
Bringing great research ideas
into open source communities

Volume 3:1 May 2021 ISSN 2691-5278
Research Quarterly

RH
RQ

+

Translation layers
for the cloud

 Planting research
seeds

Demystifying
scheduling latency

Anat
 Bremler-
 Barr

when one plus one
makes more than two

New
mentorship
program:
Irit Goihman and
Liora Milbaum
realize potential
when experience
meets passion

THE UNIVERSAL AI SYSTEM FOR
HIGHER EDUCATION AND RESEARCH

NVIDIA DGX A100
Higher education and research institutions are the pioneers of innovation, entrusted to train future
academics, faculty, and researchers on emerging technologies like AI, data analytics, scientific
simulation, and visualization. These technologies require powerful compute infrastructure,
enabling the fastest time to scientific exploration and insights. NVIDIA® DGX™ A100 unifies all
workloads with top performance, simplifies infrastructure deployment, delivers cost savings,
and equips the next generation with a powerful, state-of-the art GPU infrastructure.

Learn More About DGX @ nvda.ws/dgx-pod
Learn More About DGX on OpenShift @ nvda.ws/dgx-openshift

© 2020 NVIDIA Corporation. All rights reserved. NVIDIA, the NVIDIA logo, and DGX are trademarks and/or registered trademarks
of NVIDIA Corporation in the U.S. and/or other countries. Other company and product names may be trademarks of the respective
companies with which they are associated.

partner-print-red-hat-ad-research-publication-1520004-r3.indd 1partner-print-red-hat-ad-research-publication-1520004-r3.indd 1 12/7/20 10:24 AM12/7/20 10:24 AM

14

Table of Contents

04 From the director

Departments

05 News: Telemetry Working
Group

06

News: Red Hat Research
Days

14 When one plus one equals
more than two: an interview
with Anat Bremler-Barr

Features

09 Demystifying scheduling
latency

25 Translation layers for
the cloud

facebook.com/redhatinc

@redhatnews

linkedin.com/company/red-hat

32

20 Verifying programs to
communicate with the
environment

28 New mentorship program
combines experience with
passion

14

0920

Research project updates

30 Planting research seeds

08

News: New England
Research Cloud launches

NORTH AMERICA
1 888 REDHAT1

EUROPE, MIDDLE EAST,
AND AFRICA
00800 7334 2835
europe@redhat.com

ASIA PACIFIC
+65 6490 4200
apac@redhat.com

LATIN AMERICA
+54 11 4329 7300
info-latam@redhat.com

RESEARCH
QUARTERLY

V O L U M E 3 : 1

ABOUT RED HAT Red Hat is the
world’s leading provider of open
source software solutions, using
a community-powered approach
to provide reliable and high-per-

forming cloud, Linux, middleware, storage,
and virtualization technologies. Red Hat also
offers award-winning support, training, and
consulting services. As a connective hub in a
global network of enterprises, partners, and
open source communities, Red Hat helps
create relevant, innovative technologies that
liberate resources for growth and prepare
customers for the future of IT.

https://twitter.com/redhatnews
europe@redhat.com

when applied the right way. Heinrich Lauko’s very
technical piece shows how to leverage a general
analysis framework developed by researchers
in Brno to solve a very specific fuzzing problem.
When tools like these become commonplace in
the open, our conversations go from line-by-
line analysis of code to broader discussion of
its quality, which is useful for all concerned.

At Red Hat Research we spend a lot of time focused
on our own experimental cloud, the
Mass Open Cloud. One of the great
things about having a cloud to play
with is that it allows for research to
answer scale questions that simply
can’t be answered using a laptop. Peter
Desnoyer’s exposition of his team’s work
on Ceph storage architecture is a nice
example of how useful this is. The team
has been able to quickly test concepts
on the Mass Open Cloud that are going
to turn out to be really beneficial for

the Ceph project and cloud storage in general.

Finally, I’m really pleased to be able to say
that we’re dramatically expanding our flagship
research partnership with Boston University
(see the full press release online, bit.ly/
BURedHatOpenHybridCloud). I am privileged to
be working with such a productive and adventurous
group of researchers at Boston University, and
grateful for the contributions Red Hat engineers are
making to make the partnership great. I look forward
to reporting important research results from our
partnership here in the months and years to come.

research.redhat.com4

As we begin our third year of RHRQ I am in a
celebratory mood—unusual, for 2021, but I
think appropriate. I’ve just finished rereading

our interview with Professor Anat Bremler-Barr
of the Interdisciplinary Center in Herzliya, Israel.
What really struck me about the interview is that
she has independently validated the model we
have been championing since the beginning of Red
Hat Research, and perhaps even the beginning
of Red Hat: If you can work to prove your thesis
upstream in the open, your work will
be stronger and more relevant to
what is happening in software. I don’t
think it’s likely we will change the
world of research with this model, but
I do think the approach is opening
up researchers to the idea of sharing
ideas sooner and more broadly.

But what kind of ideas should we be
sharing? Open source is focused on
sharing source code so that many
people can participate in improving it—many
eyes are (usually) better than just two. However,
sometimes looking at code is not sufficient. Two
of our technical features this issue focus on formal
analysis of software, which is generally held to be
impossible or at the very least impractical for real-
world programs. Yet in both of these cases we find
that using formal techniques to solve very specific,
bounded problems can be quite useful. Daniel
Bristot de Oliveira finishes his three-part series
on proving the real-time-ness of the Linux kernel
using finite automata, an ingenious application
of formal techniques that shows their practicality

About the Author
Hugh Brock is the

Research Director for
Red Hat, coordinating

Red Hat research
and collaboration
with universities,

governments, and
industry worldwide.
A Red Hatter since
2002, Hugh brings

intimate knowledge
of the complex

relationship between
upstream projects

and shippable
products to the task

of finding research to
bring into the open

source world.

Expanding the impact of open source

From the Director

by Hugh Brock

RH
RQ

RESEARCH
QUARTERLY

V O L U M E 3 : 1

http://bit.ly/BURedHatOpenHybridCloud
http://bit.ly/BURedHatOpenHybridCloud
http://bit.ly/BURedHatOpenHybridCloud
http://bit.ly/BURedHatOpenHybridCloud
http://bit.ly/BURedHatOpenHybridCloud
http://research.redhat.com

research.redhat.com 5

News

A new working group is tackling
observability in production.

Observability has become an increasingly
hot topic given the challenges of reliably
operating distributed systems
such as those in Kubernetes
environments. The term
can cover a lot of ground,
but a typical definition of
observability spans metrics,
tracing, and logging. Even if
monitoring is often considered
as something distinct, it’s at
least closely related. A key part
of observability is the automatic collection and
transmission of data. In other words, telemetry.

There is no shortage of open source projects in
this space. However, the production-level testing
and refinement of these tools—together with their
associated procedures and datasets—has been
much less common in an integrated multi-tenant
open environment. That’s the problem that the
new Telemetry Working Group (WG) is tackling.

A variety of other initiatives are related to the
Telemetry WG. OpenInfra Labs (openinfralabs.
org, under the Open Infrastructure Foundation)
is hosting the working group. Operate First
(operate-first.cloud) will house the experiments
and research associated with the group.
Initially, the group will focus on Kubernetes,

Telemetry Working Group looks
at observability

but their work may be extended to other high-
performance computing environments over
time. The Mass Open Cloud (MOC; massopen.
cloud), which sponsors and hosts a large
portion of Operate First, is also involved, as is

the New England Research
Cloud (nerc.mghpcc.org).

It’s a cross-research university,
cross-company, and cross-open
source effort. This specific
initiative was first kicked off
by Boston University’s Michael
Daitzman, although there have
been other discussions and work

going on in this general area for a while. It’s now
co-chaired by Tufts University’s Raja Sambasivan
and Marcel Hild, a manager of software
engineering in Red Hat’s Office of the CTO.

The group’s goals are as follows:

•	 Create open datasets for research

•	 Provide access to a platform
for telemetry research

•	 Define and implement a standardized
application stack, i.e., the gold standard

•	 Define research problem statements around
telemetry

by Gordon Haff

It’s a cross-research
university, cross-

company, and cross-
open source effort.

continued on pg. 7

V O L U M E 3 : 1

RESEARCH
QUARTERLY
RESEARCH
QUARTERLY

http://research.redhat.com
https://openinfralabs.org
https://openinfralabs.org
https://openinfralabs.org
http://operate-first.cloud
http://massopen.cloud
http://massopen.cloud
nerc.mghpcc.org

research.redhat.com6

This year has already brought us several
Research Days discussions streaming
around the world. They have covered topics

as diverse as big data stream processing, analyzing
security certification reports for potential device
and product vulnerabilities, and using open
source tools to program FPGA applications.

Ilya Kolchinsky, Senior Software Engineer at Red
Hat in Israel, kicked things off on March 2 by
describing a growing problem. A large number
of data-driven systems and applications have
become an integral part of our daily lives, and
this trend is accelerating
dramatically. An estimated
1.7 MB of data is created
every second for every person
on Earth, for a total of over
2.5 quintillion bytes of new
data every day, projected
to reach 163 zettabytes
by 2025. In addition to the
growing volume, velocity,
and variety of continuously
generated data, novel technological trends such
as edge processing, IoT, 5G, and federated AI
bring new requirements for faster processing
and deeper, more computationally heavy data
analysis. Hence the challenge: old-school data
processing mechanisms are no longer enough.

In a spirited discussion with conversation leader
Oren Oichman, Senior Cloud Consultant at Red

Big data, security certification, and FPGAs:
2021 Red Hat Research Days have begun

Hat, Ilya explored potential ways to analyze this
data dynamically, with an approach called Big
Data Stream Processing (BDSP). BDSP uses
a variety of methods for scalable and efficient
data processing that do not rely on traditional
databases for storing and processing the data.
Ilya and Oren discussed specific examples of
real-life applications that can greatly benefit
from incorporating BDSP capabilities. In
particular, he covered on-the-fly detection of
complex patterns in streaming and stream-
oriented machine learning and data mining.

Later in March, Petr Švenda,
Faculty of Informatics,
Masaryk University in Brno,
Czech Republic, noted that
long security certification
reports can be a trove of
publicly available data about
proprietary devices and
other products otherwise
available only under NDA.
While downloading and

reading a single certificate is easy, reasoning
about the characteristics of the whole associated
ecosystem, which might have more than ten
thousand certified devices, is much harder.
Petr’s talk addressed using an open source
tool for automatic analysis of publicly available
certification reports to answer questions
like these: Are there observable systematic
differences between the Common Criteria

News

The research group
hypothesized that a

solution to P^4 could thus
be built using existing open

source tools...

by Gordon Haff

RESEARCH
QUARTERLY

V O L U M E 3 : 1

http://research.redhat.com

7research.redhat.com 7research.redhat.com

and FIPS 140-2 certificates? Can I
quickly find out whether my device is
using a certified component recently
found vulnerable? Most importantly,
can we measure and quantify the
extent to which the whole process
is actually increasing the security
of products being certificated?

Finally, Martin Herbordt, Professor of
Electrical and Computer Engineering at
Boston University, and Robert P. Munafo,
a PhD candidate there, discussed
practical plans for programming FPGAs
(Field Programmable Gate Arrays) in
the datacenter. FPGAs—flexible chips
that can be “programmed” again and
again with different code paths—are now
essential components in the datacenter
and on the edge, with millions currently
deployed. FPGAs are in a wide variety
of system components and provide such
critical functions as SDN, encryption/
decryption, and compression. Yet for
nearly all system providers, much less
system users, programming these
FPGAs is impossible. Martin and
Robert, along with Red Hat Senior Data
Scientist Ahmed Sanaullah, who also
joined the conversation, have been
working to enable high-level language
programming for FPGA application
development, especially in the
datacenter and at the edge, exclusively
using existing open source tools.

