esearch ~aper ~eading C-roup

Pilot Session 1

Pilot overview

Session 1 4/3/2021 A perspective on research papers
Session 2 5/4/2021 |dentifying worthwhile papers
Session 3 6/1/2021 Discussing research papers

What is a typical research paper

For computer science and engineering, it is a documentation of novel technical contributions in...

Applications/Services

N

Systems

Types of research papers

Grant Proposal

Dissertation

Journal/Transaction

Conference

Workshop/Poster

Finding research papers

A BMC Part of Springer Nature

arXiv.org

An open database of 28,620,493 free scholarly articles.

Weé harvest Open- Access content from c_>v‘er‘50,000 pub‘lishe[‘s .'

IEEE XPIOI'G” GO gle SChOla I an_(.j reposjtories, -a“.é maké 'if_easy toflndtrackand use
o

CANCEL JOURNAL SUBSCRIPTIONS | GET THE EXTENSION |,

Computer Architecture and Automated Design Lab

—
&

Research People Publications Courses Join us

rDIGITAL
> LIBRARY

2020

farXiv] Tong Geng, Ang Li, Runbin Shi, Chunshu Wu, Tiangi Wang, Yanfei Li, Pouya Haghi, Antonino Tumeo, Shuai Che, §
Steve Reinhardt, and Martin Herbordt, (2020): UWB-GCN: Accelerating Graph Convolutional Networks through Runtime =—
Workload Rebalancing, arXiv preprint arXiv:1908.10834

I“PEC] Rushi Patel, Pierre-Francois Wolfe, Robert Munafo, Mayank Varia, and Martin Herbordt, (2020): Arithmetic and
Boolean Secret Sharing MPC on FPGAs in the Data Center, 2020 IEEE High Performance Extreme Computing Conference =—
[TPDS] T. Geng, A. Li, T. Wang, C. Wu, Y. Li, R. Shi, W. Wu, and M. C. Herbordt, (2020): O3BNN-R: An Out-Of-Order *
Architecture for High-Performance and Regularized BNN Inference, IEEE Transactions on Parallel and Distributed ===
Systems

@I . xiong, C. Yang, P. Haghi, A. Skjellum, and M. Herbordt, (2020): Accelerating MPI Collectives with FPGAs in the |
Network and Novel Communicator Support, 2020 IEEE 28th Annual International Symposium on Field-Programmable ==
v Custom Computing Machines

c‘f:oi‘.!."‘.,. Conferences

ATTEND PROGRAM PARTICIPATE SPONSORS ABOUT

As part of our commitment to open access to research, the workshop/conference papers, presentation

slides, and videos are free and open to the public on the OSDI '20 technical sessions page.

BN~

© f0 MO

W w W Ww Ww Ww W Wwbhy b by by by by b by Bo by ki h hy by vy by ey ey by
N O M AWBOMNOSOS NSO WMABNOMNOSOL®NG WMAWLNLDNGS

Avg citations per paper
66.3
535
528
434
409
403
382
36.7
36.1
353
353
35.0
344
3335
335
334
325
322
316
309
309
30.6
30.1
29.6
293
29.1
285
274
27.0
268
26.5
255
246
240
240
239
233

Tiers

Conference

CSUR—ACM Computing Surveys

SOSP—ACM Symposium on Operating Systems Principles
OSDI—Operating Systems Design and Implementation
NDSS—Network and Distributed System Security Symposium
MobiHoc—Mobile Ad Hoc Networking and Computing
SIGCOMM—ACM SIGCOMM Conference

SenSys—Conference On Embedded Networked Sensor Systems
MOBICOM—Mobile Computing and Networking

CIDR—Conference on Innovative Data Systems Research

USENIX Security Symposium

EUROCRYPT—Theory and Application of Cryptographic Techniques
NSDI—Networked Systems Design and Implementation

JASSS—The Joumal of Artificial Societies and Social Simulation
TOCS—ACM Transactions on Computer Systems

S&P—IEEE Symposium on Security and Privacy
MobiSys—International Conference on Mobile Systems
IJCV—International Journal of Computer Vision

TOG—ACM Transactions on Graphics/SIGGRAPH

VLDB—Very Large Data Bases

BioMED—Biomedical Engineering

IEEE TRANS ROBOTICS AUTOMAT—IEEE Transactions on Robotics and Automation
CRYPTO—International Crytology Conference

PAMI—IEEE Transactions on Pattern Analysis and Machine Intelligence
PLDI—SIGPLAN Conference on Programming Language Design and Implementation
MICRO—International Sympostum on Microarchitecture

Journal of Web Semantics

BIB—Biriefings in Bioinformatics

JMLR—IJournal of Machine Learning Research

ISMB—Intelligent Systems in Molecular Biology

PODS—Symposium on Principles of Database Systems
VTC—Vehicular Technology Conference

SIGMOD—International Conference on Management of Data
STOC—ACM Symposium on Theory of Computing

TOIS—ACM Transactions on Information Systems

IEEE SAP—IEEE Transactions on Speech and Audio Processing
SCA—Symposium on Computer Animation
BIOINFORMATICS—Bioinformatics/computer Applications in The Biosciences

[1] https://www.cs.cornell.edu/andru/csconf.html

The peer review process

Author submits article @
- I Author submlts
E Article assessed by editor [l Rejected %
. Reviews assessed by editor
) o ’3
J
)

[2] https;//authorservices.wiley.com/asset/photos/Peer-Review-Process.pdf

An analysis

of the
solution’s
impact,
limitations
etc.

Typical paper format)

Results

I
I
I
I
I
]
|
Proving that the ,'
|
|
|
|
I
I
I
I
I

Abstract
Proving that the
problem exists and problem was solved

has not been solved
yet

The paper’s
elevator pitch

Conclusion

Method

o) Implementation
~ _/I_A;]pepsle pl?f. details, design
pecific problem(s) -
- Proposed solution overview decisions and other
- Specific contributions made nuances
- Structure of the paper
& RedHat

Recap

Introduction

The value of research
papers

The ‘specific’ value of research papers

Technical contributions

Potential future directions

10

-
-
”

7

Related
Work

Results

Introduction Method

Results

Method

The ‘general’ value of research papers

Related
Work

Practical knowledge of the field

Introduction

Results

The scientific process /

Method

Case studies of general value: OSDI 2020

Providing SLOs for Resource-Harvesting VMs
in Cloud Platforms

Paper 1 Schedu"ng track Pradeep Ambati, University of Massachusetts, Amherst; ifigo Goiri, Felipe Frujeri,
Microsoft Azure and Microsoft Research; Alper Gun and Ke Wang, Google; Brian

Dolan, Brian Corell, Sekhar Pasupuleti, Thomas Moscibroda, Sameh Elnikety,
Marcus Fontoura, and Ricardo Bianchini, Microsoft Azure and Microsoft Research

https://www.usenix.org/conference/osdi20/presentation/ambati

PANIC: A High-Performance Programmable NIC
for Multi-tenant Networks

. . Jiaxin Lin, University of Wisconsin - Madison; Kiran Patel and Brent E. Stephens,
Paper 2: OS & Networklng traCk University of Illinois at Chicago; Anirudh Sivaraman, New York University (NYU);
Aditya Akella, University of Wisconsin - Madison

https://www.usenix.org/conference/osdi20/presentation/lin

Orchard: Differentially Private Analytics at Scale

Edo Roth, Hengchu Zhang, Andreas Haeberlen, and Benjamin C. Pierce,
University of Pennsylvania

Paper 3: Security track

https://www.usenix.org/conference/osdi20/presentation/roth

12

Paper 1. Scheduling Track

Providing SLOs for
Resource-Harvesting VMs
in Cloud Platforms

14

Providing SLOs for Resource-Harvestin

Mot ation Cloud providers usually rent their resources to
customers as Infrastructure as a Service (IaaS) VMs. When
deployed, each VM consumes a fixed amount of resources
from the server where it lands.

Providing SLOs for Resource-Harvesting VMs in Cloud Platforms

Pradeep Ambati* Tiigo Goiri* Felipe Frujeri* Alper Gun'
Ke Wang' Brian Dolan’ Brian Corell” Sekhar Pasupuleti’
Thomas Moscibroda’ Sameh Elnikety! Marcus Fontoura' Ricardo Bianchini

crosoft Azure

Abstract

Cloud providers rent the resources they do not allocate as
evictable virtual machines (VMs), like spot instances. In this
paper, we first characterize the unallocated resources in Mi-
crosoft Azure, and show that they are plenty but may vary
widely over time and across servers. Based on the chanucteri-
zation, we propase a new class of VM, called Harvest VM,
to harvest and monetize the unallocated resources. A Harvest
VM is more flexible andefficient than a spotinstance, because
it grows and shrinks according to the amount of unallocated
resources at its underly rver: it is only evicted/killed
when the provider needs its minimum set of resources. Next,
we create models that predict the availability of the unallo-
cated resources for Harvest VM deployments. Based on these
predictions, we provide Service Level Objectives (SLOs) for
the survival rate (e.g., 65% of the Harvest VMs will survi
more than a week) and the average number of cores that can
be harvested. Our shart-term predictions have an average
error under 2% and less than 6% for longer terms. We also
extend a popular cluster scheduling framewark to leverage the
harvested resources. Using our SLOs and framework, we can
offset the rare evictions withextra harvested cores and achieve
the same computational power as regular-priority VMs, but at
91% lower cost. Finally, we outline lessons and results from
running Harvest VMs and our framework in production.

1 Introduction

Motivation. Cloud providers usually rent their resources to
customers as Infrastructure as a Service (laaS) VMs. When
deployed, each VM cansumes a fixed amount of resources
from the server where it lands. Customers can keep their VMs
for seconds or years [16] and may request more VMs over
time. Thus, providers need to provide the illusion of perfectly
elastic resources (e.g., by reserving demand growth buffers)
while operating the infrastructure with high availability (e.g.,
by transparently handling hardware failures). For these rea-
sons, they need to leave unallocated capacity.

4 55 affiliated with the Univ. of Massachusetts Amberst, but was
at Micrasalt Research dusing this work. Gun and Wang are now w it Google

fMicrosoft Research

To monetize this unallocated capacity, providers offer VMs
with relaxed SLOs at discounted prices. Specifically, they
affer low-priority evictable VM, often called spot VMs [1,8,
14]. These VMs are evicted if their resources are needed by
lar-priority (or simply regular) on-demand VMs. Thus,
table VMs are ideal for customers to run batch jobs or
other workloads that can tolerate evictions, at very low cost.

Unfortunately, an evictable VM cannot consume all the
unallocated resources of a server unless it fits perfectly in it.
if itdoes, a large evictable VM will be promptly evicted
vereven a single resource is needed by a newly amiv-
ing regular VM. Multiple small evictable VMs can allocate
the same amount of resources but will add overhead to oper-
ate more VMs. In addition, their larger number of evictions
introduce VM re-creation and application re-initialization
overheads that may even cause unavailability.

Given these limitations of existing evictable VMs, we argue

that there should be a new class of evictable VMs able to
dynamically and flexibly harvestall the unallocated resources
of any server on which they land.
Our work. We first characterize the unallocated resources
in Micrasoft Azure. The charctenization shows that there is
potential for harvesting these resources, but they fluctuate over
time and their availability isheterogeneous across servers and
clusters. The characterization unearths the dynamics of the
unallocated resources over multiple time durations.

Next, we propase a new class of evictable VM, called Har-
vest VM, as a novel way to monetize unallocated resources.
A Harvest VM has a minimum size in terms of its physical
resources, but it dynamically receives more or fewer physical
resources beyond this minimum, depending on the amount
of unallocated resources at its underlying server. A Harvest
VM is only evicted if its minimum size is needed for a regular
VM. In this paper, we focus on harvesting CPU cares.

Provisioning applications to run on harvested resources
is challenging. However, we can predict the availability and
amount of the unallocated resources in the datacenter. We
use these predictions to provide SLOs for Harvest VM de-
ployments. The SLO specifies the probability fora Harvest
VM to survive for a certain period and how many resources

it will get on average. For example, if a customer wants to
create 100 VMs, the SLO may indicate that %% of them

USENIX Association

14t USENIX Symposium on Operating Systems Design and Implementation 753

g VMs in Cloud Platforms

15

Providing SLOs for Resource-Harvesting VMs in Cloud Platforms

Customers can keep their VMs
for seconds or years [16] and may request more VMs over
time.

