
Pilot Session 1

 Research Paper Reading Group

1

2

Pilot overview

4/3/2021Session 1 A perspective on research papers

5/4/2021Session 2 Identifying worthwhile papers

6/1/2021Session 3 Discussing research papers

What is a typical research paper

3

Applications/Services Systems

For computer science and engineering, it is a documentation of novel technical contributions in...

Types of research papers

4

Grant Proposal

Dissertation

Journal/Transaction

Conference

Workshop/Poster

Finding research papers

5

Tiers

6

[1] https://www.cs.cornell.edu/andru/csconf.html

The peer review process

7

[2] https://authorservices.wiley.com/asset/photos/Peer-Review-Process.pdf

Typical paper format

8

Abstract

Introduction

Related
Work

Method

Results

Conclusion

The paper’s
elevator pitch

Proving that the
problem exists and
has not been solved
yet

- “Apple pie”
- The specific problem(s)
- Proposed solution overview
- Specific contributions made
- Structure of the paper

Implementation
details, design
decisions and other
nuances

Proving that the
problem was solved

Recap

Discussion

An analysis
of the
solution’s
impact,
limitations
etc.

CONFIDENTIAL Designator

The value of research
papers

9

The ‘specific’ value of research papers

10

Technical contributions

Potential future directions

Introduction

Related
Work

Method

Results

Discussion

Introduction Method

Results

Discussion

Related
Work

The ‘general’ value of research papers

11

Practical knowledge of the field

The scientific process

Introduction

Related
Work

Method

Results

Discussion

Introduction Method

Results

Discussion

Related
Work

Case studies of general value: OSDI 2020

12

Paper 1: Scheduling track

Paper 2: OS & Networking track

Paper 3: Security track

CONFIDENTIAL Designator

Paper 1: Scheduling Track

Providing SLOs for
Resource-Harvesting VMs
in Cloud Platforms

13

Providing SLOs for Resource-Harvesting VMs in Cloud Platforms

14

Motivation. Cloud providers usually rent their resources to
customers as Infrastructure as a Service (IaaS) VMs. When
deployed, each VM consumes a fixed amount of resources
…..

Providing SLOs for Resource-Harvesting VMs in Cloud Platforms

15

Providing SLOs for Resource-Harvesting VMs in Cloud Platforms

16

Providing SLOs for Resource-Harvesting VMs in Cloud Platforms

17

Providing SLOs for Resource-Harvesting VMs in Cloud Platforms

18

Providing SLOs for Resource-Harvesting VMs in Cloud Platforms

19

Providing SLOs for Resource-Harvesting VMs in Cloud Platforms

20

...an evictable VM cannot consume all the unallocated
resources of a server unless it fits perfectly in it.

...a large evictable VM will be promptly evicted whenever
even a single resource is needed by a newly arriving regular
VM.

Multiple small evictable VMs can allocate the same amount of
resources but will add overhead to operate more VMs.

...larger number of evictions introduce VM re-creation and
application re-initialization overheads that may even cause
unavailability.

Providing SLOs for Resource-Harvesting VMs in Cloud Platforms

21

Given these limitations of existing evictable VMs, we argue
that there should be a new class of evictable VMs able to
dynamically and flexibly harvest all the unallocated resources
of any server on which they land.

Providing SLOs for Resource-Harvesting VMs in Cloud Platforms

22

Background and related work

● VM deployments are partitioned into geographical regions and regions are partitioned into
clusters of servers. Servers in a cluster have the same hardware but each region may have
different number of clusters and hardware mix.

● There is a separate scheduler for region-level and cluster-level. Examples of scheduling
factors: hardware required, maintenance tasks, available capacity.

● A server-level agent create the assigned VM and manages its lifecycle.

● Excess capacity is typically sold at discounted prices as evictabled VMs. Eviction notice varies
between providers - AWS gives a 2 min warning, 30s for Azure.

● Dynamically changing virtual resources of a VM and enabling scheduler support for this can
be unrealistic in practice. Simplicity and maintainability is important for production
deployment.

● Potential future work: harvest any allocated cores that are temporarily idle.

● Traces of AWS EC2 spot prices are publically available and can be used to model the
availability of spot instances - the challenge is the degree of accuracy and comprehensivity.

● It is better (and possible) to quantify unallocated resources at the granularity of a server,
rather than aggregate data for the entire cluster.