Previous research by Martin and others
showed that current compilers could
deliver excellent FPGA performance
for arbitrary C code, but that this
capability was brittle, inconsistent, and
required special programmer expertise

to extract. Taking advantage of the
flexibility and performance potential
of FPGAs has typically required
either expensive specialized
engineering talent, commercial
proprietary C-to-hardware tools
that yielded demonstrably poor
performance, or both. This is
the performance portability
programmability problem (P^4).

P^4 can be reduced to the
problem of generating the correct
sequence of optimizations for a
particular input code and target
architecture. The research group
hypothesized that a solution to P^4
could thus be built using existing
open source tools, primarily based
on the GNU C Compiler (GCC).
In particular, they discussed an
ongoing project that aims to use
machine learning to control a
newly customizable version of the
GCC to automatically determine
optimization pass ordering for
FPGA targets specifically, and
thereby improve performance as
compared to existing proprietary
C-to-FPGA methods. This research
is continuing as part of the Red
Hat Collaboratory at Boston
University (bu.edu/rhcollab). RH

RQ

•	 Iterate over implementations
of solutions on those
problem statements

Another explicit goal is to not
create new open source projects.
As Hild puts it, “We have a large
number of projects solving similar
enough problems. The challenge
these days lies in connecting these
projects and operating these
projects in a real environment.”
He adds, “We don’t want to do
everything in a lab; that’s a controlled
environment. And controlled
environments are only so good.”

A core premise of the working group
from the beginning has been to
operate in public and to make any
code open source over time, even
if it’s not at the very beginning,
as well as any data that does not
include personally identifiable
information. Anyone is welcome to
participate. Meetings are recorded
and can be accessed via the
Telemetry Working Group Playlist
on the MOC YouTube page (bit.ly/
telemetryWG). The group’s repository
is on GitHub (github.com/open-
infrastructure-labs/telemetrywg).

About the Author
Gordon Haff is Technology Evangelist at Red Hat, where
he works on emerging technology product strategy, writes
about tech trends and their business impact, and is a frequent
speaker at customer and industry events. His books include
How Open Source Ate Software, and his podcast, in which
he interviews industry experts, is Innovate @ Open.

Telemetry Working Group
continued from pg. 5

RH
RQ

V O L U M E 3 : 1

RESEARCH
QUARTERLY

http://research.redhat.com
http://research.redhat.com
https://www.bu.edu/rhcollab
https://www.bu.edu/rhcollab
https://www.bu.edu/rhcollab
https://www.bu.edu/rhcollab
https://www.bu.edu/rhcollab
http://bit.ly/telemetryWG
http://bit.ly/telemetryWG
http://github.com/open-infrastructure-labs/telemetrywg
http://github.com/open-infrastructure-labs/telemetrywg

research.redhat.com8

Boston University and Red Hat partner to
support the New England Research Cloud

News

Boston University is collaborating with other
area universities to extend the success of
the Mass Open Cloud (massopen.cloud) in

supporting critical research projects to a public
cloud that will serve research needs throughout
New England in the United States. The New
England Research Cloud (NERC; nerc.mghpcc.org)
aims to deliver production-quality cloud resources
and services to its research communities
throughout the region. NERC will be hosted in
the Massachusetts Green High Performance
Computing Center (MGHPCC; mghpcc.org).

NERC will serve a dual purpose. First, it will host
research projects requiring hyperscale computing

resources. Second, it will serve as a laboratory
of sorts, where every aspect of the operations
of such a complex cloud can be studied and
lead to further development of AIOps. As
a regional center of excellence in research
into clouds, NERC will provide a stable and
accessible space for open source communities
to develop operational knowledge around
cloud infrastructure in partnership with the

Operate First (openinfralabs.org) initiative,
hosted by the Open Infrastructure Foundation.

Red Hat is donating over $500 million in software
subscriptions to Boston University, which will
form the foundational operating stack of the
NERC infrastructure. With this contribution,
Red Hat endeavors to speed breakthroughs in
cloud-based technologies and related open
source projects, while building critical skills
needed in the next wave of IT professionals.

NERC is part of other projects grouped under the
umbrella of the Open Cloud Initiative (OCI), which
includes the Mass Open Cloud (MOC), Northeast
Storage Exchange (NESE; nese.mghpcc.org), Open
Cloud Testbed (OCT; massopen.cloud/connected-
initiatives/open-cloud-testbed), and Open Storage
Network (OSN; openstoragenetwork.org).

Already, these projects have had
meaningful impacts, including:

•	 Significant contributions to open source
storage (bit.ly/opensourcestorage),
operating systems, and security projects

•	 The development of critical advancements such
as the ChRIS Research Integration Service (bit.
ly/chRISplatform) in collaboration with Boston
Children’s Hospital. ChRIS is a web-based
medical image platform developed using Red
Hat technologies on the MOC that provides
a distributed user interface that is designed
to enable real-time collaboration between
clinicians and radiologists around the world

•	 Millions of dollars in research funding, including a
recent grant from the National Science Foundation
(NSF) Division of Computer and Network Systems
(bit.ly/NSFtestbed) to help fund the development
of the OCT, a national cloud testbed for research
and development of new cloud computing platforms

•	 Efforts to close the education skills gap so that
students and graduates have the ability to work with
premium, industry-standard, open source software RH

RQ

RESEARCH
QUARTERLY

V O L U M E 3 : 1

http://research.redhat.com
https://massopen.cloud/
https://massopen.cloud/
https://massopen.cloud/
https://massopen.cloud/
https://massopen.cloud/
massopen.cloud
https://nerc.mghpcc.org/
https://nerc.mghpcc.org/
https://nerc.mghpcc.org/
https://nerc.mghpcc.org/
https://nerc.mghpcc.org/
https://nerc.mghpcc.org/
https://nerc.mghpcc.org/
https://nerc.mghpcc.org/
https://nerc.mghpcc.org/
http://nerc.mghpcc.org
https://nerc.mghpcc.org/
https://www.mghpcc.org/
https://www.mghpcc.org/
https://www.mghpcc.org/
https://www.mghpcc.org/
https://www.mghpcc.org/
https://www.mghpcc.org/
https://www.mghpcc.org/
https://www.mghpcc.org/
https://www.mghpcc.org/
https://www.mghpcc.org/
https://www.mghpcc.org/
https://www.mghpcc.org/
https://www.mghpcc.org/
http://mghpcc.org
https://www.mghpcc.org/
https://openinfralabs.org/
https://openinfralabs.org/
https://openinfralabs.org/
http://openinfralabs.org
https://nese.mghpcc.org/
https://nese.mghpcc.org/
https://nese.mghpcc.org/
https://nese.mghpcc.org/
https://nese.mghpcc.org/
https://nese.mghpcc.org/
https://nese.mghpcc.org/
nese.mghpcc.org
https://nese.mghpcc.org/
https://massopen.cloud/connected-initiatives/open-cloud-testbed/
https://massopen.cloud/connected-initiatives/open-cloud-testbed/
https://massopen.cloud/connected-initiatives/open-cloud-testbed/
https://massopen.cloud/connected-initiatives/open-cloud-testbed/
https://massopen.cloud/connected-initiatives/open-cloud-testbed/
https://massopen.cloud/connected-initiatives/open-cloud-testbed/
https://massopen.cloud/connected-initiatives/open-cloud-testbed/
http://massopen.cloud/connected-initiatives/open-cloud-testbed
http://massopen.cloud/connected-initiatives/open-cloud-testbed
https://massopen.cloud/connected-initiatives/open-cloud-testbed/
https://www.openstoragenetwork.org/
https://www.openstoragenetwork.org/
https://www.openstoragenetwork.org/
https://www.openstoragenetwork.org/
https://www.openstoragenetwork.org/
https://www.openstoragenetwork.org/
https://www.openstoragenetwork.org/
http://openstoragenetwork.org
https://www.openstoragenetwork.org/
http://bit.ly/opensourcestorage
http://bit.ly/opensourcestorage
http://bit.ly/opensourcestorage
http://bit.ly/opensourcestorage
http://bit.ly/opensourcestorage
http://bit.ly/opensourcestorage
http://bit.ly/opensourcestorage
http://bit.ly/chRISplatform
http://bit.ly/chRISplatform
http://bit.ly/chRISplatform
http://bit.ly/chRISplatform
http://bit.ly/chRISplatform
http://bit.ly/chRISplatform
http://bit.ly/chRISplatform
http://bit.ly/chRISplatform
http://bit.ly/chRISplatform
file:///Users/alisonreese/Dropbox/RHRQ/**RHRQ-v3.1-April21/*POST%20RTF/bit.ly/NSFtestbed
file:///Users/alisonreese/Dropbox/RHRQ/**RHRQ-v3.1-April21/*POST%20RTF/bit.ly/NSFtestbed
file:///Users/alisonreese/Dropbox/RHRQ/**RHRQ-v3.1-April21/*POST%20RTF/bit.ly/NSFtestbed
file:///Users/alisonreese/Dropbox/RHRQ/**RHRQ-v3.1-April21/*POST%20RTF/bit.ly/NSFtestbed
file:///Users/alisonreese/Dropbox/RHRQ/**RHRQ-v3.1-April21/*POST%20RTF/bit.ly/NSFtestbed
file:///Users/alisonreese/Dropbox/RHRQ/**RHRQ-v3.1-April21/*POST%20RTF/bit.ly/NSFtestbed
file:///Users/alisonreese/Dropbox/RHRQ/**RHRQ-v3.1-April21/*POST%20RTF/bit.ly/NSFtestbed
file:///Users/alisonreese/Dropbox/RHRQ/**RHRQ-v3.1-April21/*POST%20RTF/bit.ly/NSFtestbed
file:///Users/alisonreese/Dropbox/RHRQ/**RHRQ-v3.1-April21/*POST%20RTF/bit.ly/NSFtestbed
file:///Users/alisonreese/Dropbox/RHRQ/**RHRQ-v3.1-April21/*POST%20RTF/bit.ly/NSFtestbed
file:///Users/alisonreese/Dropbox/RHRQ/**RHRQ-v3.1-April21/*POST%20RTF/bit.ly/NSFtestbed
file:///Users/alisonreese/Dropbox/RHRQ/**RHRQ-v3.1-April21/*POST%20RTF/bit.ly/NSFtestbed
file:///Users/alisonreese/Dropbox/RHRQ/**RHRQ-v3.1-April21/*POST%20RTF/bit.ly/NSFtestbed
file:///Users/alisonreese/Dropbox/RHRQ/**RHRQ-v3.1-April21/*POST%20RTF/bit.ly/NSFtestbed
file:///Users/alisonreese/Dropbox/RHRQ/**RHRQ-v3.1-April21/*POST%20RTF/bit.ly/NSFtestbed
file:///Users/alisonreese/Dropbox/RHRQ/**RHRQ-v3.1-April21/*POST%20RTF/bit.ly/NSFtestbed
file:///Users/alisonreese/Dropbox/RHRQ/**RHRQ-v3.1-April21/*POST%20RTF/bit.ly/NSFtestbed
file:///Users/alisonreese/Dropbox/RHRQ/**RHRQ-v3.1-April21/*POST%20RTF/bit.ly/NSFtestbed
file:///Users/alisonreese/Dropbox/RHRQ/**RHRQ-v3.1-April21/*POST%20RTF/bit.ly/NSFtestbed
file:///Users/alisonreese/Dropbox/RHRQ/**RHRQ-v3.1-April21/*POST%20RTF/bit.ly/NSFtestbed
file:///Users/alisonreese/Dropbox/RHRQ/**RHRQ-v3.1-April21/*POST%20RTF/bit.ly/NSFtestbed
file:///Users/alisonreese/Dropbox/RHRQ/**RHRQ-v3.1-April21/*POST%20RTF/bit.ly/NSFtestbed
file:///Users/alisonreese/Dropbox/RHRQ/**RHRQ-v3.1-April21/*POST%20RTF/bit.ly/NSFtestbed
file:///Users/alisonreese/Dropbox/RHRQ/**RHRQ-v3.1-April21/*POST%20RTF/bit.ly/NSFtestbed
file:///Users/alisonreese/Dropbox/RHRQ/**RHRQ-v3.1-April21/*POST%20RTF/bit.ly/NSFtestbed
file:///Users/alisonreese/Dropbox/RHRQ/**RHRQ-v3.1-April21/*POST%20RTF/bit.ly/NSFtestbed
file:///Users/alisonreese/Dropbox/RHRQ/**RHRQ-v3.1-April21/*POST%20RTF/bit.ly/NSFtestbed
file:///Users/alisonreese/Dropbox/RHRQ/**RHRQ-v3.1-April21/*POST%20RTF/bit.ly/NSFtestbed
file:///Users/alisonreese/Dropbox/RHRQ/**RHRQ-v3.1-April21/*POST%20RTF/bit.ly/NSFtestbed
file:///Users/alisonreese/Dropbox/RHRQ/**RHRQ-v3.1-April21/*POST%20RTF/bit.ly/NSFtestbed
http://bit.ly/NSFtestbed

research.redhat.com 9

About the Author
Daniel Bristot de
Oliveira is a principal
software engineer at
Red Hat working in the
development of real-
time features of the
Linux kernel. Daniel
has a joint PhD degree
in Automation and
Systems Engineering
at UFSC (BRA) and in
Embedded Systems at
the Scuola Superiore
Sant’Anna (ITA). He
is also a post-PhD
researcher in the Retis
Lab at the Scuola
Superiore Sant’Anna.