Providing SLOs for Resource-Harvesting VMs in Cloud Platforms

Pradeep Ambatit fiiigo Goiri* Felipe Frujeri' Alper Gun'
Ke Wang' Brian Dolan’ Brian Corell’ Sekhar Pasupuleti’

Thomas Moscibroda’ Sameh Elnikety*

"Microsoft Azure

Abstract

Cloud providers rent the resources they do not allocate as
evictable virtual machines (VMs), like spot instances. In this
paper, we first characterize the unallocated resources in Mi-
crosoft Azure, and show that they are plenty but may vary
widely over time and across servers. Based on the chanicteri-
zation, we propose a new class of VM, called Harvest VM,
to harvest and monetize the unallocated resources. A Harvest
VM is more flexible and efficient than a spotinstance, because
it grows and shrinks according to the amount of unallocated
resources at its underlying server: it is only evicted/killed
when the provider needs its minimum set of resources. Next,
we create models that predict the availability of the unallo-
cated resources for Harvest VM deployments. Based on these
predictions, we provide Service Level Objectives (SLOs) for
the survival rate (e.g., 65% of the Harvest VMs will survive
more than a week) and the average number of cores that can
be harvested. Our short-term predictions have an average
error under 2% and less than 6% for longer terms. We also
extend a popular cluster scheduling framewaork to leverage the
harvested resources. Using our SLOs and framework, we can
offset the rare evictions withextr harvested cores and achieve
the same computational power as regular-priority VMs, but at
91% lower cost. Finally, we outline lessons and results from
running Harvest VMs and our framework in production.

1 Introduction

Motivation. Cloud providers usually rent their resources to
customers as Infrastructure as a Service (laaS) VMs. When
deployed, each VM consumes a fixed amount of resources
from the server where it lands. Customers can keep their VMs
for seconds or years [16] and may request more VMs over
time. Thus, providers need to provide the illusion of perfectly
elastic resources (e.g., by reserving demand growth buffers)
while operating the infrastructure with high availability (e.g.,
by transparently handling hardware failures). For these rea-
sans, they need to leave unallocated capacity.

“Ambuati 1 affiliaed with the Univ. of Massachusetts Amberst, bt was
at Micrasaft Research dusing this work. Gun and Wang are now wih Google.

icardo Bianchini*

Marcus Fontoura'
fMicrosoft Research

‘To monetize this unallocated capacity, providers offer VMs
with relaxed SLOs at discounted prices. Specifically, they
offer low-priority evictable VMs, often called spot VMs 1,8,
14]. These VMs are evicted if their resources are needed by
regular-priority (or simply regular) on-demand VMs. Thus,
evictable VMs are ideal for customers to run batch jobs or
other workloads that can tolerate evictions, at very low cost.

Unfortunately, an evictable VM cannot consume all the
unallocated resources of a server unless it fits perfectly in it.
Even if itdoes, a large evictable VM will be promptly evicted
whenever even a single resource i
ing regular VM. Multiple small evictable VMs can allocate
the same amount of resources but will add overhead to oper-
ate more VMs. In addition, their larger number of evictions
introduce VM cred and application it i
averheads that may even cause unavailability.

Given these limitations of existing evictable VMs, we argue

that there should be a new class of evictable VMs able to
dwamically and flexibly harvestall the unallocated resources
of any server on which they land.
Our work. We first characterize the unallocated resources
in Microsoft Azure. The charctenzation shows that there is
potential for harvesting these resources, but they fluctuate over
time and their availability is heterogeneous across servers and
clusters. The characterization unearths the dynamics of the
unallocated resources over multiple time durations.

Next, we propase a new class of evictable VM, called Har-
vest VM, as a novel way to monetize unallocated resources.
A Harvest VM has a minimum size in terms of its physical
resources, but it dynamically receives more or fewer physical
resources beyond this minimum, depending on the amount
of unallocated resources at its underlying server. A Harvest
VM is only evicted if its minimum size is needed for a regular
VM. In this paper, we focus on harvesting CPU cares.

Provisioning applications to run on harvested resources
is challenging. However, we can predict the availability and
amount of the unallocated resources in the datacenter. We
use these predictions to provide SLOs for Harvest VM de-
ployments. The SLO specifies the probability fora Harvest
VM to survive for a certain period and how many resources
it will get on average. For example, if a customer wants to
create 100 VMs, the SLO may indicate that 9% of them

USENIX Association

14th USENIX Symposium on Operating Systems Design and Implementation 753

16

Providing SLOs for Resource-Harvestin

providers need to provide the illusion of perfectly
elastic resources (e.g., by reserving demand growth buffers)
while operating the infrastructure with high availability (e.g.,
by transparently handling hardware failures).

Providing SLOs for Resource-Harvesting VMs in Cloud Platforms

Pradecp Ambati* Tiigo Goiri' Felipe Frujeri*

Alper Gun'

Ke Wang" Brian Dolan Brian Corell® Sekhar Pasupuleti’
Thomas Moscibroda’ Sameh Elnikety? Marcus Fontoura® Ricardo Bianchini®

fMicrosoft Azure

Abstract

Cloud providers rent the resources they do not allocate as
evictable virtual machines (VMs), like spot instances. In this
paper. we first characterize the unallocated resources in Mi-
crosoft Azure, and show that they are plenty but may vary
widely over time and across servers. Based on the charucteri-
zation, we propose a new class of VM, called Harvest VM,
to harvest and monetize the unallocated resources. A Harvest
VM is more flexible andefficient than a spotinstance, because
it grows and shrinks according o the amount of unallocated
resources at its underlying server: it is only evicted/killed
when the provider needs its minimum set of resources. Next,
we create models that predict the availability of the unallo-
cated resources for Harvest VM deployments. Based on these
predictions, we provide Service Level Objectives (SLOs) for
the survival rate (e.g., 65% of the Harvest VMs will survive
more than a week) and the average number of cores that can
be harvested. Our shart-term predictions have an ave:
error under 2% and less than 6% for longer terms. We also
extend a popular cluster scheduling framewark to leverage the
harvested resources. Using our SLOs and framework, we can
offset the rare evictions withextra harvested cores and achieve
the same computational power as regular-priority VMs, but at
91% lower cost. Finally, we outline lessons and results from
running Harvest VMs and our framework in production.

1 Introduction

Motivation. Cloud providers usually rent their resources to
customers as Infrastructure as a Service (1aaS) VMs. When
deployed, each VM consumes a fixed amount of resources
from the server where it lands. Customers can keep their VMs
for seconds ar years [16] and may request more VMs over
time. Thus, providers need to provide the illusion of perfectly
elastic resources (e.g., by reserving demand growth buffers)
while operating the infrastructure with high availability (e.g.,
by transparently handling hardware failures). For these rea-
sans, they need to leave unallocated capacity.

*Ambati 1 affiliated with the Univ. of Massachusetss Amberst, bt was
at Micrasaft Research dusing s work. Gun and Wang are now with Google

fMicrosoft Research

To manetize this unallocated capacity, providers offer VMs
with relaxed SLOs at discounted prices. Specifically, they
offer low-priority evictable VMs, often called spot VMs [1,8,
14]). These VMs are evicted if their resources are needed by
regular-priority (or simply regular) on-demand VMs. Thus,
evictable VMs are ideal for customers to run batch jobs or
other workloads that can tolerate evictions, at very low cost.

Unfortunately, an evictable VM cannot consume all the
unallocated resources of a server unless it fits perfectly in it.
Even if itdoes, a large evictable VM will be promptly evicted
whenever even a single resource is needed by a newly amiv-
ing regular VM. Multiple small evictable VMs can allocate
the same amount of resources but will add overhead to oper-
ate more VMs. In addition, their larger number of evictions
introduce VM re-creation and application re-initialization
overheads that may even cause unavailability.

Given these limitations of existing evictable VMs, we argue

that there should be a new class of evictable VMs able to
dwamically and flexibly harvestall the unallocated resources
of any server on which they land.
Our work. We first characterize the unallocated resources
in Micrasoft Azure. The charcterization shows that there is
potential for harvesting these resources, but they fluctuate over
time and their availability is heterogeneous across servers and
clusters. The characterization unearths the dynamics of the
unallocated resources over multiple time durations.

Next, we propase a new class of evictable VM, called Har-
vest VM, as a novel way to monetize unallocated resources.
A Harvest VM has a minimum size in terms of its physical
resources, but it dynamically receives more or fewer physical
resources beyond this minimum, depending on the amount
of unallocated resources at its underlying server. A Harvest
VM is only evicted if its minimum size is needed for a regular
VM. In this paper, we focus on harvesting CPU cares.

Provisioning applications to run on harvested resources
is challenging. However, we can predict the availability and
amount of the 1 d resources in the d We
use these predictions to provide SLOs for Harvest VM de-
ployments. The SLO specifies the probability fora Harvest
VM to survive for a certain period and how many resources

it will get on average. For example, if a customer wants to
create 100 VMs, the SLO may indicate that 90% of them

USENIX Association

14t USENIX Symposium on Operating Systems Design and Implementation 753

g VMs in Cloud Platforms

Providing SLOs for Resource-Harvesting VMs in Cloud Platforms

sons, they need to leave unallocated capacity.

For these rea-

Providing SLOs for Resource-Harvesting VMs in Cloud Platforms

Pradeep Ambati? Iiigo Goiri* Felipe Frujerit Alper Gun'
Ke Wang' Brian Dolan’ Brian Corell’ Sekhar Pasupuleti’
Thomas Moscibroda’ Sameh Elnikety? Marcus Fontoura' Ricardo Bianchinit

"Microsoft Azure

Abstract

Cloud providers rent the resources they do not allocate as
evictable virtual machines (VMs), like spot instances. In this
paper, we first characterize the unallocated resources in Mi-
crosoft Azure, and show that they are plenty but may vary
widely over time and across servers. Based on the chanicteri-
zation, we propase a new class of VM. called Harvest VM,
to harvest and monetize the unallocated resources. A Harvest
VM is more flexible andefficient than a spot instance, because
it grows and shrinks according to the amount of unallocated
resources at its underlying server: it is only evicted/killed
when the provider needs its minimum set of resources. Next,
we create models that predict the availability of the unallo-
cated resources for Harvest VM deployments. Based on these
predictions, we provide Service Level Objectives (SLOs) for
the survival rate (e.g.. 65% of the Harvest VMs will survive
more than a week) and the average number of cores that can
be harvested. Our short-term predictions have an average
error under 2% and less than 6% for longer terms. We also
extend a popular cluster scheduling framework to leverage the
harvested resources. Using our SLOs and framework, we can
offset the rare evictions withextr harvested cores and achieve
the same computational power as regular-priority VMs, but at
91% lower cost. Finally, we outline lessons and results from
running Harvest VMs and our framework in production.

1 Introduction

Motivation. Cloud providers usually rent their resources to
customers as Infrastructure as a Service (1aaS) VMs. When
deployed, each VM consumes a fixed amount of resources
from the server where it lands. Customers can keep their VMs
for seconds ar years [16] and may request more VMs over
time. Thus, providers need to provide the illusion of perfectly
clastic resources (e.g.. by reserving demand growth buffers)
while operating the infrastructure with high availability (e.g..
by transparently handling hardware failures). For these rea-
sons, they need to leave unallocated capacity.

*Ambati i affilisted with the Univ. of Massachusetts Amberst, b was
at Micrasaft Research dusing s work. Gun and Wang are now with Google

fMicrosoft Research

To monetize this unallocated capacity, providers offer VMs
with relaxed SLOs at discounted prices. Specifically, they
offer low-priority evictable VMs, often called spot VMs [1,8,
14]. These VMs are evicted if their resources are needed by
regular-priority (or simply regular) on-demand VMs, Thus,
evictable VMs are ideal for customers to run batch jobs or
other workloads that can tolerate evictions, at very low cast.

Unfortunately, an evictable VM cannot consume all the
unallocated resources of a server unless it fits perfectly in it.
Evenif itdoes, a large evictable VM will be promptly evicted
whenever even a single resource is needed by a newly aiv-
ing regular VM. Multiple small evictable VMs can allocate
the same amount of resources but will add overhead to oper-
ate more VMs. In addition, their larger number of evictions
introduce VM re-creation and application re-initialization
overheads that may even cause unavailability.