Providing SLOs for Resource-Harvesting VMs in Cloud Platforms

23

Characterizing
unallocated resources:
Azure 2/19 - 10/19 data

Proposed VM class:
Harvest VM

Prediction for survival
rate: ML based approach

Scheduler support:
Harvest Hadoop

Evaluation

Methodology, Temporal patterns, Cluster behaviors, Regional aggregated data, Minimum unallocated
cores, Additional unallocated cores, Multiple VMs per server, High-level takeaways

Overview, Production implementation approach, Comparison to standard evictable VMs,
Workload/application requirements, Privacy/Confidentiality, Pricing, Harvesting resources other than cores

User input, ML models and features, ML training and inference, Discarded features, Applying prediction to
standard evictable VM survivability

Architecture, Eviction management, Core reassignment management, Harvesting resources other than
cores

Evaluation focus, Simulator, Experiments, Analysis (benefits, accuracy, scheduler, cost)

CONFIDENTIAL Designator

Paper 2: OS & Networking Track

PANIC: A
High-Performance
Programmable NICfor
Multi-tenant Networks

24

PANIC: A High-Performance Programmable NICfor Multi-tenant Networks

25

PANIC: A High-Performance Programmable NICfor Multi-tenant Networks

26

“Apple pie”

● The gap between network line-rates and the rate at which a CPU can produce and consume
data is widening rapidly.

● Emerging programmable (“smart”) NICs can help overcome this problem.

● There are many different types of offloads that can be implemented on a programmable
NIC.

● These offloads, which accelerate computation across all of the different layers of the network
stack, can reduce load on the general purpose CPU, reduce latency, and increase throughput

● Many different cloud and datacenter applications and use cases have been shown to benefit
from offloading computation to programmable NICs

PANIC: A High-Performance Programmable NICfor Multi-tenant Networks

27

Problems/Challenges

● No existing programmable NIC that supports all of the following properties:

○ Offload variety
■ some offloads like cryptography are best suited for hardware implementations,

while an offload providing a low-latency bypass for RPCs in an application is
better suited for an embedded core

○ Offload chaining
■ to minimize wasted chip area on redundant functions, the NIC should facilitate

composing independent hardware offload units into a chain as needed, with
commonly-needed offloads shared across tenants

○ Multi-tenant isolation
■ tenants should not be able to consume more than their allocation of a shared

offload

○ Variable-performance offloads
■ there are useful offloads that are not guaranteed to run at line-rate, as well as

important offloads that run with low latency and at line-rate.

PANIC: A High-Performance Programmable NICfor Multi-tenant Networks

28

Problems/Challenges

● Existing programmable NIC designs, categorized below, have key limitations:

○ Pipeline-of-Offloads (ASIC + FPGA)
■ Modifying chaining requires significant amount of time and developer effort for

FPGA synthesis
■ Slow offloads cause packet loss or head-of-line (HOL) blocking

○ Manycore NICs (CPUs)
■ CPU cores add tens of microseconds of additional latency
■ No performant mechanisms today to isolate competing tenants
■ Performance degrades significantly if working set done not fit in cache

○ RMT NICs (programmable ASIC)
■ Limited offload support
■ Each pipeline stage much be able to handle processing a new packet every

single clock cycle

PANIC: A High-Performance Programmable NICfor Multi-tenant Networks

29

Background and related work (Sections 2 and 8)

● NICs should support both hardware and software offloads since not all offloads are best implemented
on the same type of underlying engine. For example, crypto offload works better using hardware
accelerators while walking a hash table resident in main memory is better suited for embedded cores.

● Applications, and even individual packets, can have different requirements. Secure remote memory
access may require: crypto + congestion control + RDMA offload blocks. Key value store - that serves
requests both from within data center and WAN distributed clients - can require an IPSec and/or
compression offloads, but only WAN packets will likely use them.

● Some offloads may not run at line-rate. Of the compression, cryptography, authentication, and
inference offloads that we ran on hardware, only inference was able to run at 100 Gbps. Compression
and authentication performance depends on packet size. Slow offloads can be duplicated across
multiple engines (e.g., 3 AES-256 engines) for line-rate operation.

● An offload that is used for TX and RX on a dual port NIC needs to operate at four times line-rate to
prevent becoming a bottleneck.

30

Architecture overview

Design of individual
components

ASIC analysis

FPGA Prototype

Evaluation

Operational overview, Offload variety support, Dynamic offload chaining support, Policies for dynamic
multi-tenant isolation, Support for offloads with variable and below line-rate

performance, Support for high performance

RMT pipelines, High performance interconnect, Centralized scheduler, Compute unit

RMT, PIFO parser, Interconnect, Compute units

RMT pipelines, FPGA-based crossbar, Central scheduler and packet buffer, Compute units,

Testbed and methodology, Microbenchmarks, Comparison with the pipeline design, RISCV core
performance, Hardware resource usage, End-to-end performance

PANIC: A High-Performance Programmable NICfor Multi-tenant Networks

CONFIDENTIAL Designator

Paper 3: Security Track

Orchard: Differentially
Private Analytics at Scale

31

Orchard: Differentially Private Analytics at Scale

32

“Apple pie”

● When operating a large distributed system, it is often useful to collect some data from the
users’ devices—e.g., to train models that will help to improve the system.