This is the third of a series of three articles
about the formal analysis and verification of the
real-time Linux® kernel. Read the first article in
RHRQ 2:3 and the second article in RHRQ 2:4.

Scheduling latency is the principal metric
of the real-time variant of Linux, and it is
measured using the cyclictest tool.

Despite its practical approach and contributions
to the current state of the art of real-time Linux,
cyclictest has some known limitations. The
main constraint arises from the opaque nature
of the latency value provided by cyclictest.
The tool only provides information about the
latency value, without providing insights on its
root causes. This fact, along with the absence of
a theoretically sound description of the in-kernel
behavior, raises some doubts about whether Linux
can really support the “real-time” description.

A common approach in real-time systems theory
is categorizing a system as a set of independent
variables and equations that describe its
integrated timing behavior. The first article of
this series (see RHRQ 2:3) presented the thread
synchronization model, which is composed of
a set of formal specifications that define the
behavior of the system. This article leverages
the specifications of that model to discover a
safe bound for the scheduling latency of Linux.
It also uses findings from the second article of
this series (see RHRQ 2:4), in which an efficient
verification tool was developed, by using the same

Demystifying real-time
Linux scheduling latency

method to capture the values for variables that
compose the scheduling latency on a real system
and identify the root cause of high latency values.

FROM INFORMAL TO FORMAL
The latency experienced by a thread instance
is, informally, defined as the maximum time
elapsed between the instant in which it becomes
ready while having the highest priority among
all ready threads and the instant in which it
is allowed to execute its own code after the
context switch has already been performed.

A common approach in real-time systems theory
is categorizing a system as a set of independent
variables and equations that describe its
integrated timing behavior. The first step in this
approach is to define the task model of the
system. In this work, the task model is composed
of three levels of tasks: the NMI, the IRQs, and
the threads. The system has a single NMI, a set
IRQ = {IRQ1, IRQ2, ...} of maskable interrupts, and
a set of threads τ = { τ1, τ2, ... }. The NMI, IRQs, and
threads are subject to a scheduling hierarchy in
which NMI always has a higher priority than IRQs,
and IRQs always have higher priority than threads.

Given a thread τi at a given point in time, the set
of threads with a higher priority than τ1 is denoted
by HP(τi). Similarly, the set of tasks with priority
lower than τi is denoted by LP(τi). From the τi
thread perspective, all IRQs and the NMI belong
to HP(τi). Although the schedulers might have

by Daniel Bristot de Oliveira, PhD

Feature

V O L U M E 3 : 1

RESEARCH
QUARTERLY

V O L U M E 3 : 1

RESEARCH
QUARTERLY

http://research.redhat.com
https://research.redhat.com/red-hat-research-quarterly-23/
https://research.redhat.com/red-hat-research-quarterly-23/
https://research.redhat.com/red-hat-research-quarterly-23/
https://research.redhat.com/red-hat-research-quarterly-24/
https://research.redhat.com/red-hat-research-quarterly-24/
https://research.redhat.com/red-hat-research-quarterly-24/

research.redhat.com10

thread

pd_id

pd_ie

local_irq_enable
hw_local_irq_enable

pe_id

preempt_enable

sched_switch_in
sched_switch_in_o

ie_resched hw_local_irq_disable
hw_local_irq_enable

pe_ie

preempt_enable_sched

sched

schedule_entry

local_irq_disable
hw_local_irq_disable

schedule_exit

preempt_enable
preempt_enable_sched

schedule_entry

preempt_disable

local_irq_enable
hw_local_irq_enable

preempt_disable_sched

hw_local_irq_disable
hw_local_irq_enable

preempt_disable_sched

local_irq_disable
local_irq_enable

hw_local_irq_disable
hw_local_irq_enable

schedule_entry

sched_switch_in
sched_switch_in_o

sched_need_resched

preempt_disable_sched preempt_enable_sched
hw_local_irq_disable hw_local_irq_enable

local_irq_disable local_irq_enable
preempt_disable preempt_enable

schedule_entry schedule_exit
sched_switch_in sched_switch_in_o

non_atomic_events*

ii-b

ii-a
i-c

i-b

i-a

Cases in Section 4.2

Figure 1. Setting need_resched always causes a context switch specification.

threads with the same priority in their queues,
only one among them will be selected to have its
context loaded and, consequently, start running.
Hence, when scheduling, the schedulers elect
a single thread as the highest priority one, with
all other active threads belonging to LP(τi).

The tasks can also influence one another via
synchronization primitives. For example, a
thread can postpone the execution of an IRQ by
temporarily masking interrupts, or it can defer the
execution of another thread in HP(τi) by temporarily

disabling the preemption. Moreover, the scheduling
operation itself influences the thread execution
timeline because it is not an atomic operation.

The complexity imposed by the different levels
of tasks, the synchronization primitives, and the
overhead involved in Linux threads’ scheduling
makes informal language inadequate for this
analysis. A formal thread synchronization model
is required instead. The model, which enables
the composition of specifications using a
deterministic format, removes the ambiguity
of natural language while enabling reasoning
about the system in a more analytical manner.

In this work, we have translated the specifications
of the thread synchronization model into a set of
properties. We then leverage these properties
in an analysis that derives a theoretically
sound bound for scheduling latency.

A THEORETICALLY SOUND BOUND
FOR SCHEDULING LATENCY
The scheduling latency experienced by an arbitrary
thread τi in τ is the longest time elapsed between
the time A, in which any job of τi becomes ready
and has the highest priority, and the time F,
in which the scheduler returns and allows τi to
execute its code, in any possible schedule in
which τi is not preempted by any other thread in
the interval [A, F]. We begin determining which
types of entities may prolong the latency of τi.

In real-time theory, any time a task in LP(τi) delays
τi, τi is said to be blocked. When the task delaying
τi is in HP(τi), τi is said to be suffering interference.
These two forms of delay were analyzed separately,
starting with the blocking. Each of these forms
of delay was characterized by variables and
equations whose definition supports the model.
The main specification used in the definition
of the latency bound is shown in Figure 1.

RESEARCH
QUARTERLY

V O L U M E 3 : 1

http://research.redhat.com

research.redhat.com 11

Blocking time
Blocking time (referred to as interference-
free latency in the original paper) is
characterized with the following equation1:

LIF ≤ max(DST, DPOID) + DPAIE + DPSD

Where:
•	 L means the scheduling latency

•	 IF means interference free

•	 D means the delay of
•	 ST: the sched tail delay, which is the

delay from the IRQs being disabled
to cause the context switch, and
the return from the scheduler

•	 POID: the longest preemption or IRQ
disabled to postpone the scheduler

•	 PAIE: the longest time in which
the preemption and IRQs are
transiently enabled in the return of
the preemption or IRQ enable, that
will cause the scheduler execution
to preempt the current thread

•	 PSD: the longest time in which
the preemption is disabled to
execute __schedule() function.

It is worth noting that a blocking delay is
only caused by other threads, which by
definition belong to the sets of lower priority
tasks LP(τi). The delay caused by IRQs and
NMI is all accounted for as interference.

Interference
Because there is no single way to characterize
these workloads, defining the interference
caused by the NMI and IRQs presents a
challenge. So instead of defining a single
best way to compute interference from
interrupts, the interference from IRQs and
NMI was defined as two functions in the
theorem that define the latency. The function
can then be selected according to the more
accurate representation of the system.

The latency bound
The scheduling latency is then defined as the
sum of blocking time and interference time,
as in the following equation. The L in both
sides of the equation is resolved by solving the
equation until it converges on both sides.

L = max(DST, DPOID) + DPAIE + DPSD + INMI(L) + IIRQ(L)

Figure 2 shows these variables in a
timeline format, helping to illustrate the
composition of the latency from A to F.

 1The development of the equations are not

presented here because of space constraints.

Please refer to the original paper for further

information: “Demystifying the real-tIme Linux

scheduling latency,” presented in the 32nd Euromicro

Conference on Real-Time Systems (ECRTS 2020).

Figure 2. Reference timeline

RTSL: A LATENCY MEASUREMENT TOOL
As shown in the first article, it is possible to
observe the thread synchronization model’s
events using Linux’s tracing features. The

V O L U M E 3 : 1

RESEARCH
QUARTERLY

http://research.redhat.com

12
research.redhat.com

measurements when compared to the
same system running without trace.

As mentioned in the interference
section above, there is no single best
way to account for the delay caused
by interrupts. Instead of proposing
a single function to account for
the interference, the rtsl toolkit
processes the data from an interrupt
using different functions, reporting the
hypothetical result from each of them.
Examples of functions are considering
interrupts as periodic or using the
sliding window algorithm, as shown
in the experiments section below.

The processing of the data is done in
user space, using perf as the interface.
Perf is used to capture, store, and
process the data in user space. The
processing phase, named report,
produces both graphical and textual
output. The textual output shows
the value for each of the variables
that compose the latency and the
hypothetical latency for each given
interrupt function. An example of
the output is shown in Figure 4.

The textual output serves to identify
how much each variable contributes
to the scheduling latency. This
evidence can be used then to trace
the specific variable, in such a way
to identify the root cause of bad
values. An example of this procedure
is shown in the original paper.

EXPERIMENTS
This section presents some latency
measurements, comparing the results

Figure 3. Overview of the rtsl toolkit

Figure 4. perf rtsl output: excerpt from the textual output (time in nanoseconds)

obstacle is that the simple capture
of these events using trace causes
a non-negligible overhead in the
system, both in CPU and memory
bandwidth, representing a challenge
for measuring variables in the
microseconds scale. However, as
demonstrated in the second article,
it is possible to process these events
in-kernel, reducing overhead. In
this article, an efficient verification
method was leveraged to develop
the real-time latency measurement
toolkit named rtsl. The toolkit
architecture is presented in Figure 3.

The latency parser is a kernel module
that uses the thread synchronization
model’s kernel tracepoints to observe
their occurrence from inside the kernel.
The latency parser registers a callback
function to the kernel tracepoints. The
callback functions then pre-process the
events, transforming them into one of
the variables presented in Figure 2, only
exporting them to the trace buffer when
necessary. This reduces the overhead
enough to enable the usage of the tool
for measurements. For example, the
record of these values adds only around
two microseconds to the cyclictest

RESEARCH
QUARTERLY

V O L U M E 3 : 1

http://research.redhat.com

13research.redhat.com

community, who raised this limitation
of Linux more than a decade ago.