Given these limitations of existing evictable VMs, we argue

that there should be a new class of evictable VMs able to
dwnamically and flexibly harvestall the unallocated resources
of any server on which they land.
Our work. We first characterize the unallocated resources
in Micrasoft Azure. The chanictenization shows that there is
potential for harvesting these resources. but they fluctuate over
time and their availability is heterogeneous across servers and
clusters. The characterization unearths the dynamics of the
unallocated resources over multiple time durations.

Next, we propase a new class of evictable VM, called Har-
vest VM, as a novel way to monetize unallocated resources.
A Harvest VM has a minimum size in terms of its physical
resources, but it dynamically receives more or fewer physical
resources heyond this minimum, depending on the amount
of unallocated resources at its underl; server. A Harvest
VM is only evicted if its minimum size is needed for a regular
VM. In this paper, we focus on harvesting CPU cares.

Provisioning applications to run on harvested resources
is challenging. However, we can predict the availability and
amount of the unallocated resources in the datacenter. We
use these predictions 1o provide SLOs for Harvest VM de-
ployments. The SLO specifies the probability fora Harvest
VM to survive for a certain period and how many resources
it will get on average. For example, if a customer wants to
create 100 VMs, the SLO may indicate that 9% of them

USENIX Association

14t USENIX Symposium on Operating Systems Design and Implementation 753

18

Providing SLOs for Resource-Harvesting VMs in Cloud Platforms

To monetize this unallocated capacity, providers offer VMs
with relaxed SLOs at discounted prices. Specifically, they
offer low-priority evictable VMs, often called spot VMs [1, 8,
14]. These VMs are evicted if their resources are needed by

regular-priority (or simply regular) on-demand VMs.

-

Providing SLOs for Resource-Harvesting VMs in Cloud Platforms

Pradeep Ambati* Tigo Goiri* Felipe Frujerit Alper Gun'
Ke Wang' Brian Dolan’ Brian Corell’ Sekhar Pasupuleti®

Thomas Moscibroda’ Sameh Elnikety! Marcus Fontoura® Ricardo Bianchin

"Microsoft Azure

Abstract

Cloud providers rent the resources they do not allocate as
evictable virtual machines (VMs), like spot instances. In this
paper, we first characterize the unallocated resources in Mi-
crosoft Azure, and show that they are plenty but masiry
widely over time and across servers. Based one®i Characteri-
zation, we propase a new class of V3 Called Harvest VM,
to harvest and monetize thageiliocated resources. A Harvest
VM is more flexiblagitlethicient than a spotinstance, because
it grows. .arinks according to the amount of unallocated
ralices at its underly < it is only evicted/killed
when the provider needs its minimum set of resources. Next,
we create models that predict the availability of the unallo-
cated resources for Harvest VM deployments. Based on these
predictions, we provide Service Level Objectives (SLOs) for
the survival rate (e.g., 65% of the Harvest VMs will survive
more than a week) and the average number of cores that can
be harvested. Our shart-term predictions have an average
error under 2% and less than 6% for longer terms. We also
extend a popular cluster scheduling framewark to leverage the
harvested resources. Using our SLOs and framework, we can
offset the rare evictions withextr harvested cores and achieve
the same computational power as regular-priority VMs, but at
91% lower cost. Finally, we outline lessons and results from
rumning Harvest VMs and our framework in production.

1 Introduction

Motivation. Cloud providers usually rent their resources to
customers as Infrastructure as a Service (IaaS) VMs. When
deployed, each VM consumes a fixed amount of resources
from the server where it lands. Customers can keep their VMs
for seconds or years [16] and may request more VMs over
time. Thus, providers need to provide the illusion of perfectly
elastic resources (e.g., by reserving demand growth buffers)
while operating the infrastructure with high availability (e.g..,
by transparently handling hardware failures). For these rea-
sans, they need to leave unallocated capacity.

*Ambati 1 affiliated with the Univ. of Massachusetts Amberst, bt was
at Micrasaft Research dusing this wark. Gun and Wang are now wih Google.

Microsoft Research

To monetize this unallocated capacity, providers offer VMs
with relaxed SLOs at discounted prices. Specifically, they
offer low-priority evictable VMs, often called spot VMs [1.8,
14]. These VMs are evicted if their resources are needed by
regular-prionity (or simply regular) an-demand VMs. Thus,
evictable VMs are ideal for customers to run batch jobs or
other workloads that can tolerate evictions, at very low cast.

Unfortunately, an evictable VM cannot consume all the
unallocated resources of a server unless it fits perfectly in it.
Evenif it does, a large evictable VM will be promptly evicted
whenever even a single resource is needed by a newly armiv-
ing regular VM. Multiple small evictable VMs can allocate
the same amount of resources but will add overhead to oper-
ate more VMs. In addition, their larger number of evictions
introduce VM re-creation and application re-initialization
averheads that may even cause unavailability.

Given these limitations of existing evictable VMs, we argue

that there should be a new class of evictable VMs able to
dynamically and flexibly harvest all the unallocated resources
of any server on which they land.
Our work. We first characterize the unallocated resources
in Micrasoft Azure. The chamcterization shows that there is
potential for harvesting these resources, but they fluctuate over
time and their availability is heterogeneous across servers and
clusters. The characterization unearths the dynamics of the
unallocated resources over multiple time durations.

Next, we propase a new class of evietable VM, called Har-
vest VM, as a novel way to monetize unallocated resources.
A Harvest VM has a minimum size in terms of its physical
resources, but it dynamically receives more or fewer physical
resources beyond this minimum, depending on the amount
of unallocated resources at its underlying server. A Harvest
VM is anly evicted if its minimum size is neoded for a regular
VM. In this paper, we focus on harvesting CPU cores.

Provisioning applications to run on harvested resources
is challenging. However, we can predict the availability and
amount of the umllocated resources in the datacenter. We
use these predictions to provide SLOs for Harvest VM de-
ployments. The SLO specifies the probability fora Harvest
VM to survive for a certain period and how many resources
it will get on average. For example, if a customer wants to
create 100 VMs, the SLO may indicate that 9% of them

USENIX Association

14th USENIX Symposium on Operating Systems Design and Implementation 753

19

Providing SLOs for Resource-Harvestin

evictable VMs are ideal for customers to run batch jobs or
other workloads that can tolerate evictions, at very low cost.

Providing SLOs for Resource-Harvesting VMs in Cloud Platforms

Pradeep Ambati* Tiigo Goirit Felipe Frujeri* Alper Gun'
Ke Wang' Brian Dolan® Brian Corell’ Sekhar Pasupuleti’
Thomas Moscibroda’ Sameh Elnikety! Marcus Fontoura' Ricardo Bianchinit

"Microsoft Azure

Abstract

Cloud providers rent the resources they do not allocate as
evictable virtual machines (VMs), like spot instances. In this
paper, we first characterize the unallocated resources in Mi-
crosoft Azure, and show that they are plenty but may vary
widely over time and across servers. Based on the chanucteri-
zation, we propase a new class of VM, called Hames® VM,
to harvest and monetize the unallocated geiiuces. A Harvest
VM is more flexible and effician™un a spot instance, because
it grows and shrinsCrding to the amount of unallocated
resoursae s underlying server: it is only evicted/killed
Jien the provider needs its minimum set of resources. Next,
we create models that predict the availability of the unallo-
cated resources for Harvest VM deployments. Based on these
predictions, we provide Service Level Objectives (SLOs) for
the survival rate (e.g.. 65% of the Harvest VMs will survive
more than a week) and the average number of cores that can
be harvested. Our short-term predictions have an average
error under 2% and less than 6% for longer terms. We also
extend a popular cluster scheduling framewark to leverage the
arvested resources. Using our SLOs and framework, we can
offset the rare evictions withextr harvested cores and achieve
the same computational power as regular-priority VMs, but at
91% lower cost. Finally, we outline lessons and results from
running Harvest VMs and our framework in production.

1 Introduction

Motivation. Cloud providers usually rent their resources to
customers as Infrastructure as a Service (1uaS) VMs. When
deployed, cach VM consumes a fixed amount of resources
from the server where it lands. Customers can keep their VMs
for seconds ar years [16] and may request more VMs over
time. Thus, providers need to provide the illusion of perfectly
elastic resources (e.g., by reserving demand growth buffers)
while operating the infrastructure with high availability (e.g.,
by transparently handling hardware failures). For these rea-
sans, they need to leave unallocated capacity.

“Ambati & affiliated with the Univ. of Masiachusetss Amberst, bt was
at Micrasaft Research dusing €1t werk. Gun and Wang are now wih Gaogle

Microsoft Research

To monetize this unallocated capacity, providers offer VMs
with relaxed SLOs at discounted prices. Specifically, they
affer low-priority evictable VMs, often called spot VMs [1,8,
14]. These VMs are evicted if their resources are needed by
regular-prioity (or simply regular) on-demand VMs. Thus,
evictable VMs are ideal for customers to run batch jobs or
other workloads that can tolerate evictions, at very low cost.

Unfortunately. an evictable VM cannot consume all the
unallocated resources of a server unless it fits perfectly in it.
Evenif itdoes, a large evictable VM will be promply evicted
whenever even a single resource is needed by a newly ariv-
ing regular VM. Multiple small evictable VMs can allocate
the same amount of resources but will add overhead to oper-
ate more VMs. In addition, their La [evieti
introduce VM re-creation and application re-
overheads that may even cause unavailability.

Given these limitations of existing evictable VMs, we argue

that there should be a new class of evictable VMs able to
dwmamically and flexibly harvestall the unallocated resources
of any server on which they land.
Our work. We first characterize the unallocated resources
in Micrasoft Azure. The chamcterization shows that there is
potential for harvesting these resources, but they fluctuate over
time and their availability is heterogeneous across servers and
clusters. The characterization unearths the dynamics of the
unallocated resources over multiple time durations.

Next, we propase a new class of evictable VM, called Har-
vest VM, as a novel way to monetize unallocated resources.
A Harvest VM has a minimum size in terms of its physical
resources, but it dynamically receives more or fewer physical
resources heyond this minimum, depending on the amount
of unallocated resources at its underlying server. A Harvest
VM is anly evicted if its minimum size is needed for a regular
VM. In this paper, we focus on harvesting CPU cares.

Provisioning applications to run on harvested resources
is challenging. However, we can predict the availability and
amount of the unallocated resources in the datacenter. We
use these predictions to provide SLOs for Harvest VM de-
ployments. The SLO specifies the probability fora Harvest
VM to survive for a certain period and how many resources
it will get on average. For example, if a customer wants to
create 100 VMs, the SLO may indicate that 90% of them

USENIX Association

14th USENIX Symposium on Operating Systems Design and Implementation 753

g VMs in Cloud Platforms

20

Providing SLOs for Resource-Harvestin

...an evictable VM cannot consume all the unallocated
resources of a server unless it fits perfectly in it.

...a large evictable VM will be promptly evicted whenever

even a single resource 1s needed by a newly arriving regular
VM.

Multiple small evictable VMs can allocate the same amount of
resources but will add overhead to operate more VMs.

...larger number of evictions introduce VM re-creation and
application re-initialization overheads that may even cause
unavailability.

Providing SLOs for Resource-Harvesting VMs in Cloud Platforms

Pradeep Ambati* Tiigo Goirit Felipe Frujeri* Alper Gun'
Ke Wang' Brian Dolan’ Brian Corell’ Sekhar Pasupuleti’

Thomas Moscibroda' Sameh Elnikety?

"Microsoft Azure

Abstract

Cloud providers rent the resources they do not allocate as
evictable virtual machines (VMs), like spot instances. In this
paper, we first characterize the unallocated resources in Mi-
crosoft Azure, and show that they are plenty but may vary
widely over time and across servers. Based on the charcteri-
zation, we propose a new class of VM, called Harvest VM,
to harvest and monetize the unallocated resources. A Harvest
VM is more flexible and efficient than a spot instance, because
it grows and shrinks according to the amount of unallocated
resources at its underlying server: it is only evicted/killed
when the provider needs its minimm, SOOI, Next,
we create mad e TGt the availability of the unallo-
Ulted resources for Harvest VM deployments. Based on these
predictions, we provide Service Level Objectives (SLO) for
the survival rate (e.g.. 65% of the Harvest VMs will survive
more than a week) and the average number of cores that can
be harvested. Our short-term predictions have an average
error under 2% and less than 6% for longer terms. We also
extend a popular cluster scheduling framewark to leverage the
harvested resources. Using our SLOs and framework, we can
offset the rare evictions withextr harvested cares and achieve
the same computational power as regular-priority VMs, but at
91% lower cost. Finally, we outline lessons and results from

rumning Harvest VMs and our framework in production.