● Since this data is often sensitive, differential privacy is an attractive choice, and several
deployed systems are using it today to protect the privacy of their users.

○ Google is using differential privacy to monitor the Chrome web browser.
○ Apple is using it in iOS and macOS, e.g., to train its models for predictive typing and to

identify apps with high energy or memory usage.
○ Other deployments include those at Microsoft and at Snap.

● Today, this data is typically collected using local differential privacy.
○ Each user device individually adds some random noise to its own data.
○ Then each user uploads the data to a central entity.
○ The central entity then aggregates the uploads and delivers the final result.

● Local differential privacy can be done efficiently at scale.

Orchard: Differentially Private Analytics at Scale

33

Problems/Challenges

● The final result of local differential privacy contains an enormous amount of noise.
○ Even in a deployment with a billion users, it is easy to miss signals from a million users.
○ Reducing noise weakens privacy guarantee considerably.

● Global differential privacy can address this since noise is only added once i.e. by the
aggregator.

● However, global differential privacy requires a lot more trust in the aggregator since individual
users have to send raw data and trust that the aggregator will not look at it.

● Crypto techniques like Multi Party Computation and Fully Homomorphic Encryption can
avoid the untrusted aggregator problem, but do not scale to millions of participants with
current technology.

● Systems like Honeycrisp use additively homomorphic encryption which is much more
efficient at scaling, but can only answer the count-mean sketches query.

Orchard: Differentially Private Analytics at Scale

34

Background and related work (Section 2, 8)

● Important goals for a differential privacy system:

○ Privacy
■ The amount of information that either the aggregator or other users can learn

about the private data of an honest user should be bounded, according to the
formulation of differential privacy.

○ Correctness
■ If all users are honest, the answers to queries should be drawn from a distribution

that is centered on the correct answer and has a known shape.

○ Robustness
■ Malicious users should not be able to significantly distort the answers.

○ Efficiency
■ Most users should not need to contribute more than a few MB of bandwidth and a

few seconds of computation time per query.

Orchard: Differentially Private Analytics at Scale

35

Background and related work (Section 2, 8)

● Differential privacy is a property of randomized queries that take a database as input and return an
aggregate output. Informally, a query is differentially private if changing any single row in the input database
results in “almost no change” in the output.

● If each row represents the data of a single individual, this means that any single individual has a statistically
negligible effect on the output. This guarantee is quantified in the form of a parameter, ε, which controls
how much the output can vary based on changes to a single row.

● A standard method for achieving differential privacy for numeric queries is the Laplace mechanism, which
involves two steps:

○ calculating the sensitivity, s, of the query which is how much the un-noised output can change based
on a change to a single row

○ adding noise drawn from a Laplace distribution with scale parameter s/ε; this results in ε-differential
privacy.

● For queries with discrete values, the standard method is exponential mechanism which is based on:
○ A “quality score” that measures how well a value ‘x’ represents a database ‘d’
○ The sensitive of the quality score.

● Differential privacy is compositional - if we evaluate two queries which are ε1 and ε2 differential private, then
publishing results from both queries is at most (ε1 + ε2) differentially private.

● We can define a privacy budget (εmax) that corresponds to the maximum acceptable privacy loss.
○ The ε for each query is deducted from this budget till it is exhausted.

36

Programming language
selection: Fuzz

Transform centralized
Fuzz queries to support

distributed execution

Distributed query
execution

Implementation

Evaluation

Running example: k-means, Language features, Alternative languages

Program zones, The bmcs operator. Extracting dependencies, Transformation to bmcs form,
Optimizations, Limitations

Overall workflow, Security: Aggregator, Security: Malicious clients, Handling churn

Encryption, MPC, Secret sharing, Verifiable computation, Security parameters

Coverage, Optimizations, Robustness to malicious users, Experimental setup, Cost for normal
participants, Cost for the committee, Cost for the aggregator

Orchard: Differentially Private Analytics at Scale

37

Join us for the next session!

4/3/2021Session 1 A perspective on research papers

5/4/2021Session 2 Identifying worthwhile papers

6/1/2021Session 3 Discussing research papers

38

Sign-up / Comments / Suggestions / Feedback

https://forms.gle/6Y2ZBH2Bq2y5Qmie7

Thank you!

39