In addition to the evident results, such
as the efficient runtime verification and
the mathematical demonstration of the
bound of the scheduling latency, this
research is motivating the development
of new methods for Linux analysis.
Examples of ongoing research range
from the usage of temporal language for
runtime verification to the application of
probabilistic methods for the definition
of values for the variables that compose
the timeline of tasks on Linux. More
details about the “Demystifying the real-
time Linux scheduling latency” paper
are available at bristot.me/demystifying-
the-real-time-linux-latency/. RH

RQ

found by cyclictest and
perf rtsl while running
concurrently in the same
system. The experiments
were executed on two
systems: a workstation and
a server. The Phoronix test
suite benchmark was used
as a background workload
to exercise different
parts of the system. One
sample of the results of the
experiments is shown in
Figure 5. The workload of
each experiment is explained
in the legend. The colored
columns represent the
different metrics. The first is
cyclictest, the second
is the interference-free
latency, and the next four are the
hypothetical latency based on
the given interrupt interference
function from rtsl.
Consistently, the proposed approach
found sound scheduling latency values
higher than cyclictest could find
in the same time frame. Considering
interference curves such as the sliding
window, the latency values are still in
the microseconds scale, even on non-
tuned general purpose hardware. When
considering the highly pessimistic sliding
window with oWCET (observed worst-
case execution time) interference, the
latency is bound to the single digit
milliseconds, enough to justify Linux on
a vast set of safety-critical use cases.

FINAL REMARKS
Usage of real-time Linux in safety-
critical environments, such as in the

automotive and factory automation
field, requires a set of more
sophisticated analyses of both the
logical and timing behavior of Linux.
In this series of articles, we presented
a viable approach for the formal
modeling, verification, and analysis
of the real-time preemption mode of
Linux. The definition of the latency
bound was the primary goal of this
research. However, the complexity of
Linux required the support of a formal
language to abstract the complexity
of the code and the development
of an efficient way to monitor the
relevant events. With the bases set,
the mathematical reasoning about the
kernel behavior was evident, resulting in
an analysis accepted by the academic

Figure 5. cyclictest versus rtsl on multi-core environments

V O L U M E 3 : 1

RESEARCH
QUARTERLY

http://research.redhat.com
https://bristot.me/demystifying-the-real-time-linux-latency/
https://bristot.me/demystifying-the-real-time-linux-latency/
https://bristot.me/demystifying-the-real-time-linux-latency/
https://bristot.me/demystifying-the-real-time-linux-latency/
https://bristot.me/demystifying-the-real-time-linux-latency/
https://bristot.me/demystifying-the-real-time-linux-latency/
https://bristot.me/demystifying-the-real-time-linux-latency/
https://bristot.me/demystifying-the-real-time-linux-latency/
https://bristot.me/demystifying-the-real-time-linux-latency/
https://bristot.me/demystifying-the-real-time-linux-latency/
https://bristot.me/demystifying-the-real-time-linux-latency/
https://bristot.me/demystifying-the-real-time-linux-latency/
https://bristot.me/demystifying-the-real-time-linux-latency/
https://bristot.me/demystifying-the-real-time-linux-latency/
https://bristot.me/demystifying-the-real-time-linux-latency/
https://bristot.me/demystifying-the-real-time-linux-latency/

research.redhat.com14

About the Author
Idan Levi is the

Research Director
for Red Hat

Research in Israel.

When one plus one makes more than two:
how open source builds a bridge between
universities and industry

Interview

by Idan Levi

Idan Levi: What is the role of the IDC—and your
role in particular—in supporting and expanding
the open source community in Israel?

Anat Bremler-Barr: I will answer from my
academic and educational perspective: I
want to expose my students to the open
source community and encourage them to be
part of it. As open source becomes the new
industry standard, it is expected by software
companies that developers will have the
background and skills required to utilize the
potential of that field. I want the students to
have up-to-date knowledge in today’s open
source tools as part of their education.

Open source is all about the collaborative
method of software development. Students, in
their studies here, rarely work in groups. However,
in industry, software development is a group
effort. Hence, while experiencing open source
development, they get a chance to learn the
skills to develop in collaboration. While working
on an open source project, students build a work

portfolio that is public in GitHub, which can help
them when they begin to interview for jobs.

Idan Levi: What do you think industry
partners and universities could do to help
the open source community grow?

Anat Bremler-Barr: I think every graduate
of a computer science program should have
experience with open source as part of the
curriculum and be part of an open source
project. Philosophically, I feel that the open
source ethos is very close to the ethos of
academia: it’s the collaborative effort of the
community that makes progress for human
knowledge and the general good. This openness
is done without compromising the possibility
of making money from work and effort. In open
source, for example, businesses can succeed
by using the service model, and academia is
responsible for many patents and start-ups.

Idan Levi: How do you see open source being
part of the curriculum? The first thing that comes

Research Director and RIG leader for Israel Idan Levi speaks with Anat Bremler-Barr,
Professor in the School of Computer Science and Vice Dean of the Efi Arazi School of
Computer Science at the Interdisciplinary Center, Herzliya, Israel (IDC). Before joining the

faculty of IDC, Bremler-Barr co-founded a company to provide systems that protect against
Denial of Service attacks. It was acquired by Cisco systems in 2004. Her research interests
are in computer networks and distributed computing, with an emphasis on security.

RESEARCH
QUARTERLY

V O L U M E 3 : 1

http://research.redhat.com

15research.redhat.com

to my mind is UC Berkeley, inventing
DNS and FreeBSD and really laying the
groundwork for all of the open source
collaboration around technology.
How can universities do this today?

Anat Bremler-Barr: I think it should
be integrated in mandatory courses.
In operating systems, you should
understand the internal elements
of Linux®—see how they work and
how it was built. In networking you
should speak about, say, Kubernetes,
OpenShift, things like that. It
should be part of the curriculum.

The main problem is that open source
projects are usually so big that it’s
hard for a student to contribute
and understand the whole project.
I think it can be done if we invest in
it and help students understand the
process, the environment, and the
general framework, and then help
them contribute in something small.

Idan Levi: What about universities
choosing something of their own to
develop? For example, SPARK started
at the University of Southampton. Is
that something we can do in Israel?

Anat Bremler-Barr: I’m sure. We
have very experienced students in
Israel because some of them begin
studying after they’ve been in the army
or worked in industry. I think at the IDC
in particular we include a pragmatic
approach along with the theoretical. We
have a spirit of innovation, and we are
more flexible and open to collaboration.
It’s important to have all the flavors of

“It’s important to have all the flavors of
computer science: the pragmatic, the
theoretical, the innovative, and anything
in between.” —Anat Bremler-Barr

V O L U M E 3 : 1

RESEARCH
QUARTERLY

http://research.redhat.com

research.redhat.com16

computer science: the pragmatic, the theoretical,
the innovative, and anything in between.

Idan Levi: Has that belief affected how
you choose your PhD students? Will you do
something different from more traditional,
research-oriented universities?

Anat Bremler-Barr: I don’t think there is a
difference there. The PhD students are all over
the spectrum. You need to have theoretical
faculty and students, because some of them will
make the biggest breakthroughs. But you also
need the more pragmatic faculty and students.

From my experience, the
theoretical foundation is
very important even if you
wish to pursue an industry
career. The theoretical
foundation of computer
science shapes the way you
approach problems. It gives
the ability to think abstractly
and concentrate on the
essence of the problems.
Nonetheless, I think
that you also need to expose the students
to up-to-date practical tools and paradigms.
That is why IDC now provides a dual track in
Computer Science and Entrepreneurship.

Idan Levi: What about industry? What
has it been like to engage with different
companies to support open source?

Anat Bremler-Barr: Right now in Israel the
government is investing in helping academia and
industry work together. In many cases it can be
hard to collaborate with companies, but when
you have a framework to do it, you get one plus
one adding up to more than two. I do organize

a workshop, “Project with the Industry,” with
companies that are part of our industrial affiliation
program (IAP), in which Red Hat participates.

There is a lot of power in academia, because you
have a student that’s eager to get experience,
and they need it for their portfolio. You need to
invest in them, and then they will give back to
the open source community, and all will benefit
from that. Within the open source community,
collaboration is very easy. It’s very natural. I am
very proud of our collaboration with Red Hat. We
have a very fruitful collaboration in very different
aspects. We have a very successful project from
a master’s student contributing to the CEPH

open source project (bit.
ly/cephobjectstorage),
and the mentor was from
Red Hat, for example.

We also have workshops
on open source that
started during the
summer semester of
2020, when Red Hat’s
Beyond platform offered
a class on open source

development in conjunction with the IDC (see
“Combining experience with passion,” in this
issue). The goal was to give undergraduate
students an inside taste of development
practices in the industry. The workshop was
very successful, and we received thank you
letters from students who appreciated the
investment from the organizers and from the
Red Hat engineers who participated as mentors.

Idan Levi: A master’s student at IDC is
doing a thesis with the cooperation of Red
Hat. The subject is “Kubernetes optimized
service discovery across clusters” (bit.ly/
kubernetesclusters). What can you tell us about

In many cases it can be
hard to collaborate with

companies, but when you
have a framework to do it,

you get one plus one adding
up to more than two.

RESEARCH
QUARTERLY

V O L U M E 3 : 1

http://research.redhat.com
http://bit.ly/cephobjectstorage
http://bit.ly/cephobjectstorage
http://bit.ly/kubernetesclusters
http://bit.ly/kubernetesclusters

17research.redhat.com

the background of how this work
came to be and how it’s going?

Anat Bremler-Barr: The student,
Daniel Bachar, is doing the project
under the supervision of Prof. David
Hay from the Hebrew University and
myself. He has and will continue to
contribute code to the Submariner
(submariner.io) project.

Kubernetes can be combined into
different clouds and different
clusters, and the same service can be
found in different places in different
clusters. Today, the way they choose,
because applications today are done
as microservices, you go from one
service to another service. And then
you choose whether to use the next
service because you have it in a
different cluster. If it is in your cluster,
you probably will choose it. But if you

need to go out, then you should think
about the cost and the latency. We
try to suggest an algorithm that will
optimize both the cost and the latency.
We wanted to combine it with DNS so
it will be integrated very, very simply,
without many changes in the framework.

Idan Levi: A big part of this project
has been done in conjunction with
the open source community and the
SIGs. This is a new approach—at least,
it’s the first time that I have seen
something like that. What was that like?

Anat Bremler-Barr: For me it’s
fascinating because one of the problems,
I think, in academia is that you think
about an algorithm, but then you must
show it works. So you do a simulation,
but you cannot implement it in real life.
Now we have a chance to implement it
in real life. It’s a big problem, because it

gives an advantage to people that have
worked in big companies like Google
or Microsoft. They have a network that
they can play with and show results.
Those of us in the university don’t
have a big network to play with.

So for me it was very effective. The
fact that we can implement it in an
open source project is very attractive.
It’s a win-win situation. And from
another perspective, you see that the
big companies attract many students
and employees. We have more and
more problems finding teachers
and teaching assistants and staff
for our applied computer science
courses. The theoretical experts we
can find. The problem is the applied
computer science students can earn
a lot of money in the industry. In
some sense, the industry is chopping
down the tree they are sitting on.

The Submariner project provides an
ability to connect multiple Kubernetes
clusters into a secure shared network that
allows various services to communicate
with each other. Currently, the services can
discover each other in a very rudimentary
way using internal DNS queries. This
research project aims to provide better and
more balanced service discovery capabilities
for such multi-cluster deployments. The
project is exploring both proven and
new techniques to allow a better service
discovery experience, one that takes
into account the cost of different paths,
cost of services, and other parameters
when recommending which services
to use across the multiple clusters.