1 Introduction

Motivation. Cloud providers usually rent their resources to
customers as Infrastructure as a Service (luaS) VMs. When
deployed. each VM consumes a fixed amount of resources
from the server where it lands. Customers can keep their VMs
for seconds ar years [16] and may request more VMs over
time. Thus, providers need to provide the illusion of perfectly
clastic resources (e.g., by reserving demand growth buffers)
while operating the infrastructure with high availability (e.g.,
by transparently handling hardware failures). For these rea-

sans, they need to leave unallocated capacity.

Iniv. of Massachu:
s work. Gun and W

filiased with
Research dusing

Marcus Fontoura’ Ricardo Bianchini*
*Microsoft Research

To monetize this unallocated capacity, providers offer VMs
with relaxed SLOs at discounted prices. Specifically. they
affer low-priority evictable VMs, often called spot VMs [1
14]. These VMs are evicted if their resources are needed by
regular-priority (or simply regular) on-demand VMs. Thus,
evictable VMs are ideal for customers to run hatch jobs or
other workloads that can tolerate evictions, at very low cost.

Unfortunately, an evictable VM cannot consume all the
unallocated resources of a server unless it fits perfectly in it.
Evenif itdoes, a large evictable VM will be promptly evicted
whenever even a single resource is needed by a newly amriv-
ing regular VM. Multiple small evictable VMs can allocate
the same amount of resources but will add overhead to oper-
ate more VMs. In addition, their larger number of evictions
introduce VM re-creation and application re-initialization
overheads that may even cause unavailability.

Given these limitations of existing evictable VMs, we argue
that there should be a new class of evictable VMs able to
dwamically and flexibly harvest all the unallocated resources
of any server on which they land.

Our work. We first characterize the umllocated resources
in Micrasoft Azure. The chamcten zation shows that there is

potential for harvesting these resources, but they fluctuate over
time and their availability is heterogeneous across servers and
clusters. The characterization unearths the dynamics of the
unallocated resources over multiple time durations.

Next, we propase a new class of evictable VM, called Har-
vest VM, as a novel way to monetize unallocated resources.
A Harvest VM has a minimum size in terms of its physical
resources, but it dynamically receives more or fewer physical
resources heyond this minimum, depending on the amount

of unallocated resources at its underlying server. A Harvest
VM is anly evicted if its minimum size is needed for a regular
VM. In this paper, we focus on harvesting CPU cares.
Provisioning applications to run on harvested resources
is challenging. However, we can predict the availability and
amount of the unallocated resources in the datacenter. We
use these predictions to provide SLOs for Harvest VM de-
ployments. The SLO specifies the probability for a Harvest
VM to survive for a certain period and how many resources
it will get on average. For example, if a customer wants to
create 100 VMs, the SLO may indicate that 9% of them

USENIX Association

14t USENIX Symposium on Operating Systems Design and Implementation 753

g VMs in Cloud Platforms

21

Providing SLOs for Resource-Harvestin

Given these limitations of existing evictable VMs, we argue
that there should be a new class of evictable VMs able to
dynamically and flexibly harvest all the unallocated resources
of any server on which they land.

Providing SLOs for Resource-Harvesting VMs in Cloud Platforms

Pradeep Ambatit fiigo Goiri* Felipe Frujeri

Alper Gun'

Ke Wang" Brian Dolan’ Brian Corell’ Sekhar Pasupuleti’

Thomas Moscibroda’ Sameh Elnikety*

"Microsoft Azure

Abstract

Cloud providers rent the resources they do not allocate as
evictable virtual machines (VMs), like spot instances. In this
paper, we first characterize the unallocated resources in Mi-
crosoft Azure, and show that they are plenty but may vary
widely over time and across servers. Based on the charucteri-
zation, we propase a new class of VM, called Harvest VM,
to harvest and monetize the unallocated resources, A Harvest
VM is more flexible and efficient than a spot instance, because
it grows and shrinks according to the amount of unallocated
resources at its underlying server: it is only evicted/killed

when the provider needs its minimum set of resources. Next,
we create models that predict the availability of the unallo-
cated resources for Harvest VM deployments. Based on these
predictions, we provide Service Level Objectives (SLOs) for
e el . 3.2..65% of the Harvest VMs will survive
more than a week) and the i e age e ; that can
be harvested. Our short-term predictions have an average
error under 2% and less than 6% for longer terms. We also
extend a popular cluster scheduling framewark to leverage the
harvested resources. Using our SLOs and framework, we can
offset the rare evictions withextr harvested cores and achieve
the same computational power as regular-priority VMs, but at
91% lower cost. Finally, we outline lessons and results from
rumning Harvest VMs and our framework in production.

1 Introduction

Motivation. Cloud providers usually rent their resources to
custamers as Infrastructure as a Service (Iaa$) VMs. When
deployed, cach VM consumes a fixed amount of resources
from the server where it lands. Customers can keep their VMs
for seconds or years [16] and may request more VMs over
time. Thus, providers need to provide the illusion of perfectly
clastic resources (e.g., by reserving demand growth buffers)
while operating the infrastrocture with high availability (e.g..
by transparently handling hardware failures). For these rea-
sans, they need to leave unallocated capacity.

*Ambati s affiliated with the Univ. of Massachusetts Amberst, bt was
at Micrasaft Research dusng this work. Gun and Wang are naw with Google.

Marcus Fontoura’ Ricardo Bianchini*

To manetize this unallocated capacity. providers offer VMs
with relaxed SLOs at discounted prices. Specifically, they
offer low-priority evictable VMs, often called spot VMs [1,8,
14]. These VMs are evicted if their resources are needed by
regular-priority (or simply regular) on-demand VMs. Thus,
evictable VMs are ideal for customers to run batch jobs or
other workloads that can tolerate evictions, at very low cost.

Unfortunately, an evictable VM cannot consume all the
unallocated resources of a server unless it fits perfectly in it.
Evenif itdoes, a large evictable VM will be promptly evicted
whenever even a single resource is needed by a newly amiv-
ing regular VM. Multiple small evictable VMs can allocate
the same amount of resources but will add overhead to oper-
ate more VMs. In addition, their larger number of evictions
introduce VM re-creation and application re-initialization
overheads that may even cause unavailability.

Given these limitations of existing evictable VMs, we argue

that there should be a new class of evictable VMs able to
dwmamically and flexibly harvestall the unallocated resources
of any server on which they land.
Our work. We first characterize the unallocated resources
in Micrasoft Azure. The charcterization shows that there is
potential for harvesting these resources, but they fluctuate over
time and their avail ability is heterogeneous across servers and
clusters. The characterization unearths the dynamics of the
unallocated resources over multiple time durations.

Next, we propase a new class of evictable VM, called Har-
vest VM., as a novel way to monetize unallocated resources.
A Harvest VM has a minimum size in terms of its physical
resources, but it dynamically receives more or fewer physical
resources beyond this minimum, depending on the amount
of unallocated resources at its underlying server. A Harvest
VM is only evicted if its minimum size is needed for a regular
VM. In this paper, we focus on harvesting CPU cores.

Provisioning applications to run on harvested resources
is challenging. However, we can predict the availability and
amount of the unallocated resources in the datacenter. We
use these predictions to provide SLOs for Harvest VM de-
ployments. The SLO specifies the probability fora Harvest
VM to survive for a certain period and how many resources

it will get on average. For example, if a customer wants to
create 100 VMs, the SLO may indicate that 90% of them

USENIX Association

14t USENIX Symposium on Operating Systems Design and Implementation 753

g VMs in Cloud Platforms

22

Providing SLOs for Resource-Harvesting VMs in Cloud Platforms

Background and related work

VM deployments are partitioned into geographical regions and regions are partitioned into
clusters of servers. Servers in a cluster have the same hardware but each region may have
different number of clusters and hardware mix.

There is a separate scheduler for region-level and cluster-level. Examples of scheduling
factors: hardware required, maintenance tasks, available capacity.

A server-level agent create the assigned VM and manages its lifecycle.

Excess capacity is typically sold at discounted prices as evictabled VMs. Eviction notice varies
between providers - AWS gives a 2 min warning, 30s for Azure.

Dynamically changing virtual resources of a VM and enabling scheduler support for this can
be unrealistic in practice. Simplicity and maintainability is important for production
deployment.

Potential future work: harvest any allocated cores that are temporarily idle.

Traces of AWS EC2 spot prices are publically available and can be used to model the
availability of spot instances - the challenge is the degree of accuracy and comprehensivity.

It is better (and possible) to quantify unallocated resources at the granularity of a server,
rather than aggregate data for the entire cluster.

will survive for more than | day, with an average of 10 cares.
The provider does not monitor or actively seek to meet each
individual SLO: instead, we retrain our prediction models
frequently and provide our SLO as a statistical estimate [12].
As such, our SLOs can be considered predictions or estimates
over large numbers of Harvest VMs, rather than guarantees.

Renting unallocated resources is cheap, but requires ap-
plications to manage the evictions. In addition, with Harve st
VMs, the amount of resources hacking each VM can vary. Har-
vest VMs are mast useful when the applications they run can
adapt to the number of available resources. For example, many
applications use thread pools and can naturally adapt their par-
allelism. Others can schedule more load on larger VMs. The

provider can hide these complexities by using
10 create cheap Saa$ (Software-as-a-Service), Paa$ (Platform-
Service) offerings.

as-a-Service), and FaaS (Function-as-

In fact, Harvest VMs are ideal for cluster scheduling (e.g..
Apuche YARN [37], Kubemetes [22]) and serverless (e.g..
AWS Lambda [32], Azure Functions [4]) frameworks. These
frameworks can schedule more tasks/functions on a Harvest
VM that has grown to use mare physical cores, and stop
scheduling task</functions on one that has lost physical cares.
To demonstrate how to adapt these framewaorks, we build Har-
vest Hadoop to schedule computation (e.g., data-processing,
machine learning training) on harvested resources.

Our evaluation shows that we accurately predict the unal-
located resources and provide SLOs. We predict the survival
rate of a VM for I hour with an average error under 2% and
lower than 6% for longer terms. We also predict the addi-
tional cores that can be harvested within a fraction of acore
on average. Our SLOs and framework allow us to un Hadoop
workloads on Harvest VMs at 91% lower cost to the customer
than regular VMs, by offsetting the rare evictions with addi-
tional harvested cores. Compared to standard evictable VMs,
the cost savings can reach 47%. Finally, we discuss lessons
and results from deploying Harvest VMs and Harvest Hadoop
in production to run internal workloads in Azure.
Summary. Our contributions are:

* We characterize the unallocated resources of a large cloud.
* We propase Harvest VMs to harvest unallocated resources.
* We build predictors for the availability of unallocated re-
sources and provide a new SLO for these resourcess.

* We build Harvest Hadoop, a cluster scheduling framework
to leverage Harvest VMs.

+ We discuss lessons and results from our production deploy-
ment of Harvest VMs and Harvest Hadoop.

2 Background and related work

Deploying VMs. Each VM deployment targets a geograph-
ical region, which is partitioned into clusters of servers that
have the same hardware. Each region may have a different
number of clusters and hardware mix. A region-level sched-
uler decides which VMs go to which clusters based on several

factors (e.g., hardware required, maintenance tasks, available
capacity) [19]. These factors can cause clusters to have differ-
ent VM loads, even in the sume region. Then, a cluster-level
scheduler decides which server in the cluster will run each
VM. When a VM is assigned to a server, a server-level agent
creates the VM and manages its lifecycle.

Evictable VMs. Providers sell their excess capacity at dis-
counted prices as evictable VMs [1, 8, These VMs are
evicted/killed when the provider needs the capacity (e.g., due
to aspike in the number of on-demand VMs). Providers notify
the VMs before they evict them: GCP and Azure provide a
30-second warning, whereas AWS gives 2 minutes.
Variable-resource VMs. Sharma er al. [33] recently pro-
pased Deflatable VMs, which chan rtual resources dy-
namically (via hot-plugging/unplugging), and a multi-level
resource reclamation approach for explicitly adapting appli-
cations, operating systems, and hypervisors to the available
resources. They also combined reclamation with deflation-
aware VM scheduling. We believe that expecting the whole

stack to adapt is unrealistic in practice. Instead, we favor sim-
plicity and y for production def : (1) we
minimize the changes to the cloud platform, so deploying
Harvest VMs is no different than deploying any other VM,
and the VM scheduler is unaware that Harvest VMs grow and
shrink: (2) we do not change the number of virtual cores, and
instead transparently vary the number of physical cores

A more aggressive VM design could harvest the unallo-

cated cores and any allocated cares that are temporarily idle.
This is out of the scope of this paper. Instead, we focus an the
usability of core-harvesting VMs (aggressive or otherwise) in
practice with SLOs and software for them. Our SLOs can be
extended for aggressive harvesting, whereas Harvest Hadoop
can be used directly.

