redhat.com
mailto:academic@redhat.com

35research.redhat.com

RH
RQ

PROJECT:
Electroencephalography
(EEG) Feature Extraction

ACADEMIC INVESTIGATORS:
Mrs. Lubov Blumkin, M.D. (Sackler
School of Medicine, Tel Aviv University)

RED HAT INVESTIGATORS:
Boris Odnopozov

This research is meant to improve the
treatment of electrical status epilepticus
(ESES). ESES is an age-related
epileptic encephalopathy (EE) with very
low incidence, typically in individuals
between a few months of age and 12
years, peaking around ages 4-5.

In ESES, there is a disorder in the
epileptiform activity in the brain that
takes place during sleep, causing “unseen”
(subclinical) seizures, although clinical
seizures can also occur. While this
condition tends to resolve with time, there
can be sequelae in neuropsychological
development (e.g., language capacity,
intellectual level, memory, behavior) as
well as motor impairment. Treatment is
aimed at controlling both the seizures and
their cause, the epileptiform activity.

One of the challenges physicians face
when treating this disease is the difficulty
of seeing if medication is working properly.
Currently this requires monitoring a child
during sleep using a full set of electrodes,
which is both expensive and burdensome.
As a result, physicians do not have enough
feedback on the efficacy of the medication,
which makes treatment less effective.
Using Open Data Hub (opendatahub.io)

for our calculations, we will attempt
to see if we can detect ESES using
only frontal electrodes. This allows a
much easier, and more efficient home-
based monitor that permits physicians
to better administer medication and
make treatment more effective.

For the past few months, we have
researched the data for ESES detection
with a reduced number of electrodes.
We have added sleep-detection
related features such as slow waves and
spindles with the hope of differentiating
sleep afflicted by ESES from normal
sleep. We also added the use of
UMAP to our pipeline for dimension
reduction. These steps improved
the precision of the classification.

We are faced with several challenges
that we will take on in the coming
months. First, the data we have is
labeled at the recording resolution,
i.e., each recording is either labeled as
ESES or not. ESES by definition may
only show on the EEG recording 80
percent of the time. Therefore we need
a more granular labeling. To that end,
we need to find a way to display the
false positives and false negatives so
that physicians can manually assess
and classify the recordings. This is not
as simple as one might think, since
physicians are used to working with
specific medical software that presents
data in a very specific way. We need
to improve the pipeline and engineer
more features to improve detection,
and we want to use the full power of
working with hyper-parameterization
that Open Data Hub offers.

PROJECT: Ceph: Wire-Level
Compression-Efficient
Object Storage Daemon
Communication for the Cloud

ACADEMIC INVESTIGATORS:
Prof. Anat Bremler-Barr and Maya Gilad,
The Interdisciplinary Center Herzliya

RED HAT INVESTIGATORS:
Josh Salomon

This project’s purpose is to reduce
storage network traffic (object,
block, etc.) for the following cases:
between the failure domains in cost-
sensitive environments such as public
clouds, and between nodes in cases
where the network bandwidth is the
bottleneck of the node performance.
We have divided the project into three
milestones: applying compression
for data transfer between different
datacenters, enabling/disabling
compression given hints from the client,
and minimizing compression efforts
when data is non-compressible.

Maya has completed the coding and
basic testing of the on-wire compression
for Ceph. It was presented in the IDC
demo day for the course, and it was one
of only two projects that created real
production code (other projects were
more research projects, mostly testing
new AI/ML models). The PR is now in
the review process by the upstream
community, and it seems it will be
approved soon, after some minor fixes.
Initial results seem very promising, and
a detailed report with the results will be
published once the PR is approved.

V O L U M E 2 : 3

RESEARCH
QUARTERLY
RESEARCH
QUARTERLY

http://research.redhat.com
http://opendatahub.io

Learn more at ai.intel.com

© Intel Corporation. All rights reserved. Intel, the Intel logo, Xeon and other Intel marks are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries. Copyright © Intel Corporation 2020.

	h.3znysh7
	h.2et92p0
	h.tyjcwt
	h.ddqogo7164ow
	h.cyuv5gurhogj
	h.6qu7bllt8nvj
	h.whk2rfu653yq