V O L U M E 3 : 1

RESEARCH
QUARTERLY

http://research.redhat.com
http://submariner.io

research.redhat.com18

Idan Levi: It’s like overfishing. When
you catch all the little fish, they don’t
reproduce. You don’t have teachers of
tomorrow to teach the next generation.

Anat Bremler-Barr: Yes. For example, when
I’ve been looking for a TA for a course, many
people on staff tell me that their employers
won’t let them go to classes. In the past
a business might say, “It’s good for you—
you can increase your understanding and
develop as an employee.” Now they do not.

Companies want to educate their employees
on their own, but I think each of us should

stick to what we
know best. Leave
the teaching to
the university,
but collaborate
with us, help us,
and be part of

us. Fund us, give us projects—that’s great.
But you should not get your education
from industry because they don’t think
about the welfare of the student. They are
focused on the welfare of the company.

Idan Levi: So what would you recommend
that industry do to make this collaboration
better? You’ve been on both sides of this, as
the founder of a start-up company that was
acquired by Cisco as well as an educator.

Anat Bremler-Barr: Well, part of the problem
is also the universities. We are very different
at IDC, but at many Israeli universities the
rules around intellectual property (IP) are very
complex. The bureaucracy can be stifling. In
industry, I think the culture needs to change,
and more emphasis needs to be put on
collaboration. I see a little bit of change already.

Every year I do a workshop with the industry.
Companies come and bring projects to the
students. Some companies start to bring
me lawyers. I tell them, “I cannot do this with
lawyers; they complicate the situation.” IDC
does not take any IP. It belongs to the student,
and the student can allow the company to use
it. That’s it. I don’t want to take anything from
the student. The student is doing the project,
and I want the company to use it. I cannot read
all the contracts and then pay our lawyers to
speak to their lawyers and nothing gets done.
No. I want it simple and collaborative. Really,
to do great stuff, it takes a lot of effort and
collaboration. Collaboration should be the default.

Idan Levi: Just a note here: Red Hat might be
unique in the approach it takes to IP. We make
no claims to IP when we work with researchers
and students, as long as it’s open source. But
back to industry: In many cases, industry focuses
on understanding what customers need. Is it
security? Ease of use? Automation? How does
being customer-centric translate into your world?

Anat Bremler-Barr: Well, we in academia have
the privilege to think about problems in a fresh
way. We can make radical suggestions and radical
changes if overall, in the long run, they are better.
In this sense, we are different from industry,
which needs to think short term and focus on
their paying customers. It does not mean that
we do not think about the customers, but we can
also concentrate on long-term satisfaction.

Idan Levi: Can we conclude with your observations
on increasing the participation of women in
computer science? As a woman in technology with
a significant career, you are a role model and, I’ve
heard, an inspiration to other women in the field.
What do you think about the way that women are
included in the academic world and industry?

Really, to do great stuff, it takes
a lot of effort and collaboration.

Collaboration should be the default.

RESEARCH
QUARTERLY

V O L U M E 3 : 1

http://research.redhat.com

19research.redhat.com

the school, and an active recruitment
program continues throughout
the year. In addition, 30 percent
of faculty members are women,
a significantly higher percentage
than in other universities (around
15 percent in Israel), which helps
attract more female students.

That said, I do have a hard time
finding a female TA in operating
systems. For 20 years I didn’t
have a female TA. Sometimes I
begged! “Please come. You will
be so perfect as a TA.” The last
one I had was 20 years ago, and
that is a shame, really a shame.

Anat Bremler-Barr: It is clear
that there is room for improvement
in the number of women that are
included in academic work and the
industry. Though when I entered the
Red Hat office in Ra’anana, I was
amazed to see the high percentage
of women, and it struck me to see
that there were women in all the
ranks in all ages. Unfortunately,
this is not the typical case.

I am proud to note that the Efi
Arazi School of Computer Science
at IDC has a high percentage of
female students. The proportion of
female students has risen from an RH

RQ

already high 30 percent in the 2019-
2020 year to an unprecedented 37
percent in the 2020-2021 year.

The increase can be attributed to
two main factors. First, it reflects a
general trend around the world, with
increasing numbers of women studying
the computer sciences, attracted
at least in part by the availability of
well-paid jobs in the field. And second,
it reflects a determined push by the
Efi Arazi School and IDC Herzliya in
general to encourage more female
students to enroll in computer science.
We hold events annually targeted
towards encouraging women to join

There is room for improvement when it comes to the
number of women in tech in both industry and academia,
says Anat Bremler-Barr. “I am proud to note that the Efi
Arazi School of Computer Science at IDC [pictured here]
has a high percentage of female students,” she says.
“The proportion of female students has risen from an
already high 30 percent in the 2019-2020 year to an
unprecedented 37 percent in the 2020-2021 year.“

V O L U M E 3 : 1

RESEARCH
QUARTERLY

http://research.redhat.com

research.redhat.com20

About the Author
Henrich Lauko is

a PhD candidate
at the Faculty of

Informatics, Masaryk
University in Brno.
He is intrigued by

both theoretical and
engineering aspects

of computer science.
He finds the sweet

spot for both in
program verification,
where he focuses on
the development of

reusable analyses
using compiler

toolchains.

Verifying programs that communicate
with the environment

Feature

Writing tests with high coverage is almost always tedious
work that is still error prone. This can lead to missing crucial
details that cause undesirable behavior, and, in the worst
case, a complete system failure. What if there were an
efficient way to automate this work?

by Henrich Lauko

In my research, I investigate how to automate
testing through a systematic exploration of
all admissible program inputs. The technique

I have developed is called compilation-based
abstraction. In this technique, the program
under test is transformed to compute with a
set of input values instead of a single value.
This allows exploration of multiple program
inputs (possibly all) at once, hence providing
higher guarantees than just pure testing.

HOW TO TRUST YOUR CODE?
In general, to gain trust in your code, you write tests
that simulate interactions with the environment;
that is, you capture concrete scenarios with
encoded input values. Alternatively, you can
deploy more sophisticated analyses, like fuzzing
or randomized testing. However, the reliability of
these techniques is influenced by a human factor.
The developer might always miss some test cases
or omit some properties of the code entirely.

The natural way to mitigate the human factor is
automation. Generating test cases automatically

is an appealing solution; however, examining all
possible program interactions presents a problem.
If we would like to explore all possibilities naively,
even for a simple program that only takes a single
integer as an input value, that would already make
2,147,483,647 possible executions to explore.
However, many of those executions take the same
path. In automation, we would like to generalize
them. In fact, developers also apply a similar
process when they design test case scenarios.

Examine the artificial program in Figure 1.
Can you guess for which values of a
and b the assert (post-condition of
the procedure) will be triggered?

Examining all possible inputs is indeed
unnecessary. We may recognize that there are
only a few classes of inputs in which the program
behaves differently. For example, for all negative
inputs of variable a, the procedure’s behavior is
always the same because, in all executions, we
perform the same instructions (we do not execute
the code inside the block of the first condition).

RESEARCH
QUARTERLY

V O L U M E 3 : 1

http://research.redhat.com

21research.redhat.com

pass to the program. The program is
then executed with these symbols.
Individual program statements generally
manipulate expressions containing
symbols instead of performing
common calculations with numbers.

Figure 2 shows all possible paths of
symbolic execution of the program
from the previous example. Boxes
describe values of variables at each
program location. Each location also
contains a so-called path-condition π
that keeps all the constraints on the
symbolic values. The symbolic values
used in the example are α and β.

For efficient automation of exhaustive
testing, we want to find a way to
describe these classes efficiently
and perform computation with
them. One such technique that
allows us to compute with sets of
values is symbolic execution.

SYMBOLIC EXECUTION
Symbolic execution is a program analysis
based on the same idea as testing: it
executes paths in a given program to
find bugs. However, symbolic execution
and testing differ in how they actually
execute program paths. In testing,
we execute a given program for each
input in a given set. This means that
the program is passed many inputs
during testing, and for each input, the
corresponding execution follows exactly
one program path. On the other hand,
in symbolic execution, the program
is passed only one input. This single
input does not consist of concrete
data (like numbers or strings); rather,
it is represented by symbols (names of
inputs). These symbols represent any
concrete input data we can possibly

Figure 1. Artificial program

1 void procedure() {
 2 int a = input();
 3 int b = input();
 4 int x = 1, y = 0;
 5 if (a > 0) {
 6 y = x + 3;
 7 if (b == 0)
 8 x = 2 * (a + b);
 9 }
10 assert(x - y != 0);
11 }

Notably, symbolic execution gives
us the following guarantees:

•	 It executes only truly executable
program paths, i.e., those which
can be followed for some concrete
input by standard execution.

•	 Each executable path is symbolically
executed at most once.

•	 For a symbolically executed program
path, we can directly compute
a representative concrete input
for which standard execution
will follow exactly that path.

Figure 2. Symbolic execution of the

program from the previous example

V O L U M E 3 : 1

RESEARCH
QUARTERLY

http://research.redhat.com

22 research.redhat.com

In the traditional approach, the
abstraction execution is implemented
in the interpreter. As you might guess,
the compilation-based approach
performs the abstraction before the
actual analysis, during compilation.
In short, the abstract compilation
transforms program instructions
that operate with user inputs to work
with abstract representation instead,
such as symbolic expressions. Once
the program has been transformed
in this way, it can then be analyzed
by an arbitrary verification tool. The
only requirement is that the tool
(interpreter) can explore ambiguous
branching because we do not know yet
how to encode branching execution
directly into the program simply. But in
this way, the verification tool does not
need to know about abstraction. In the
big picture, the verification workflow
with compilation-based abstraction
looks like the diagram in Figure 3.

values: is zero, is nonzero, or is unknown
(can be both zero or nonzero).

In general, we can look at both
symbolic and abstract execution like
they are performing an execution
with sets of values instead of a single
concrete value. For example, a nonzero
value from a nullity abstract domain
represents a set of integers {1, …,
MAX_INT}, whereas the same set of
values in the symbolic domain might
be described as the expression x > 0.

What differentiates the abstract
and symbolic execution from normal
(concrete) execution is the ambiguity
of control flow. Imagine you have
a symbolic value v described by
the expression x > 0. If this value is
used in branch condition v > 10, both
outcomes are admissible, either
v > 10 or v <= 10. To deal with this
situation, a symbolic executor needs
to explore both paths separately.

COMPILATION-BASED APPROACH
In computer-aided verification, most
of the tools leverage abstraction
techniques to reduce the complexity
of analyzed systems. Even though
these techniques are widely adopted,
they are usually tightly integrated
into tools: abstract semantics are
an internal part of interpreters. This
causes undesired complexity and
neglects any reusable design. In my
research, I devise a self-contained
alternative to perform previously
described abstractions independently of
the tool. This self-contained approach is
called compilation-based abstraction.

Even though the symbolic execution
technique seems promising, there are
scenarios in which it is too slow to be
of any use. This is caused by expensive
computation with symbolic expressions
and a so-called path explosion problem,
i.e., when an enormous number of paths
is generated during the execution.
To mitigate these problems, we can
leverage techniques like abstract
execution (interpretation), but we pay
the cost of analysis precision (coverage).
In comparison to symbolic execution,
the abstract execution does not
compute with symbols but rather with
an abstract representation of values.

Abstract representation describes
only some properties about values, for
example, whether the value can be a null
pointer, signed integer, or a particular
form of string. We gain execution
performance by abstracting only specific
properties, since a single abstract path
might describe multiple symbolic paths.
However, this is in trade for the precision
of analysis. By keeping track of only
specific properties, we might omit some
paths that lead to an error location,
which we call underapproximating
abstraction. Or, in the case of
overapproximating abstraction, we
might find an error that is unreachable
in real execution, i.e., a false positive.