Like a Harvest VM., a burstable VM [7. 13] has a fixed
number of virtual cores and receives a minimum number
itis only allowed to burst (i.e..

defined core utilization. A Harvest VM differs in that (1)
it harvests as many cores as are unallocated for as long as
they remain so, i.e. there is no concept of credit: and (2) it is
evictable. These characteristics mean that providing SLOs for
Harvest VMs is also quite different than for burstable VM.
Resource harvesting, Other approaches to resource har-
vesting have either focused on ruming batch workloads
on idle machines (e.g. [25.26]) ar co-locating batch waork-
loads with |
(e.g.[23,27,
alized infrastructure where physical resources are reserved
for the VMs that allocate them (as is the norm in the pub-
lic cloud), and predict the availability and dynamics of the

ensitive services on hare-metal servers
9, 46,47]). In contrast, we focus on a virtu-

38,

unallocated resources to produce SLO.
Characterization and SLOs. To indirectly characterize the
unallocated resources at cloud providers, prior work [2,9,31,

754 14th USENIX Symposium on Operating Systems Design and Implementation

USENIX Association

& RedHat

Providing SLOs for Resource-Harvesting VMs in Cloud Platforms

Characterizing
unallocated resources:
Azure 2/19 - 10/19 data

Methodology, Temporal patterns, Cluster behaviors, Regional aggregated data, Minimum unallocated
cores, Additional unallocated cores, Multiple VMs per server, High-level takeaways

Proposed VM class: Overview, Production implementation approach, Comparison to standard evictable VMs,
Harvest VM Workload/application requirements, Privacy/Confidentiality, Pricing, Harvesting resources other than cores

Prediction for survival User input, ML models and features, ML training and inference, Discarded features, Applying prediction to
rate: ML based approach standard evictable VM survivability

Scheduler support: Architecture, Eviction management, Core reassignment management, Harvesting resources other than
Harvest Hadoop cores

Evaluation Evaluation focus, Simulator, Experiments, Analysis (benefits, accuracy, scheduler, cost)

23

& RedHat

Paper 2. OS & Networking Track

PANIC: A
High-Performance
Programmable NICtor
Multi-tenant Networks

25

PANIC: A High-Performance Programmable NICfor Multi-tenant Networks

ARTIFACT ARTIFACT ARTIFACT
EVALUATED EVALUATED EVALUATED

e | |t | |aien

&

PANIC: A High-Performance Programmable NIC for Multi-tenant Networks

Kiran Patel Brent E. Stephens
University of Illinois at Chicago University of Illinois at Chicago
Aditya Akella
University of Wisconsin-Madison

Jiaxin Lin
University of Wisconsin-Madison
Anirudh Sivaraman
New York University (NYU)

A Artifact Appendix
A.1 Abstract

This artifact contains the source code and test benches for
PANIC’s 100Gbps FPGA-based prototype. Our FPGA pro-
totype is implemented in pure Verilog. Features of the proto-
type include: the hybrid push/pull packet scheduler. the high-
performance switching interconnect, self-contained compute
units, and the lightweight RMT pipeline.

This artifact provides two test benches to reproduce the
results in Figure 8¢ and Figure | lain the Vivado HDL simu-
lator.

A.2 Artifact check-list

Compilation: Running this artifact requires Vivado Design
Suite [10]. Vivado v2019.x and v2020.1 WebPack are verified.

Hardware: This artifact does not requires any specific hard-
ware.

Metrics: This artifact measures PANIC’s
put under different chaining models and traffic patterns.

receiving through-

Output: The result will be printed to the console and log
files.

Experiments: This artifact includes testbenches and running
scripts to replay Figure 8c and Figure 11a.

Public link:

madi s

A.3 Description

A.3.1 How to access

This artifact is publicly available at ht

rking-research/par

org/t -netw

A.32 Software dependencies

Running this artifact requires Vivado [10]. Vivado WebPack version
is license-free, and it has simulation capabilities to recreate our
results. Since installing the Vivado WebPack requires plenty of disk
space (>20GB), you can choose to instance an FPGA Developer

AMIin AWS (het mazon.com/ma
pp/B06 is artifact. The FPGA De
has pre-installed the required Vivado toolchain.

A4 Experiment workflow
1. Check Vivado is Installed Correctly

S vivado —~mode tcl
// Enter the Vivado Command Palette
Vivado% version
/1 v2019.x and v2020.1 is verified
Vivado% quit

2. Clone the Repo and Make Run
S git clone [Artifact_Repo]

cd panic_osdi20_artifact

make test_parallel

make test_shaaes

“wnn

The make command first compiles the source code, then runs the
simulation tasks in Vivado. The test_parallel test replays Figure 8c
and the fest_shaaes test replays Figure 1la.

A.5 Evaluation and expected result

The result will be printed to the console. The output will also be
logged in /build/exportsim/xsim/simulate.log. For the expected
output and analysis please reference Figure 8¢ and Figure 11a.

A.6 Notes
For more details about the code structure, please reference
bitk

md

A.7 AE Methodology

Submission, reviewing and bad

1ference /fosdi20

call-for-art

26

PANIC: A High-Performance Programmable NICfor Multi-tenant Networks

“Apple pie”

The gap between network line-rates and the rate at which a CPU can produce and consume
data is widening rapidly.

Emerging programmable (“smart”) NICs can help overcome this problem.

There are many different types of offloads that can be implemented on a programmable
NIC.

These offloads, which accelerate computation across all of the different layers of the network
stack, can reduce load on the general purpose CPU, reduce latency, and increase throughput

Many different cloud and datacenter applications and use cases have been shown to benefit
from offloading computation to programmable NICs

ARTIFACT axmeacr | [ammeacr
IVAWATID | | FVAWATIO | | EVALATRO
wsan urnix upenx
€| | 6™ | €

PANIC: A High-Performance Programmable NIC for Multi-tenant Networks

Jiaxin Lin
University of Wisconsin-Madison
Aninudh Sivaraman
New York University (NYU)

Abstract

Programmable NICs have diverse uses, and there isa need for
a NIC platform that can offload computation from multiple
co-resident applications to many different types of substrates,
including hardware accelerators, embedded FPGAs, and em-
bedded processor cares. Unfortunately, there is no existing
NIC design that can simultancously support a large number of
diverse offloads while ensuring high throughput/low latency,
multi-tenant isolation, flexible offload chaining, and support
for offloads with variable performance.

This paper presents PANIC, a new programmable NIC.
There are two new key components of the PANIC design that
enable it to overcome the limitations of existing NICs: 1) A
high-performance switching interconnect that scalably con-

nects independent engines into offlaad chains, and 2) A new
hybrid push/pull packet scheduler that provides cross-tenant
performance isolation and low-latency load-balancing acrass
parallel offload engines. From experiments performed on an
100 Gbps FPGA-based prototype, we find that this design
overcomes the limi :

NICs.

of state-of-the-art

1 Introduction

The gap between network line-rates and the rate at which a
CPU can produce and consume data is widening rapidly [71,
66]. Emerging programmable (*“smart”) NICs can help over-
come this problem [32]. There are many different types of
offloads that can be implemented on a programmable NIC
These offloads, which accelerate computation across all of
the different layers of the network stack, can reduce load
on the general purpose CPU, reduce latency, and increase
throughput [32, 48, 59, 69, 13].

Many different cloud and datacenter applications and use
cases have been shown to benefit from offloading computation
to programmable NICs [13, 48, 59, 42, 32, 37, 49, 46, 62,
47, 30, 36, 70, 69, 35, S5, 45]. However, there is no single

silver bullet” offload that can improve performance in all

cases. Instead, we anticipate that different applications will
specify their own chains of offloads, and that the operator will
then merge these chains with infrastructure-related offloads
and run them on her programmable NICs. To realize this
vision, this paper presents PANIC, a new scalable and high-
perfarmance programmable NIC for multi-tenant networks

Kirn Patel
University of Illinois at Chicago

Brent E. Stephens
University of linois at Chicago
Aditya Akella
University of Wisconsin-Madison

that supports a wide variety of different types of offloads and
composes them into isolated offload chains.

To enable cloud operatars to provide NIC offload chains as
aservice to tenants, a programmable NIC must suppont: 1) Of-
fload variety: some offlaads like cryptography are best suited
for hardware implementations, while an offload providing a
low-latency bypass for RPCs in an application is better suited
for an embedded core [51]:2) Offload chaining: to minimize
wasted chip area on redundant functions, the NIC should fa-
cilitate composing independent hardware offload units into
a chain as needed, with commonly-needed offloads shared
across tenants: 3) Multi-tenant isolation: tenants should not
be able to consume mare than their allocation of a shared
offload: 4) Variable-performance offloads: there are useful
offloads that are not guaranteed to run at line-rate, as well as
impaortant offloads that run with low latency and at line-rate.

There exist many different programmable NICs [32, 12,
75,31, 5 23,24, 11, 57, 53, 54,52, 76), but, there is no
programmable NIC that is currently able to provide all of the
above properties. Existing NIC designs can be categorized as
follows, with cach category impasing key limitations:

+ Pipeline-of-Offfoads NICs place multiple offloads in a
pipeline to enable packets to be processed by a chain of
functions [52, 32]. Chaining can be modified in these
NICs today but requires a significant amount of time and
developer effort for FPGA synthesis, and slow offloads
cause packet loss or head-of-line (HOL) blocking.

+ Manycore NICs load halance packets across many em-
bedded CPU cares, with the CPU core then control-
ling the processing of packets as needed for different
offloads (23, 24, 53, 54,57, 72, 58]. These designs suffer
from performance issues because embedded CPU cares

add tens of microseconds of additional latency [32]. Also,
no existing manycare NICs provide performant mecha-
nisms to isolate competing tenants. Further, performance
on manycore NICs can degrade significantly if the work-
ing setdoes not fit within the care’s cache.

RMT NICs use on-NIC reconfigurable match+action
(RMT) pipeline to implement NIC offloads. The types
of offloads that can be supported by RMT pipelines are
limited because each pipeline stage must be able to handle
processing a new packet every single clock ceyele.

USENIX Association

14t USENIX Symposium on Operating Systems Design and Implementation 243

& RedHat

PANIC: A High-Performance Programmable NICfor Multi-tenant Networks

Problems/Challenges
e No existing programmable NIC that supports all of the following properties:

o Offload variety
m some offloads like cryptography are best suited for hardware implementations,
while an offload providing a low-latency bypass for RPCs in an application is
better suited for an embedded core

o Offload chaining
m to minimize wasted chip area on redundant functions, the NIC should facilitate
composing independent hardware offload units into a chain as needed, with
commonly-needed offloads shared across tenants

o Multi-tenant isolation
m tenants should not be able to consume more than their allocation of a shared
offload

o Variable-performance offloads
m there are useful offloads that are not guaranteed to run at line-rate, as well as

important offloads that run with low latency and at line-rate.
27

ARTIFACT anmeact | | ammeacr |
| [| [
pouamie | | gl | | gure

sl vcrons: il emsoovcio

PANIC: A High-Performance Programmable NIC for Multi-tenant Networks

Jiaxin Lin Kinn Patel

Brent E. Stephens

University of Wisconsin-Madison University of Illinois at Chicago University of linois at Chicago

Aninudh Sivariman
New York University (NYU)

Abstract

Programmable NICs have diverse uses, and there isa need for
a NIC platform that can offload computation from multiple
co-resident applications to many different types of substrates,
including hardware accelerators, embedded FPGAs, and em-
bedded processor cores. Unfartunately, there is no existing
NIC design that can simultancously support a large number of
diverse offloads while ensuring high throughput/low latency,
multi-tenant isolation, flexible offload chaining, and support
for offloads with variable performance.