In abstract execution, we pick these
properties beforehand in the form
of the domain in which we want to
compute. This domain then describes
admissible abstract values. For example,
to track the nullity of pointers, we may
use a simple domain that consists of

Figure 3. Verification workflow with

compilation-based abstraction

RESEARCH
QUARTERLY

V O L U M E 3 : 1

http://research.redhat.com

23research.redhat.com

By comparison, the traditional workflow
would implement and perform
interpretation directly in the verifier.
The compilation-based approach
clearly offers some advantages.
First of all, the simplified verifier is
more efficient and more resilient to
errors, giving us higher guarantees
of the verification results. In fact,
the verification also verifies the
actual abstraction. On the other
hand, the transformation increases
the size of the analyzed code that
needs to be interpreted, impacting
the interpretation of the bitcode,
which is, in consequence, slower
than the direct implementation
of abstraction in the verifier.

The solution I propose is implemented
on the level of LLVM bitcode, which is
simpler for analysis and transformation
than the original C/C++ code. I have
prototyped a solution in the DIVINE
verifier. It is able to interpret LLVM
bitcode and explorer branching
executions. However, before integrating
the compilation-based method, DIVINE
could not process programs that take
user inputs. The part of DIVINE that
performs transformation is called LART:
LLVM Abstraction and Refinement Tool.

BUILDING A VALUE ABSTRACTION
One of the design goals for
compilation-based abstraction is
to be accessible for developers,
so that it is easy to create its own
value abstractions. This is mainly
achieved by implementing the actual
abstract domain as a C++ library.
To show you the ease of domain

creation, let us now implement the
previously mentioned nullity tracking
domain, also called zero domain.

The implementation of an abstract
domain is realized as a C++ class
that defines how abstract values
are represented and provides
available operations on this
representation. In the case of the
zero domain, the representation
is particularly simple: each value
just maintains the information
about its nullity. We represent the
nullity information with a single
enumeration of possible value states:

The value can be either zero,
nonzero, or unknown if the nullity
is undetermined. An abstract
value in the program can then be
created either by an abstract input
function that simulates an arbitrary
input from the environment, or
by lifting a concrete value:

struct zero_domain {
 enum value {
 zero,
 nonzero,
 unknown
 };

 ...

value input() {
 return value::unknown;
}

value lift(int i) {
 if (i == 0)
 return value::zero;
 return value::nonzero;
}

Given this value representation,
the domain then defines
arithmetic operations:

For example, in the addition, we check
whether one of the arguments is zero.
In such a case, the result is the other
value because the addition of zero does
not change the result. In other cases,
the result can be anything (an unknown
value) since the addition of two nonzero
values can result in both zero or nonzero
due to integer overflow. The addition to
unknown value is also undetermined.

Besides arithmetic operations,
the abstract domain also needs to

value add(value a, value b){
 if (a == value::zero)
 return b;
 if (b == value::zero)
 return a;
 return value::unknown;
}

In short, the abstract
compilation transforms

program instructions that
operate with user inputs

to work with abstract
representation instead, such

as symbolic expressions.
Once the program has been

transformed in this way, it
can then be analyzed by an
arbitrary verification tool.

V O L U M E 3 : 1

RESEARCH
QUARTERLY

http://research.redhat.com

24 research.redhat.com

interesting candidates for abstraction
since many of those can come from
the environment, and we want to
explore multiple executions at once.
The abstraction of data structures
does not principally differ from numeric
abstraction. In the domain, you describe
an abstract representation of a data
structure and implement its operations.

An example of such an
abstraction would be a string
abstraction suited for the
verification of C programs,
which I have developed
during my research. This
particular abstraction
allows us to represent
infinitely long strings with
abstract characters as well.
It is designed to repurpose
numerical domains to
represent characters and the
length of strings. Moreover,
the abstraction leverages

the fact that the compilation-based
approach can also abstract whole
functions. Hence the string domain
may provide its efficient abstract
implementation of standard C library
functions like strcmp, strcpy, etc.

Bitcode transformation also has uses
beyond value abstraction. It provides
the capability to perform arbitrary
computation on the execution of
instructions and functions. For example,
one can implement statistical analyses
that count the number of executions
of particular instructions. Furthermore,
the domain operations can check for
specific properties during runtime. RH

RQ

implement relational operations.
For example, an equality operation
(eq) in the zero domain can be
implemented as in the following
snippet. Note, we keep the semantics
of the C language, where integer
values also represent boolean
values, so the result of comparison
in the zero domain would also
be a value in the zero domain.

The comparison is ambiguous
(unknown) in the case when we
compare two nonzero values;
the abstraction is too coarse to
determine equality of nonzero
values. In the case when a program
is to perform a branch based on
an unknown value, we need to split
execution and examine both paths, as
shown in the introductory example.

ABSTRACTIONS OF
DATA STRUCTURES
Besides numeric values, we often
manipulate programs with more
complex data: arrays, strings, and
other data structures. These are also

value eq(value a, value b) {
 if (a == value::zero) {
 if (b == value::zero)
 return value::nonzero; // true
 if (b == value::nonzero)
 return value::zero; // false
 } else if (b == value::zero) {
 if (a == value::zero)
 return value::nonzero; // true
 if (a == value::nonzero)
 return value::zero; // false
 }
 return value::unknown;
}

For example, we can utilize the
transformation for security analyses
and check whether some user input
is used in a forbidden computation
(e.g., memory manipulation).

CURRENT RESEARCH
As many abstract domains are
imprecise, my current research
focuses on domain refinement.
The general idea behind domain
refinement is to detect whether
the found error is a false positive.
In that case, the abstraction has to
be augmented to forbid a particular
error location’s reachability. In
a compilation-based approach,
this can be done with a simple
swap of the abstract domain; the
transformation does not need to
be repeated. The only thing we
need to do is to link new semantics
(domain) and rerun the verification.

The other portion of my research
focuses on the integration of
multiple domains in a single program.
This is a particularly challenging
problem, where one needs to
solve what to do when values
from different domains come as
arguments to a single operation.

The implementation of the
transformation tool LART and
domains presented in this article are
currently a part of the verification
framework DIVINE: divine.fi.muni.
cz. However, there is also a work
in progress on a standalone
implementation at my GitHub
repository: github.com/xlauko/lart.

RESEARCH
QUARTERLY

V O L U M E 3 : 1

http://research.redhat.com
https://divine.fi.muni.cz/
https://divine.fi.muni.cz/
https://divine.fi.muni.cz/
https://divine.fi.muni.cz/
https://divine.fi.muni.cz/
https://divine.fi.muni.cz/
https://divine.fi.muni.cz/
https://github.com/xlauko/lart
https://github.com/xlauko/lart
https://github.com/xlauko/lart
https://github.com/xlauko/lart
https://github.com/xlauko/lart
https://github.com/xlauko/lart
https://github.com/xlauko/lart

research.redhat.com 25

About the Author
Peter Desnoyers
is an Associate
Professor in the
Khoury College of
Computer Sciences,
which he joined in
2008. He is one of
the founders of the
Mass Open Cloud,
a multi-institutional
collaboration to
develop new models
for cloud computing,
and serves on the
steering committee.
His research is
focused on storage
issues in operating
systems, in particular
the integration of
emerging storage
technologies such as
flash and SMR disk
into existing software
infrastructures.

Feature

Translation layers for the cloud:
speeding storage performance
A guide to understanding the hidden algorithms
that manage the data in our everyday world, from
smartphones to cloud apps. We look at which ones
perform faster—and why.
By Peter Desnoyers

Block translation layers handle much of our
data. These algorithms are hidden away
inside our SSDs, the storage in our phones,

or the systems that store Dropbox files from a
few years ago that you’ve probably forgotten
about. They transform difficult-to-use devices
like NAND flash or shingled disks into well-
behaved ones, supporting
the rewritable block interface
that our file systems know and
love. But these translation
layers are good for something
besides making weird chips
and disks safe for file systems.
We’re using them in the cloud,
creating virtual disks on top
of S3 object storage. To explain why, we’ll take
a detour through translation layers, S3 object
storage, and disk consistency models first.

A block translation layer provides a simple
rewritable block interface over something else
that doesn’t. The most widely known examples
are Flash Translation Layers (FTLs), used almost
everywhere flash memory is used. NAND flash
itself is difficult to use: although it’s divided into

pages about the size of a disk block, and the
pages can be read independently, the similarities
end when we get to writes. Hundreds of these
pages are grouped into erase units, and the
pages in a unit must be written one at a time,
in order, until it’s full and can’t be rewritten until
all of them are erased in a single operation. A

flash translation layer accepts
disk-like block read and write
requests, and uses out-of-place
writes, a dynamic translation
map, and garbage collection
to implement them on top of
flash. Since it can’t overwrite
existing data, each write goes
to a new location and updates

a logical-to-physical map used for reads. The old
location is now invalid—i.e., garbage—and when
enough garbage accumulates, the remaining
data is copied out of an erase unit so that it can
be erased and made available for new writes.

But why is S3 storage like NAND flash, and why
does it need a translation layer? At first glance S3
looks like a file system: variable-length objects
have names and hold data, and reads are allowed

We’re using them in the
cloud, creating virtual

disks on top of S3
object storage.

V O L U M E 3 : 1

RESEARCH
QUARTERLY

http://research.redhat.com

26 research.redhat.com

with arbitrary byte offsets and lengths.
Like flash, however, writes are different.
S3 objects must be written in a single
operation,1 which either creates a new
object or replaces an existing one.
Once you’ve written an object you can
read it or delete it, but the only way to
modify it is to rewrite the entire thing.
Why is S3 so limited? In a nutshell,
because it’s easier that way,2 because
of issues of replication and consistency.

CONSISTENCY VS. PERFORMANCE
Cloud storage systems like AWS S3
or Ceph replicate data on multiple
machines for reliability, and they are
designed to transparently handle failure
of any of these machines without
affecting the user. One of the hardest
parts of this failure handling is keeping
these replicas consistent with each
other. For instance, if replica A is down
when I make a change to replicas B
and C, but then comes back up, I risk
getting different data on each read
depending on which replica it is routed
to. Avoiding this requires mechanisms
like locks and write-ahead logs,
which add complexity and subtract
performance, and it gets even worse
when you go from simple replication
to erasure coding. In contrast, when
you create a new write-once object,
consistency is simple: if you have
a copy of it, then you know it’s the
right one. Overwrites are a bit trickier,
but not by much, mostly because S3
makes very few promises about when
you’ll actually see the new copy.

In the open source world, Ceph is
the most widely used cloud-scale

storage system, and it supports both
write-once and rewritable abstractions.
At the lowest layer it has a pool of
Object Storage Devices (OSD) storing
rewritable objects; unlike S3 objects,
these really do work like files. The Ceph
RADOS Gateway (RGW) provides an
S3 object service over these OSDs,
splitting large S3 objects into smaller
fixed-sized Ceph objects, writing
multiple smaller objects in parallel for
higher throughput. Although OSDs
provide mechanisms to modify these
objects safely, RGW never uses them,
and so never pays the performance
price of write-ahead logging and other
mechanisms for preserving consistency.

The Ceph virtual disk, RADOS Block
Device (RBD), takes advantage of
Ceph’s rewritable objects by splitting
a virtual disk image into smaller fixed-
size Ceph objects, and translating disk
block reads and writes into reads and
writes of the corresponding object byte
ranges. In contrast, creating a virtual disk
over S3 requires something that looks
a lot like a flash translation layer: new
writes go to new S3 objects and update
a translation map, and any remaining
live data in old S3 objects is garbage
collected before the object is deleted.

So why are we going to so much
trouble to create a virtual disk over
S3? The answer comes back to local
caching, and in the end to yet more
issues of consistency. As high-speed
NVMe drives become more and more
affordable, it becomes very tempting
to use a local cache for virtual disks, as
these local IOPS are far cheaper than

So why are we going
to so much trouble to

create a virtual disk
over S3? The answer
comes back to local

caching, and in the end
to yet more issues of

consistency.

RESEARCH
QUARTERLY

V O L U M E 3 : 1

http://research.redhat.com

research.redhat.com 27

after every few writes to the disk, and show
little improvement over simple write-through.