This paper presents PANIC, a new programmable NIC.
There are two new key components of the PANIC de. that
enable it to overcome the limitations of existing NI A
high-performance switching interconnect that scalably con-

nects independent engines into offlaad chains, and 2) A new
hybrid push/pull packet scheduler that provides cross-tenant
performance isolation and low-latency load-balancing acrass
parallel offload engines. From experiments performed on an
100 Gbps FPGA-based prototype, we find that this design
overcomes the limi of state-of-the-art

NICs.

1 Introduction

The gap between network line-rates and the rate at which a
CPU can produce and consume data is widening rapidly [71,
66]. Emerging programmable (“smart”))
come this problem [32]. There are many different types of
offloads that can be implemented on a programmable NIC
These offloads, which accelerate computation across all of
the different layers of the network stack, can reduce load
on the general purpose CPU., reduce latency, and increase
throughput [32, 48, 59, 69, 13].

Many different cloud and datacenter applications and use
cases have been shown to benefit from offloading computation
to programmable NICs [13, 48, 59, 42, 32, 37, 49, 46, 62,
47, 30, 36, 70, 69, 35, 5]. However, there is no single
“silver bullet” offload t an improve perfarmance in all
cases. Instead, we anticipate that different applications will
specify their own chains of offloads, and that the operator will
then merge these chains with infrastructure-related offloads
and run them on her programmable NICs. To realize this
vision, this paper presents PANIC, a new scalable and high-
performance programmable NIC for multi-tenant networks

n help over-

Aditya Akella
University of Wisconsin-Madison

that supports a wide variety of different types of offloads and
composes them into isolated offload chains.

To enable cloud operators to provide NIC offload chains as
aservice to tenants, a programmable NIC must suppont: 1) Of-
fload variety: some offloads like cryptography are best suited
for hardware implementations, while an offload providing a
low-latency bypass for RPCs in an application is better suited
for an embedded care [51]:2) Offload chaining: to minimize
wasted chip area on redundant functions, the NIC should fa-
cilitate composing independent hardware offload units into
a chain as needed, with commonly-needed offloads shared
across tenants: 3) Multi-tenant isolation: tenants should not
be able to consume mare than their allocation of a shared
offload: 4) Variable-performance offloads: there are useful
offloads that are not guaranteed to run at line-rate, as well as
impaortant offloads that run with low latency and at line-rate.

st many different programmable NICs [32, 12,
24,11, 54,52, 76), but, there is no
programmable NIC that is currently able to provide all of the
above properties. Existing NIC desig
follows, with each category impasing key limitations:

ns can be categorized as

+ Pipeline-of-Offfoads NICs place multiple offloads in a
pipeline to enable packets to be processed by a chain of
functions [52, 32]. Chaining can be modified in these
NICs today but requires a significant amount of time and
developer effort for FPGA synthesis, and slow offloads
cause packet loss or head-of-line (HOL) blocking.

Manycore NICs load balance packets across many em-
bedded CPU cares, with the CPU core then control-
ling the processi as needed for different
affloads 23 58). These designs suffer
from performance issues because embedded CPU cares
add tens of microseconds of additional latency [32]. Also,
no existing manycare NICs provide performant mecha-
nisms to isolate competing tenants. Further, performance
on manycore NICs can degrade significantly if the work-
ing setdoes not fit within the core’s cache.

RMT NICs use on-NIC reconfigurable match+action
(RMT) pipeline to implement NIC offloads. The types
of offloads that can be supported by RMT pipelines are
limited because each pipeline stage must be able to handle
processing a new packet every sing

e clock cycle.

USENIX Association

14t USENIX Symposium on Operating Systems Design and Implementation 243

& RedHat

PANIC: A High-Performance Programmable NICf

Problems/Challenges
e Existing programmable NIC designs, categorized below, have key limitations:

o Pipeline-of-Offloads (ASIC + FPGA)
m Modifying chaining requires significant amount of time and developer effort for
FPGA synthesis
m Slow offloads cause packet loss or head-of-line (HOL) blocking

o Manycore NICs (CPUs)
m CPU cores add tens of microseconds of additional latency
m No performant mechanisms today to isolate competing tenants
m Performance degrades significantly if working set done not fit in cache

o RMT NICs (programmable ASIC)
m Limited offload support
m Each pipeline stage much be able to handle processing a new packet every
single clock cycle

or Multi-tenant Networks

ARTIFACT asmeact | [asmeact
VALUATID EVALATID FVALUATFO
suseny usenix upenix
QL € 7

| avanasis i ronenona |

PANIC: A High-Performance Programmable NIC for Multi-tenant Networks

Jiaxin Lin Kirn Patel
University of Illinois at Chicago

University of Wisconsin-Madison
Aninudh Sivaraman
New York University (NYU)

Abstract

Programmable NICs have diverse uses, and there isa need for
a NIC platform that can offload computation from multiple
co-resident applications to many different types of substrates,
including hardware accelerators, embedded FPGAs, and em-
bedded processor cores. Unfartunately, there is no existing
NIC design that can simultancously support a large number of
diverse offloads while ensuring high throughput/low latency,
multi-tenant isolation, flexible offload chaining, and support
for offloads with variable performance.

This paper presents PANIC, a new programmable NIC.
There are two new key components of the PANIC design that
enable it to overcome the limitations of existing NICs: 1) A
high-performance switching interconnect that scalably con-
nects independent engines into offlaad chains, and 2) A new
hybrid push/pull packet scheduler that provides cross-tenant
performance isolation and low-latency load-halancing acrass
parallel offload engines. From experi ments performed on an
100 Gbps FPGA-based prototype, we find that this design
overcomes the limi of state-of-the-art |

NICs.

1 Introduction

The gap between network line-rates and the rate at which a
CPU can produce and consume data is widening rapidly [71,
66]. Emerging programmable (*“smart”) NICs can help over-
come this problem [32]. There are many different types of
offloads that can be implemented on a programmable NIC

These offloads, which accelerate computation across all of
the different layers of the network stack, can reduce load
on the general purpose CPU., reduce latency, and increase
throughput [32, 48, 59, 69, 13].

Many different cloud and datacenter applications and use
cases have been shown to benefit from offloading computation
to programmable NICs [13, 48, 59, 42, 32, 37, 49, 46, 62,
47, 30, 36, 70, 69, 35, S5, 45]. However, there is no single

ICore 1.1 I*>..A4+|Core 1,N|
Q) ' ' '
Pipeline

RMT /' Egress RMT

Pipeline

. : : : : w»to CPU :
Offload Offload ®y) A n A Cy DMA
Cy

|« to CPU
ICore M,1 |+> m<->|Core M.N| to CPU

28

(a) A pipeline-of-offloads architecture (b) A tiled manycore NIC architecture

Figure 1: Illustrations of existing programmable NIC architectures.

(c) A NIC with RMT pipeline [42]

offload that can improve performance in all
we anticipate that different applications will
n chains of offloads, and that the operator will
se chains with infrastructure-related offloads
fon her programmable NICs. To realize this
e per presents PANIC, a new scalable and high-

> rogrammable NIC for multi-tenant networks

Brent E. Stephens
University of llinois at Chicago
Aditya Akella
University of Wisconsin-Madison

that supports a wide variety of different types of offloads and
composes them into isolated offload chains.

To enable cloud operators to provide NIC offload chains as
aservice to tenants, a programmable NIC must suppont: 1) Of-
fload variety: some offloads like cryptography are best suited
for hardware implementations, while an offload providing a
low-latency bypass for RPCs in an application is better suited
for an embedded care [51]:2) Offload chaining: to minimize
wasted chip area on redundant functions, the NIC should fa-
cilitate composing independent hardware offload units into
a chain as needed, with commonly-needed offloads shared
across tenants: 3) Multi-tenant isolation: tenants should not
be able to consume mare than their allocation of a shared

offload: 4) Variable-performance offloads: there are useful
offloads that are not guaranteed to run at line-rate, as well as
impaortant offloads that run with low latency and at line-rate.
There exist many different programmable NICs [32, 12,
75,31, 5 23, 24, 11, 57, 53, 54,52, 76], but, there is no
programmuable NIC that is currently able to provide all of the
above properties. Existing NIC designs can be categorized as
follows, with each category impasing key limitations:

+ Pipeline-of-Offfoads NICs place multiple offloads in a
pipeline to enable packets to be processed by a chain of
functions [52, 32]. Chaining can be modified in these
NICs today but requires a significant amount of time and
developer effort for FPGA synthesis, and slow offloads
cause packet loss or head-of-line (HOL) blocking.

+ Manycore NICs load halance packets across many em-
bedded CPU cares, with the CPU core then control-
ling the processing of packets as needed for different
offloads 23, 24, 53, 54,57, 72, 58]. These designs suffer
from performance issues because embedded CPU cares

add tens of microseconds of additional latency [32]. Also,
no existing manycare NICs provide performant mecha-
nisms to isolate competing tenants. Further, performance
on manycore NICs can degrade significantly if the work-
ing setdoes not fit within the core’s cache.

RMT NICs use on-NIC reconfigurable match+action
(RMT) pipeline to implement NIC offloads. The types
of offloads that can be supported by RMT pipelines are
limited because each pipeline stage must be able to handle
processing a new packet every single clock ceyele.

iaton 14t USENIX Symposium on Operating Systems Design and Implementation 243

& RedHat

29

PANIC: A High-Performance Programmable NICfor Multi-tenant Networks

Background and related work (Sections 2 and 8)

e NICs should support both hardware and software offloads since not all offloads are best implemented

on the same type of underlying engine. For example, crypto offload works better using hardware
accelerators while walking a hash table resident in main memory is better suited for embedded cores.

e Applications, and even individual packets, can have different requirements. Secure remote memory
access may require: crypto + congestion control + RDMA offload blocks. Key value store - that serves
requests both from within data center and WAN distributed clients - can require an IPSec and/or
compression offloads, but only WAN packets will likely use them.

e Some offloads may not run at line-rate. Of the compression, cryptography, authentication, and
inference offloads that we ran on hardware, only inference was able to run at 100 Gbps. Compression
and authentication performance depends on packet size. Slow offloads can be duplicated across
multiple engines (e.g., 3 AES-256 engines) for line-rate operation.

e Anoffload thatis used for TX and RX on a dual port NIC needs to operate at four times line-rate to

prevent becoming a bottleneck.

NIC Offload
Design Chaining

Multi-Tenant
Isolation

Variable
Perf

High
Perf

Offload
Variety

Pipeline X
Manycore v
RMT X

X
X

v

X
Y

X

X

v

X

Table 2: Programmable NIC designs compared w.r.t. the
requirements in Section 2.1.

This paper presents the design, implementation and evalua-
tion of PANIC, a new NIC that overcomes the key limitations
of existing NIC designs. PANIC draws inspiration from recent
work on reconfigurable (RMT) switches [21, 67, 68,27, 16].
PANIC's design leverages three key principles

. Offioads should be self<ontained The set of potentially
useful offloads is diverse and vast, spanning all of the
layers of the network stack. As such, a programmable
NIC should be able to support both hardware IP cores and
embedded CPUs as offloads.

Packet scheduling, buffering, and load-balancing should
be centralized for the best performance and efficiency
because decentralized decisions and per-offfoad queuing
can lead to poor tail response latencies and poor buffer
utilization due to load imbalances.

. Because the cost of small/medium-sized non-blocking fab-
rics is small relative to the NIC overall, the offloads should
be connected by a non-blodking/low-oversubscribed
switching fabric to enable flexible chaining of offloads.

Following these design principles, this paper makes three

key contributions: 1) A novel programmable NIC design

where diverse offloads are connected to a non-blocking
switching fabric, with chains orchestrated by a programmable

RMT pipeline, 2) A new hybrid push/pull scheduler-and-load

balancer with priority-aware packet dropping, and 3) An anal-

ysis of the costs of on-NIC programmable switching and
scheduling that finds them to be low relative to the NIC asa
whole.

The PANIC NIC has four components: 1) an RMT switch
pipeline, 2) a switching fabric, 3) a central scheduler, and 4)
self-contained compute units. The RMT pipeline provides
programmable chain orchestration. A high performance in-
terconnect enables programmable chaining at line-rate. The
central scheduler provides isolation, buffer management, and
load-balancing. Self-contained compute units may be either
hardware accelerators or embedded cores and are not required
1o run at line-rate.