By using a translation layer we sidestep this
problem entirely. After logging writes to local
SSD for durability in the case of recoverable
crashes, our system batches a sequence of
writes into a single object, gives it a sequence
number (embedded in the object name), and
writes it to the back end. If multiple object
writes are outstanding when the system crashes,
it’s possible that a random subset of them
will fail to complete. However unlike RBD (or
iSCSI, QCOW2 over NFS, etc.), we still have
the old data, and we can decide which updates
to apply and which to discard. In particular,
we examine the sequence numbers and find
the first gap: all updates before this gap are
applied to the volume, and any objects following
that sequence number gap are discarded.
This preserves commit barrier semantics: if
we keep a write following a commit barrier,
then any write before that barrier is either in
the same object, or in a preceding one that
is guaranteed to exist by our recovery rule.

We’ve implemented a prototype of a translation
layer over S3, split into a kernel device mapper
and a Golang-based user-level daemon, and
are testing it extensively. We hope to deploy a
version of this as a pilot storage pool in the Mass
Open Cloud (massopen.cloud) later this year.

1Or a multi-part upload, but the result is the same.
2In engineering, “easier” often means “cheaper”, “more
reliable”, or even just “possible.”
3Having used Linux since kernel 1.0 and the ext2 file
system, I can attest that this was not always the case,
much to my occasional distress.
4Note that most of these caches were
designed to cache local hard drives,
where this scenario was unlikely.

RH
RQ

equivalent performance in a shared storage
cluster. Unfortunately if you do this wrong,
the price you pay might be your file system.

Modern file systems are crash consistent: they
order their writes in such a way that the file
system is unlikely to be corrupted by a crash,3
typically by using a write-ahead log or journal
for metadata updates such as directory entries
and allocation bitmaps. To achieve this ordering,
while still using asynchronous writes for high
performance, file systems (and the fsync
system call) use commit barriers—operations
like the SCSI synchronize cache command,
which guarantee that all preceding writes will
be performed before any following ones.

A simple local cache with asynchronous write-
back (there are three available in the kernel,
and several other ones) can easily be combined
with a virtual disk such as RBD, resulting in
tremendous boosts in performance. Everything
will be fine as long as neither the local SSD nor
the virtualization host itself fail permanently, but
if they do, things get messy. When this happens

all that’s left is the remote virtual disk image.4
The bcache documentation describes the likely
result for a cache that ignores commit barriers:
“you will have massive filesystem corruption,
though ext4’s fsck does work miracles.”

One alternative is to use a write-through
cache, but that sacrifices much of the speed
advantage of a local cache. The other alternative
is to use a cache that preserves commit
barriers, several of which are described in the
literature. This second approach works great
for workloads with few commit barriers; some
that we’ve measured in the lab have one or
two barriers per gigabyte written, and would
be unaffected. Other workloads (SQLite is a
prime example) send commit barriers writes

V O L U M E 3 : 1

RESEARCH
QUARTERLY

http://research.redhat.com
http://massopen.cloud

research.redhat.com28

Red Hat Beyond is an initiative that gives
students a taste of real-world software
development and methodologies,

by exposing them to the entire process of
designing and developing a software project in
a collaborative environment. Students have an
opportunity to combine the theoretical knowledge
being taught in the academy with hands-on
experience with a real-world tech stack.

In the program, professional engineers prepare
and present weekly sessions for the students
and take responsibility for mentoring them.
Mentors work with students to understand what
is involved in real-world software development
using an open source model, and they answer
questions about technical difficulties. Students
are also exposed to using GitHub, the code
review process, and coding style requirements.

Students are divided into teams of five, each one
taking on a web application development project to
complete. As part of the project, each team had to
design the system architecture, database, and front
end screens in addition to the back end in Python.
While the Red Hatters are there for support and

About the Authors

Irit Goihman is a
software engineering

manager at Red
Hat and an open

source enthusiast.

Liora Milbaum is
a senior principal

software engineer
at Red Hat with

a passion for
DevOps culture.

Combining experience with passion
inspires a new mentorship program

direction, the students themselves own the entire
project. To this end, they learn how to collaborate
with each other and divide their assignments so
each team member has an area of responsibility.

A HISTORY OF LEADERSHIP
The Beyond initiative was started by Red Hat
associates Liora Milbaum and Irit Goihman. Liora,
a senior principal software engineer, joined Red
Hat after twenty years of running a company
providing DevOps services. In her company, Liora
trained junior engineers and gave them the tools
to start their own journey in the DevOps world.

Training younger people was one of the things
Liora felt fulfilled her the most. To continue this
work, she started the DevOps Loft initiative,
a nonprofit community for aspiring DevOps
engineers willing to gain more knowledge and
tools to bootstrap their careers. She ran weekly
meetups where senior DevOps engineers provided
workshops and shared their knowledge with others.

When Liora joined Red Hat, she discovered the
company’s efforts to connect the industry and
the academic world and suggested applying the

Feature

The Office of the CTO is promoting open source
development concepts among teenagers, the military,
and the academic world in Israel. Here’s how two
engineers helped realize that goal.
by Irit Goihman and Liora Milbaum

RESEARCH
QUARTERLY

V O L U M E 3 : 1

http://research.redhat.com
https://research.redhat.com/blog/project_member/liora-milbaum/
https://research.redhat.com/blog/project_member/liora-milbaum/
https://research.redhat.com/blog/project_member/liora-milbaum/
https://research.redhat.com/blog/project_member/irit-goihman/
https://research.redhat.com/blog/project_member/irit-goihman/
https://research.redhat.com/blog/project_member/irit-goihman/

29research.redhat.com

RH
RQ

methods she used in DevOps Loft in
the university. Her proposal included
creating a different kind of academic
course, with real-world, hands-on
experience for students. This proposal
was warmly welcomed by Sofi Sherman,
PhD, and Prof. Ruti Gafni from the
Information Systems school of the
Academic College Tel Aviv Yafo.

Irit, a software engineering manager, has
ten years of experience in the industry,
working in R&D as well as IT. She is
passionate about sharing her knowledge
to help other women succeed in the
engineering field and promoting diversity
inside and outside of Red Hat. Among
her projects is a school visit program at
the Tel Aviv site, in which high school
students spent full days at Red Hat and
learned about open source culture.

Liora and Irit partnered to lead the
Beyond initiative together. The program
was a perfect opportunity to mesh Liora’s
and Irit’s experience and passion while
passing on knowledge and skills to future
engineers early in their careers. The
tech industry recruitment process puts
more emphasis on relevant experience
and skills than on degrees, which can
create challenges for less experienced
candidates. A program like Beyond helps
potential engineers gain more background
knowledge and leverage open source
projects as additional experience.

CONTINUED GROWTH
When Irit and Liora presented their
Introduction to DevOps course in the
Information Systems school, they met
Prof. Gideon Dror, the Computer Science

Dean, in the elevator. Prof. Dror was
eager to hear more about the course and
immediately asked about incorporating
a similar course in the computer
science department as well. This is
how the second course, Open Source
Development Principles, was initiated.

During the second course, the COVID
pandemic hit the globe. Beyond had
to become fully virtual. This was a
surprisingly easy transition. as the
program members used the same tools
that Red Hat engineers use for their
daily work in a global environment.

Another virtual class about open
source development was offered in
conjunction with Prof. Anat Bremler-
Barr, Vice Dean of the Efi Arazi
School of Computer Science at the
Interdisciplinary Center (IDC) of
Herzliya, Israel’s only private university.

So far, four courses have been delivered
in two different academic institutions.
Additional workshops have been
offered at Haifa University, Bar Ilan
University, and for the Israeli Navy.

The success of the program can also be
seen in the organic spread of open source
ideas. For example, after completing
an open source course with Beyond, an
IDC computer science student started
working on a project with a few friends
from the army and was able to teach
them open source software development
methods. In this way, Beyond has created
new opportunities for collaboration
and the growth of open source
culture well after the course is over.

The course
challenged the students
and demanded a lot
of self-learning. But
eventually it was a big
boost both to their
technical knowledge and
their soft skills.

—Prof. Gideon Dror,
The Academic College
Tel Aviv Yafo

WHAT THEY’RE SAYING

“

Nowadays, when
industry is advancing
extremely fast towards
new and exciting
technologies,
maintaining a strong
link between industry
and academy is
absolutely vital.

—Sofi Sharman, PhD,
Prof. Ruti Gafni

“

V O L U M E 3 : 1

RESEARCH
QUARTERLY

http://research.redhat.com
https://www.idc.ac.il/en/pages/home.aspx
https://www.idc.ac.il/en/pages/home.aspx
https://www.idc.ac.il/en/pages/home.aspx
https://www.idc.ac.il/en/pages/home.aspx
https://www.idc.ac.il/en/pages/home.aspx
https://www.idc.ac.il/en/pages/home.aspx
https://www.idc.ac.il/en/pages/home.aspx
https://www.idc.ac.il/en/pages/home.aspx
https://www.idc.ac.il/en/pages/home.aspx
https://www.idc.ac.il/en/pages/home.aspx
https://www.idc.ac.il/en/pages/home.aspx

research.redhat.com30

It all began in 2017. The university program in
Brno was thriving, and collaboration with Czech
Technical University (CTU) in Prague was just

beginning to gain traction. Red Hat Czech had
been on the receiving end of a couple of Czech
government subsidies to support research work
but never connected to an actual research grant.
CTU took the initiative that
got our joint research efforts
started, setting a pattern
for university-industry-
government collaboration
that continues today.

When the cooperation
began, we wanted our
software engineers to know more about what
the researchers at the Faculty of Electrical
Engineering of CTU were doing to expand our
knowledge of the latest innovations. Since
Prague and Brno are more than two hours
apart, which makes continual collaboration
much harder, we invited them to Brno to speak
about their research. This sparked a lot of
interest, and the presentation was not only
well attended in person—which sounds a little
otherworldly these days—but also streamed
to those who couldn’t be there. It was at this
presentation that the conversation between

Planting the seeds for a blossoming
research program

the academic researchers and the Middleware
Quality Engineering (QE) team began.

A few months later, representatives of the Faculty
of Electrical Engineering at CTU contacted us
with a proposition. They discovered a Call for
Proposals (CFP) from the Technology Agency

of the Czech Republic
(TACR), and the university
needed an industrial partner
to apply for a three-year
cash grant program. The
project that resulted from
the conversation with the
Middleware QE team was a
good fit. We agreed with the

university to propose the Quality Assurance for
Internet of Things Technology project for the grant.

The application was the first major hurdle. Being
a partner for such a project was unprecedented
at Red Hat Czech, and there was no approval
process in place. Finding the right people to
talk to, then convincing them to invest time
into reviewing and giving the green light to a
project that was somewhat insignificant from a
broader business point of view was an exercise in
perseverance. Thus it was all the more rewarding
when the project won the selection process.

Column

How Czech Technical University and Red Hat Czech
broke ground for grant programs.

About the Author
Matej Hrušovský
has been with Red
Hat for more than

seven years, five of
which have been

spent managing the
university program

in EMEA. Aside
from attracting new

talent mainly from
universities and

schools, the core of
Matej’s job is to find

and put the right
people from Red Hat
and academia in the

same room together.

by Matej Hrušovský

 It was the first of its kind for
us, but it has opened the door
for two more projects that are

still ongoing.

RESEARCH
QUARTERLY

V O L U M E 3 : 1

http://research.redhat.com

31research.redhat.com

Fast forward to 2021: the project
concluded in December 2020 and it
has found a lot of success in both the
academic and the industrial fields. When
it comes to PatrIOT, Red Hat’s part of
the project, two out of three patent
applications have already been accepted.
Moreover, while the grant program has
concluded, the project is not finished.
The partners’ cooperation will continue in
2021, self-funded for now, while seeking a
new CFP to enable further collaboration.

The framework has been applied in
several projects, including Red Hat
AMQ and a prototype IoT-based
rescue mission and planning system
for the Czech police and mountain
rescue service. Multiple institutions—
Johns Hopkins University, NATO ACT
Innovation Hub, CTU, Armed Forces
of the Czech Republic, and DefSec
Innovation Hub—have used the
framework to develop an experimental
sensor network for monitoring soldiers’
vital functions that facilitates more
accurate triage and minimizes casualties.

Quality Assurance for Internet of Things
Technology has been our icebreaker
project that brought academic
researchers, industry software engineers,
and a government agency together.
It was the first of its kind for us, but
it has opened the door for two more
projects that are still ongoing. Red Hat
has become more active in applying
for grant programs, and getting the
applications through has now become
much easier thanks to an existing
precedent and tangible results that the
projects bring to research and business. RH

RQ

RH
RQ

Read current articles

Browse back issues

Subscribe to print or digital

research.redhat.com/quarterly

Red Hat
Research Quarterly

V O L U M E 3 : 1

RESEARCH
QUARTERLY
RESEARCH
QUARTERLY

http://research.redhat.com
http://research.redhat.com/quarterly

research.redhat.com32

Project Updates

Here are a few highlights of recent research results from
the US. There are many more active projects than we
can cover here, so be sure to check research.redhat.com
listings for additional projects. We will highlight research
collaborations from other parts of the world in future
editions of RHRQ. Contact academic@redhat.com for more
information on any project.

Research project updates

PROJECT: FPGAs in Large-
Scale Computer Systems

ACADEMIC INVESTIGATORS: Martin Herbordt,
Robert Munafo, Orran Krieger, Rushi Patel,
and Mayank Varia (Boston University)

RED HAT INVESTIGATORS: Ulrich
Drepper and Ahmed Sanaullah

Investigators on this project recently moved
closer to their goal of enabling FPGA (Field
Programmable Gate Arrays) application
development by high-level language programmers,
especially those working in datacenter and edge
environments, using only open source tools. They

You can join live Research Interest
Group (RIG) meetings each month
to discuss new project proposals

and review the latest results from other
research collaborations. Subscribe to the
US-Research@redhat.com mailing list to stay
current on the interest group meetings.

demonstrated a hardware implementation of
secret sharing using FPGAs and assessed the
scalability of the design against comparable
software-only implementations. Their results,
shared in a paper presented at the 30th
International Conference on Field-Programmable
Logic and Applications (FPL 2020) by Pierre-
François Wolfe, are the first-ever results reported
for secret sharing multiparty computation (MPC)
on FPGA hardware (see bit.ly/MPConFPGAs).

MPC facilitates shared utilization of datasets
gathered by different entities by enabling data
from several sources to be used in a secure
computation. Only the result is revealed, while the
original data is protected. The presence of FPGA
hardware in datacenters can provide accelerated
computing as well as low-latency, high-bandwidth
communication that bolsters the performance
of MPC and lowers the barrier to using MPC for
many applications. The group’s most recent work
demonstrated that secret sharing outperformed
state-of-the-art methods for implementing MPC
in the datacenter. Using 5.5% of FPGA fabric in a
consumer cloud environment, this result can match

RESEARCH
QUARTERLY

V O L U M E 3 : 1

http://research.redhat.com
http://research.redhat.com
mailto:academic@redhat.com
mailto:academic@redhat.com
mailto:academic@redhat.com
mailto:academic@redhat.com
mailto:academic@redhat.com
mailto:US-Research@redhat.com
mailto:US-Research@redhat.com
mailto:US-Research@redhat.com
mailto:US-Research@redhat.com
mailto:US-Research@redhat.com
mailto:US-Research@redhat.com
mailto:US-Research@redhat.com
https://www.fpl2020.org/home
https://www.fpl2020.org/home
https://www.fpl2020.org/home
https://www.fpl2020.org/home
https://www.fpl2020.org/home
https://www.fpl2020.org/home
https://www.fpl2020.org/home
https://www.fpl2020.org/home
https://www.fpl2020.org/home
https://www.fpl2020.org/home
https://www.fpl2020.org/home
https://www.fpl2020.org/home
https://www.fpl2020.org/home
https://www.fpl2020.org/home
https://www.fpl2020.org/home
https://www.fpl2020.org/home
https://www.fpl2020.org/home
https://www.fpl2020.org/home
https://www.fpl2020.org/home
https://www.fpl2020.org/home
https://www.fpl2020.org/home
https://www.fpl2020.org/home
https://www.fpl2020.org/home
http://bit.ly/MPConFPGAs

33research.redhat.com

the throughput of an optimized 20-
core CPU implementation, saturating a
typical 10Gbps network connection. This
result scales with available bandwidth:
a single FPGA is able to saturate a
200Gbs link with a throughput of ~26
million AES operations per second.

PROJECT: Kernel Techniques
to Optimize Memory Bandwidth
with Predictable Latency

ACADEMIC INVESTIGATORS:
Parul Sohal, Renato Mancuso, and
Orran Kreiger (Boston University)
Rohan Tabish (University of
Illinois at Urbana-Champaign)

RED HAT INVESTIGATORS: Ulrich
Drepper and Larry Woodman

Parul Sohal has presented a paper with
her co-authors Rohan Tabish, Ulrich
Drepper, and Renato Mancuso titled
“E-WarP: a system-wide framework
for memory bandwidth profiling
and management” at the 41st IEEE
Real-Time Systems Symposium.

The paper, which won the RTSS Best
Student Paper award, used a profiling
approach to model memory behavior
and understand memory utilization with
enough detail to predict application
behavior under controlled conditions.
As summarized in the paper, “Profiling
represents a substantial refinement
of measurement-driven approaches,
where fine-grained knowledge of the
interaction between applications and
the platform is collected and leveraged.
Conversely, we treat the DRAM

subsystem, as much as possible, as a
black box. By shifting our emphasis
on a more precise representation of
memory bandwidth requirements of
applications and by ensuring that the
DRAM subsystem operates below its
saturation threshold, we demonstrate
that highly accurate predictions on the
behavior of tasks operating on CPUs
and accelerators can be made.” The
E-WarP framework provides techniques
to profile and bound the temporal
behavior of application workloads on
CPUs and accelerators, providing tools
and details in two Github repositories.
See bit.ly/kernelmemorylatency for
more information on this project.

PROJECT: Open Telemetry
Working Group

ACADEMIC INVESTIGATORS: Raja
Sambasivan (Tufts University)

RED HAT INVESTIGATORS: Marcel Hild

OPEN SOURCE PARTNERS:
OpenInfra Labs, Open Cloud
Testbed, and Mass Open Cloud

Red Hat and academic participants have
been collaborating for some time to
build, operate, and share infrastructure
that demonstrates open source cloud
operations at scale, most recently
including the Operate First initiative
at OpenInfra Labs (OIL). A significant
step forward in this effort was the
recent formation of the Open Telemetry
Working group, with participants from
several different universities, OIL, and
Red Hat. The group seeks to build

upon a realistic production-grade
environment, operated by IT operations
and used by end users and researchers
alike. By exploring ways to provide
access to telemetry data for research
and open operations engineering in this
environment, the group hopes to enable
new research and development projects,
in much the same way that the open
source movement enabled new options
for software development. Examples
of research projects that would benefit
from this type of environment include
creating new debugging tools and
visualizations, using telemetry data to
optimize workload performance, and
improving telemetry data itself. Monthly
meetings are open to all interested
participants. The group charter and
working notes are shared publicly (see
bit.ly/telenote) along with a Github
repository (see github.com/open-
infrastructure-labs/telemetrywg).

PROJECT: Deploying End-
to-End, Fully Virtualized,
and Open Source 5G
Platforms on OpenShift

ACADEMIC INVESTIGATORS:
Tommaso Melodia, Abhimanyu
Gosain, and Michele Polese
(Northeastern University)

RED HAT INVESTIGATORS: Feng Pan

Traditional cellular networks are mostly
based on closed source, inflexible
architectures, in which functionalities are
baked directly on hardware components
(e.g., the base stations). This black-
box approach leads to vendor lock-in

V O L U M E 3 : 1

RESEARCH
QUARTERLY

http://research.redhat.com
http://bit.ly/kernelmemorylatency
http://bit.ly/kernelmemorylatency
http://bit.ly/kernelmemorylatency
http://bit.ly/kernelmemorylatency
http://bit.ly/kernelmemorylatency
http://bit.ly/telenote
http://bit.ly/telenote
http://bit.ly/telenote
http://bit.ly/telenote
http://bit.ly/telenote
https://github.com/open-infrastructure-labs/telemetrywg
https://github.com/open-infrastructure-labs/telemetrywg
https://github.com/open-infrastructure-labs/telemetrywg
https://github.com/open-infrastructure-labs/telemetrywg
https://github.com/open-infrastructure-labs/telemetrywg
https://github.com/open-infrastructure-labs/telemetrywg
https://github.com/open-infrastructure-labs/telemetrywg
https://github.com/open-infrastructure-labs/telemetrywg
https://github.com/open-infrastructure-labs/telemetrywg
https://github.com/open-infrastructure-labs/telemetrywg
https://github.com/open-infrastructure-labs/telemetrywg

34 research.redhat.com

RH
RQ

and is unable to adapt to the rapidly
varying network, traffic, and topology
dynamics that characterize 5G networks.
This results in suboptimal network
performance. In the last few years, a
number of consortia, primarily led by
telcos, have been promoting solutions
to overcome this imposed lock-in by
pushing equipment manufacturers to
produce open hardware that can be (i)
dynamically programmed via software
and (ii) seamlessly integrated—through
open interfaces—with a network
architecture consisting of components
provided by multiple vendors. The
resulting network softwarization allows
telcos to directly program algorithms
and policies to optimize the network
behavior in real time, based on the
current conditions and requirements
(e.g., traffic demand, Quality of Service

[QoS], and latency), while opening
the network to third-party vendors.

The goals of this new project are
to develop an experimental open
source platform that merges open
and reprogrammable software and
hardware components that can be
used to test and deploy fully virtualized
5G networks. The platform builds on
Red Hat OpenShift and large-scale
national wireless experimental facilities:

•	 Arena—a 64-antenna SDR-based
ceiling grid testbed for sub-6
GHz radio spectrum research

•	 PAWR—Platforms for
Advanced Wireless Research, a
National Science Foundation-
funded program

•	 Colosseum—A massive radio-
frequency (RF) and computational
facility developed by the Johns
Hopkins Applied Physics Lab to
support the Defense Advanced
Research Projects Agency’s
(DARPA) Spectrum Challenge

Ideally, the project will also connect
to resources in the Open Cloud
Testbed that can provide resources
for building core network and
datacenter testbeds. The project
will develop automated pipelines
using OpenShift to build, deploy, and
manage these complex systems that
combine radio, compute, storage, and
networking resources into dynamic
experimental testbeds that can cope
with the tight real-time requirements
of experiments with cellular networks.

RESEARCH
QUARTERLY

V O L U M E 3 : 1

http://research.redhat.com

Red-Hat_RHRQ_fullpage_ad.pdf 1 8/11/20 11:14 AM

Learn more at ai.intel.com

© Intel Corporation. All rights reserved. Intel, the Intel logo, Xeon and other Intel marks are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries. Copyright © Intel Corporation 2020.

	h.sw8oo086kurn
	h.uo7dllhyi18i
	h.x905pfa5vn7p
	h.te4qd3yqucjm
	h.pfy0b1v77nmj
	h.jr2xtbqrgk7l
	h.1v1ckqgspd69
	h.wq13wvmyjn97
	h.v9x65mg6gs3u
	h.e5yq8191q8cg
	h.ufrmq5gy9a5l
	h.4sl639t3toz7
	h.ad1ceu12ur0z
	h.904m3n15rxxj
	h.snk5s3db1nd0
	h.d8f1vorzsbwb