To evaluate the feasibility of PANIC, we have performed
both ASIC analysis and experiments with an FPGA proto-
type. Our ASIC analysis demonstrates the feasibility of the
PANIC architecture and shows that the crosshar interconnect
topology scales well up to 32 total attached compute units.
Our FPGA prototype can perform dynamic offload chaining
at 100 Ghps, and achieves nanasecond-level (<0.8 us) packet
scheduling and load-balancing under a variety of chaining
configurations. We empirically show that PANIC can handle
multi-tenant isolation and below line-rate offloads better than
a state-of-the-art pipeline-based design. Our end-to-end ex-
periments in a small scale testbed demonstrate that PANIC
can achieve dynamic bandwidth allocation and prioritized
packet scheduling at 100 Gbps. In total, the companents of
PANIC, which includes an 8 * § crassbar, only consume a
total of 11.27% of the total logic area (LUTs) available on the

Tput
Offioad Conlig (Ghps) _ Delay
TTWo Mz 36 [T
HW@NMHz 384 &7ns

CPU@15GHz _ 0.154

AWG 20MHz 1130 0.47-1084s
CPU@15GHz 0192

Tiwa sz 10 G

Table I: A breakdown of the performance of different o floads
when implemented in either hardware or software.

Xilinx UltraScale Plus FPGA that we used. The Verilog code
for our FPGA prototype is publicly available ',

2 Motivation
We discuss in detail the requirements that we envision pro-

grammable NICs in multi-tenant networks ought to meet. We
then explain why existing NICs designs fail to meet them

2.1 Requirements

1. OMoad Variety: There are a large variety of network
offloads, and different types of offloads have different needs.
Not all offloads are best implemented on the same type of
underlying engine. For example, a cryptography offload can
provide much better performance if implemented with a hard-
ware accelerator built from a custom IP care instead of an
embedded processor care. To shed light on this, we experi-
mented with a few different types of offloads using an Alpha
Data ADM-PCIE-9V3 Programmable NIC [12] to evaluate
the behavior of different hardware [P cores that could be used
as on-NIC accelerators, and the Rocket Chip Generator [14]
to perform cycle-accurate performance measurements of a
RISC V CPU to understand the costs of running these offload
with an on-NIC embedded processor. Our results in Table |
indeed show that offloads for encryption/decryption and au-
thentication are a poor fit for embedded CPU designs and
should be implemented in hardware.

In contrast, an application-specific offload to walk a hash

table that is resident in main memory is better suited for an
embedded processor care because a hardware
not provide enough flexibility [51]. Thus. a prog
NIC should ideally provide support for both hardware and
software offloads.
2. Dynamic Offload Chaining: In the case of hardware ac-
celerators, it is important to be able to compose independent
offload functionality into a chain/pipeline to avoid wasted
area on redundant functionality. For example, using a pro-
grammable NIC to implement a secure remote memary access
far a tenant may require the tenant to compase cryptography,
congestion control, and RDMA offload engines.

fload may
mmable

'PAN

244 14th USENIX Symposium on Operating Systems Design and Implementation

USENIX Association

& RedHat

PANIC: A High-Performance Programmable NICfor Multi-tenant Networks

Operational overview, Offload variety support, Dynamic offload chaining support, Policies for dynamic
Architecture overview multi-tenant isolation, Support for offloads with variable and below line-rate
performance, Support for high performance

Design of individual

RMT pipelines, High performance interconnect, Centralized scheduler, Compute unit
components

FPGA Prototype RMT pipelines, FPGA-based crossbar, Central scheduler and packet buffer, Compute units,

Testbed and methodology, Microbenchmarks, Comparison with the pipeline design, RISCV core
performance, Hardware resource usage, End-to-end performance

Evaluation

& RedHat

Paper 3: Security Track

Orchard: Differentially
Private Analytics at Scale

32

Orchard: Differentially Private Analytics at Scale

“Apple pie”

When operating a large distributed system, it is often useful to collect some data from the
users’ devices—e.g., to train models that will help to improve the system.

Since this data is often sensitive, differential privacy is an attractive choice, and several
deployed systems are using it today to protect the privacy of their users.
o Google is using differential privacy to monitor the Chrome web browser.
o AppleisusingitiniOS and macOS, e.g., to train its models for predictive typing and to
identify apps with high energy or memory usage.
o Other deployments include those at Microsoft and at Snap.

Today, this data is typically collected using local differential privacy.
o Each user device individually adds some random noise to its own data.
o Then each user uploads the data to a central entity.
o The central entity then aggregates the uploads and delivers the final result.

Local differential privacy can be done efficiently at scale.

| ammeacr ARTIFACT | armeacr
i SVALUATID EVALUATID EVALUATED

urgnix | | gupanar
| €| | €™ &

Orchard: Differentially Private Analytics at Scale

Edo Roth, Hengchu Zhang, Andreas Hacberlen, Benjamin C. Pierce

University of Pennsylvania

Abstract

This paper presents Orchard, a system that can answer queries
about sensitive data that is held by millions of user devices,
with strong differential privacy guarantees. Orchard combines

high accuracy with good scalability, and it uses only a sin-

gle untrusted party to facilitate the query. Mareover, whereas

previous solutions that shared these properties were custom-

built for specific queries, Orchard is general and can accept a

wide range of queries. Orchard accomplishes this by rewrit-

ing queries into a distributed protocol that can be executed
efficiently at scale, using cryptographic primitives.

Our prototype of Orchard can execute 14 out of 17 queries
chasen from the literature: to our knowledge, no other system
can handle more than ane of them in this setting. And the
costs are moderate: each user device typically needs only a
few megabytes of traffic and a few minutes of computation
time. Orchard also includes a novel defense against malicious
users who attempt to distort the results of a query.

1 Introduction

When operating a large distributed system, it is often useful
to collect some data from the users’ devices—e.g., to train
models that will help to improve the system. Since this data
is often sensitive, differential privacy [28] is an attractive
choice, and several deployed systems are using it today to
protect the privacy of their users. For instance, Google is using

differential privacy to manitor the Chrome web browser [31],

g. 10 train its
pps with high

and Apple is using it in i0S and macOS,
maodels for predictive typing and to identify

energy or memory usa
at Microsoft [27] and at Snap [68].

Today, this data is typically collected using local differ-

ential privacy [31]: each user device individually adds some
random noise to its own data and then uploads it to a central
entity, which a; ates the uploads and delivers the final
result. This can be done efficiently at scale, but the final result

contains an enomous amount of noise: as Gooy

evenina deployment with a billion users, it is easy to miss

signals from a million users. Utility can be improved by re-

ducing the amount of noise, but this weakens the privacy
guarantee considerably, to the point where it becomes almost
meaningless [80].

.8]. Other deployments exist, e.g..

notes [14],

One way to avoid this problem is to collect the data using
glabal differential privacy instead. In this approach, each de-
vice provides its raw, un-noised data to the central

which then adds random noise only once. This clearly pro-
duces results that are more precise, but it also requires a lot
of trust in the aggregator, who now receives the individual
users’ raw data and must be trusted not to look at it. Crypto-
graphic tech like multiy P [84] and fully
homomarphic encryption [38] could theoretically avoid this
problem, but, at least with current technology, scaling either

approach to millions of partici pants seems implausible.

The recently proposed Honeyerisp system [7
obal differential privacy

or. Instead of fully homomarphic encryption, Hon-
crisp uses additively homemorphic encryption, which is
much more efficient. However, the price to pay is that Honey-
erisp can answer only one specific query, namely count-mean
sketches 8] with additional use of the sparse-vector operator.
This query does have important applications (for instance, it
is used in Apple’s i0S), but it is by no means the only query
one might wish to ask: the literature is full of other inter-
ueries that can be performed with global differential
pri £.,[15,31,40,41,55,64,70, ght now, we are
not aware of any systems that can answer even one of these

queries at scale, using only asingle, untrusted aggregator.

In this paper, we show how to substantially expand the va-
riety of queries that can be answered efficiently in this highly
distributed setting. Our key insight is that many differentially
private queries have alot more in common than at first meets
the eye: while maost of them transform, group, ar otherwise
process the input data in some complicated way, the heart of
the algorithm is (almost) always a sequence of sums, each
computed over some values that are derived from the users”
input data. This happens to be exactly the kind of computa-
tion that Honeyerisp's collect-and-test (CaT) primitive can
perfarm efficiently, using additively homomorphic encryption.
Thus, CaT tums out to be far more general than it may seem:
it can perform the distributed parts of many queries, leaving
only a few smaller computations that can safely be done by

spregator, ar locally an each user device.

The key challenge is that, for many queries, the connec-
tion to sums over per-user data is far from obvious. Many
differentially private queries were desi gned for a centralized
setting where the aggregator has an unencrypted data set and

USENIX Association

14th USENIX Symposium on Operating Systems Design and Implementation 1065

& RedHat

Orchard: Differentially Private Analytics at Scale

Problems/Challenges

33

The final result of local differential privacy contains an enormous amount of noise.
o Eveninadeployment with a billion users, it is easy to miss signals from a million users.
o Reducing noise weakens privacy guarantee considerably.

Global differential privacy can address this since noise is only added once i.e. by the
aggregator.

However, global differential privacy requires a lot more trust in the aggregator since individual
users have to send raw data and trust that the aggregator will not look at it.

Crypto techniques like Multi Party Computation and Fully Homomorphic Encryption can
avoid the untrusted aggregator problem, but do not scale to millions of participants with
current technology.

Systems like Honeycrisp use additively homomorphic encryption which is much more
efficient at scaling, but can only answer the count-mean sketches query.

| ammeacr ARTIFACT | armeacr
i SVALUATID EVALUATID EVALUATED

urgnix | | gupanar
| €| | €™ &

Orchard: Differentially Private Analytics at Scale

Edo Roth, Hengchu Zhang, Andreas Hacberlen, Benjamin C. Pierce

University of Pennsylvania

Abstract

This paper presents Orchard, a system that can answer queries
about sensitive data that is held by millions of user devices,
with strong differential privacy guarantees. Orchard combines
high accuracy with good scalubility, and it uses only a sin-
gle untrusted party to facilitate the query. Mareover, whereas
previous solutions that shared these properties were custom-
built for specific queries, Orchard is general and can accept a
wide range of queries. Orchard accomplishes this by rewrit-
ing queries into a distributed protocol that can be executed
efficiently at scale, using cryptographic primitives.

Our prototype of Orchard can execute 14 out of 17 queries
chasen from the literature: to our knowledge, no other system
can handle more than ane of them in this setting. And the
costs are moderate: each user device typically needs only a
few megabytes of traffic and a few minutes of computation
time. Orchard also includes a novel defense against malicious
users who attempt to distort the results of a query.

1 Introduction

When operating a large distributed system, it is often useful
to collect some data from the users’ devices—e.g., to train
models that will help to improve the system. Since this data
is often sensitive, differential privacy] is an attractive

choice. and several deployed systems
protect the privacy of their users. For instance, Google is using
differential privacy to manitor the Chrome web browser [31],
and Apple is using it in i0S and macOS, e.g.,
maodels for predictive typing and to identif
energy or memory usage [7,8]. Other deployments exist, e.g..
at Microsoft [27] and at Snap [68].

Today, this data is typically collected using local differ-

using it today to

ential privacy [31]: each user device individually adds some
random noise to its own data and then uploads it to a central
entity, which tes the uploads and delivers the final
result. This can be done efficiently at scale, but the final result

contains an enormous amount of noise: as Google notes [14],
evenina deployment with a billion users, it is easy to miss
signals from a million users. Utility can be improved by re-
ducing the amount of noise, but this weakens the privacy
guarantee considerably, to the point where it becomes almost
meaningless [80].

One way to avoid this problem is to collect the data using
glabal differential privacy instead. In this approack
vice provides its raw, un-noised data to the central a;

which then adds random noise only once. This clearly pro-
duces results that are more precise, but it also requires a lot
of trust in the -gator, who now receives the individual
users’ raw data and must be trusted not to look at it. Crypto-
graphic tech like multiparty comp [84] and fully
homomarphic encryption [38] could theoretically avoid this
problem, but, at least with current technology, scaling either

approach to millions of participants seems implausible.

The recently propased Honeyerisp system [76] can provide
global differential privacy at scale, with a sis untrusted
ator. Instead of fully homomarphic encryption, Hon-
eyerisp uses additively homemorphic encryption, which is

much more efficient. However, the price to pay is that Honey-
erisp can answer only one specific query, namely count-mean
sketches 8] with additional use of the sparse-vector operator.
This query does have important applications (for instance, it
is used in Apple’s i0S), but it is by no means the only query
one might wish to ask: the literature is full of other inter-
ueries that can be performed with global differential
privacy (eg., [15,31,40,41,55,64,70,83]). Right now, we are
not aware of any

tems that can answer even one of these

queries at scale, using only asingle, untrusted aggregator.

In this paper, we show how to substantially expand the va-
riety of queries that can be answered efficiently in this highly
distributed setting. Our key insight is that many differentially
private queries have alot more in common than at first meets
the eye: while maost of them transform, group, ar otherwise
process the input data in some complicated way, the heart of
the algorithm is (almost) always a sequence of sums, each
computed over some values that are derived from the users”
input data. This happens to be exactly the kind of computa-
tion that Honeyerisp's collect-and-test (CaT) primitive can
perfarm efficiently, using additively homomorphic encryption.
Thus, CaT tums out to be far more general than it may seem:
it can perform the distributed parts of many queries, leaving

v a few smaller computations that can safely be done by

ator. ar locally an each user device.

The key challenge is that, for many queries, the connec-
tion to sums over per-user data is far from obvious. Many
differentially private queries were desi gned for a centralized
setting where the aggregator has an unencrypted data set and

USENIX Association

14th USENIX Symposium on Operating Systems Design and Implementation 1065

& RedHat

Orchard: Differentially Private Analytics at Scale

Background and related work (Section 2, 8)
e Important goals for a differential privacy system:

o Privacy
m The amount of information that either the aggregator or other users can learn
about the private data of an honest user should be bounded, according to the
formulation of differential privacy.

o Correctness
m If all users are honest, the answers to queries should be drawn from a distribution
that is centered on the correct answer and has a known shape.

o Robustness
m Malicious users should not be able to significantly distort the answers.

o Efficiency

m Most users should not need to contribute more than a few MB of bandwidth and a
few seconds of computation time per query.

34

can perfarm arbitrary computations on it. Such queries often
need to be transformed substantially, and existing operators
need to be broken down into their constituents, in order to
expase the internal sums. Moreover, 4 naive transformation
can result in a very large number of sums—often far more
than are strictly necessary. Thus, optimizations are needed to
maintain efficiency.

We present a system called Orchard that can automatically
perform these steps for a large variety of queries. Orchard
accepts centralized queries written in an existing query lan-
guage, transforms them into distributed queries that can be
answered at scale, and then executes these queries using a gen-
eralization of the CaT mechanism from Hon sp. Among
17 queries we collected from the literature, Orchard was able
10 execute 14; the others are not a good fit for our highly
distributed setting and would require a different approach.

Our experimental evaluation of Orchard shows that mast
queries can be answered efficiently: with 1.3 hillion users
(roughly the size of Apple’s macOSAOS deployment [6]),
maost user devices would need only a few megabytes of traffic
and a few minutes of computation time, while the aggregator
would need about 900 cores to get the answer within one
hour. queries that make use of the sparse-vector operatar,
this is competitive with Honeycrisp: for the other queries
we consider, we are not aware of any other approach that is
practical in this setting. In summary, our contri butions are:

o theobservation that many differentially private queries
can be transformed into 4 sequence of noised sums (See-
tion 2);

a simple language for writing queries (Section 3);

atmnsformation of queries in this language to protocols
that can answer them in a distributed setting, using only
a single, untrusted aggregatar (Section 4):

o the design of Orchard, a platform that can efficiently
execute the transformed queries (Section 5):

aprototype implementation of Orchard (Section 6); and

an experimental evaluation (Section 7).

We discuss related work in Section 8 and conclude the paper
in Section 9.

2 Overview

Scenario: We consider a scenario—illustrated in Figure 1—
with a very large number of users (millions). who each hold
some sensitive data, and a central entity, the aggregaror, that
wishes to answer queries about this data. We assume that
cach user has adevice (say, acell phone ar alaptop) that can
perform some limited computations, while the aggregator has
access to substantial bandwidth and computation power (say,
a data center).

Threat model: We make the OB+MC assumption from [76]—
that is, we assume that the aggregator is honest-but-curious

Users [millions) Internet Aggregator

Figure 1: Scenario.

(HbC) when the system is first deployed and usually remains
HbC thereafter, but may occasionally be Byzantine (OB) for
limited time periods: for instance, the aggregator could be a
large company that is under public serutiny and would not vi-
olate privacy systematically, but may have a rogue employee
who might tamper with the system and not be discovered
immediately. For the users, we assume that most of them are
carrect (MC) but that a small percentage—sa
Byzantine at any given time. This is different from the typical
assumption in the BFT literature, where one often assumes
that up to a third, or even half, of the nodes can be Byzan-
tine. However, BFT systems are typically alot smaller than
the systems we consider: with 4-7 replicas, compromising a
third of the systems means just ane ar two nodes, whereas, in
Apple’s deployment with 1.3 billion users, a 3% bound would
mean 39 million malicious users, which is much larger than,
e.g., a typical botnet.

Assumptions: Our key assumptions are (1) that the approx-
imate number of users is known and (2) that the adversary
cannot create and collude with a nontrivial number of Sybils.
For instance, the devices could have hardware support for
secure identities, such as Apple’s T2 chip ar Intel’s SGX.
Goals: We have four key goals for Orchard:

, 2-3%—can be

of an honest user should be bounded, accordis
formulation of differential privacy.

o Correctness: If all users are honest, the answers to
queries should be drawn from a distribution that is cen-
tered on the correct answer and has a known shape:

Robustness: Malicious users should not be able to sig-
nificantly distort the answers; and

Efficiency: Most users should not need to contribute
more than a few MB of bandwidth and a few seconds of
computation time per query.

2.1 Differential privacy

Differential privacy [28] s a property of randomized queries
that take a database as input and return an te output.
Informally, a query is differentially private if chan
single row in the input database results in “almast no change™
in the output. If each row represents the data of a single indi-
vidual, this means that any single individual has a statistically

s any

1066 14th USENIX Symposium on Operating Systems Design and Implementation

USENIX Association

& RedHat

Orchard: Differentially Private Analytics at Scale

Background and related work (Section 2, 8)

35

Differential privacy is a property of randomized queries that take a database as input and return an
aggregate output. Informally, a query is differentially private if changing any single row in the input database
results in “almost no change” in the output.

If each row represents the data of a single individual, this means that any single individual has a statistically
negligible effect on the output. This guarantee is quantified in the form of a parameter, €, which controls
how much the output can vary based on changes to a single row.

A standard method for achieving differential privacy for numeric queries is the Laplace mechanism, which
involves two steps:
o calculating the sensitivity, s, of the query which is how much the un-noised output can change based
on a change to a single row
o adding noise drawn from a Laplace distribution with scale parameter s/¢; this results in e-differential
privacy.

For queries with discrete values, the standard method is exponential mechanism which is based on:
o A’quality score” that measures how well a value ‘X’ represents a database ‘d’
o The sensitive of the quality score.

Differential privacy is compositional - if we evaluate two queries which are €1 and €2 differential private, then
publishing results from both queries is at most (€1 + €2) differentially private.

We can define a privacy budget (emax) that corresponds to the maximum acceptable privacy loss.
o The g for each query is deducted from this budget till it is exhausted.

can perfarm arbitrary computations on it. Such queries often
need to be transformed substantially, and existing operators
need to be broken down into their constituents, in order to
expase the internal sums. Moreover, 4 naive transformation
can resultin a very large number of sums—often far more
than are strictly necessary. Thus, optimizations are needed to
maintain efficiency
We present a system called Orchard that can automatically
perform these steps for a large variety of queries. Orchard
accepts centralized queries written in an ex ery lan-
. ansfarms them into distributed qu that can be
answered at scale, and then executes these queries using a gen-
eralization of the CaT mechanism from Honeycnisp. Among
17 queries we collected from the literature, Orchard was able
10 execute 14; the others are not a good fit for our highly
distributed setting and would require a different approach.
Our experimental evaluation of Orchard shows that mast
es can be answered efficiently: with 1.3 billion users
(roughly the size of Apple’s macOSAOS deployment [6]),
maostuser devices would need only a few megabytes of traffic
and a few minutes of computation time, while the aggregator
would need about 900 cores to get the answer within one
hour. For queries that make use of the sparse-vector operatar,
this is competitive with Honeycrisp: for the other queries
we consider, we are not aware of any other approach that is
practical in this setting. In summary, our contri butions are:

o theobservation that many differentially private queries
can be transformed into 4 sequence of noised sums (See-
tion 2);

a simple language for writing queries (Section 3);

atmnsformation of queries in this language to protocols
that can answer them in a distributed setting, using only
a single, untrusted aggregator (Section 4);

o the design of Orchard, a platform that can efficiently
exceute the transformed queries (Section 5);
aprototype implementation of Orchard (Section 6); and

o anexperimental evaluation (Section 7).

We discuss related wark in Section 8 and conclude the paper
in Section 9.

2 Overview

Scenario: We consider a scenario—illustrated in Figure 1—

same sensitive d. nd a central entity, the garor, that
ies about this data. We assume that
say. acell phane ar alaptop) that can
perform some limited computations, while the a; gator has
access to substantial bandwidth and computation power (say,
a data center).

Threat model: We make the OB+MC assumption from [76]—
that is, we assume that the aggregator is honest-but-curious

o
S#e .@
Sp [3;’3* > ;
H e

SHey
o o S S —
SH Salw
Users [millions) Internet Aggregator

Figure 1: Scenario.

(HbC) when the system is first deployed and usually remains
HbC thereafter, but may occasionally be Byzantine (OB) for
limited time periods: for instance, the aggregator could be a
large company that is under public scrutiny and would not vi-
olate privacy systematically, but may have a rogue employee
ght tamper with the system and not be discovered
immediately. For the users, we assume that mast of them are

who migl

—say, 2-3%—can be
Byzantine at any given time. This is di fferent from the typical
assumption in the BFT literature, where one often assumes
that up to a third, or even half, of the nodes can be Byzan-
tine. However, BFT systems are typically alot smaller than
the systems we consider: with 4-7 replicas, compromising a
third of the systems means just ane ar two nodes, whereas, in
Apple’s deployment with 1.3 billion users, a 3% bound would
mean 39 million malicious users, which is much larger than,
e.g.. 4 typical botnet.

Assumptions: Our key assumptions are (1) that the approx-
imate number of users is known and (2) that the adversary
cannot create and collude with a nontrivial number of Sybils.
For instance, the devices could have hardware support for
secure identities, such as Apple’s T2 chip or Intel’s SGX
Goals: We have four key goals for Orchard:

o Privacy: The amount of information that either the ag-
gregator or other users can learn about the private data
of an honest user should be bounded. according to the
formulation of differential privacy.

Correctness: If all users are honest, the answers to
queries should be drawn from a distribution that is cen-
tered on the correct answer and has a known shape:

Robustness: Malicious users should not be able to sig-
nificantly distort the answers: and

Efficiency: Most users should not need to contribute
more than a few MB of bandwidth and a few seconds of
computation time per query.

2.1 Differential privacy

Differential privacy [28] s a property of randomized queries
that take a database as input and return an e output.
Informally, a query is differentially private if ¢
single row in the input database results in “almast no chang
in the output. If each row represents the data of a single indi-
vidual, this means that any single individual has a statistically

1066 14th USENIX Symposium on Operating Systems Design and Implementation

USENIX Association

& RedHat

Orchard: Differentially Private Analytics at Scale

Programming language
selection: Fuzz

Transform centralized
Fuzz queries to support
distributed execution

Distributed query
execution

Implementation

Evaluation

36

Running example: k-means, Language features, Alternative languages

Program zones, The bmcs operator. Extracting dependencies, Transformation to bmcs form,
Optimizations, Limitations

Overall workflow, Security: Aggregator, Security: Malicious clients, Handling churn

Encryption, MPC, Secret sharing, Verifiable computation, Security parameters

Coverage, Optimizations, Robustness to malicious users, Experimental setup, Cost for normal
participants, Cost for the committee, Cost for the aggregator

& RedHat

37

Join us for the next session!

Session 1 4/3/2021 A perspective on research papers
Session 2 5/4/2021 |dentifying worthwhile papers
Session 3 6/1/2021 Discussing research papers

38

Sign-up / Comments / Suggestions / Feedback

https://forms.gle/6Y2ZBH2Bq2y5Qmie7

Thank you!

