
Building the next generation of 
programmable networking - powered 
by Linux
YEAR 1 REPORT, SEPTEMBER 2021
Frey Alfredsson, Simon Sundberg, Per Hurtig and Anna Brunstrom



1 Introduction

Programmable networking has the potential to enable new applications, as well as increase the
flexibility of existing ones. Over the last years, the performance of general purpose computers
has reached the point where it has become practical to perform high-speed packet processing in
software, thus enabling programmable networking. Several frameworks have emerged to enable
this, such as the DataPlane Developer Kit (DPDK). These frameworks have adapted a clean-slate
design to maximize performance, which however means that existing mature network manage-
ment tools are harder to integrate with them. On the other hand, networking stacks in modern
operating systems are featureful and well-integrated into the ecosystem, but lack the performance
to keep up with the specialized frameworks. Finally, networking hardware is starting to become
ever more programmable, leading to a desire to integrate programmable hardware features with
the software stack.

The Linux networking community has reacted to these challenges by integrating a new data
path into the Linux kernel, called the eXpress Data Path (XDP). This runs inline with the
regular data path, allowing flexible high-performance programmable networking to function in
concert with the regular networking stack. In addition, some network adapters have adopted
the BPF byte code format used by XDP as an option for offloading programmable processing to
the hardware. This makes XDP a promising technology for solving the problems of integration
between existing stacks, high-speed packet programming in software, and hardware offloading of
programmable features.

While XDP shows promise, there are several open problems that need to be resolved before
the vision of an integrated architecture for programmable networking can be achieved. To explore
these problems and offer solutions at both the architectural and technical implementation levels,
Red Hat (RH) and Computer Science at Karlstad University (KAU), Sweden, have engaged in a
joint research project funded by RH Research. Below we report on the progress of this project
during its first year. We summarize the technical work, describe the outreach activities that have
been carried out, and describe the project organization.

2 Technical Work

Initial discussions in the project focused on establishing the relevant technical background and
narrowing down the scope of the project. As a result, the project partners agreed to focus
the technical work on two main areas: enhancing XDP with support for queuing and utilizing
BPF/XDP for efficient latency monitoring.

2.1 Queueing in XDP

XDP provides a high-performance programmable network data path and allows programmers to
process packets early out of the driver. While XDP excels in forwarding packets, it currently
has no mechanism for queuing or reordering of packets and cannot implement traffic scheduling
policies. Packet scheduling is a common task on network equipment, and like for other aspects
of networking, there is a growing interest for bringing programmability to this domain. For the
Linux kernel, making packet scheduling fully programmable through BPF is the obvious answer
to this trend.

Below we introduce our work on adding programmable packet scheduling to XDP. We are
designing a programmable packet scheduling framework in BPF using recently proposed schemes
for programmable queues. This extension will allow programmers to define their packet sched-
ulers using BPF while benefiting from the XDP fast data path. Our new programmable packet
scheduling framework design introduces new BPF hooks and a new BPF map type. We base our
new map type on a data structure called Push-In First-Out1 (PIFO). PIFO allows the program-

1http://web.mit.edu/pifo/

1



Enqueue hook

Input packets

Timer hook

Output packets

Dequeue hook

Queue
Map

Figure 1: Depicted are the BPF hooks needed to implement programmable packet scheduling
using our new proposed framework. The main hooks are the enqueue and dequeue hooks, with
the optional timer hook. Queueing works the same in both XDP and the Qdisc. However, they
do not use the same enqueue and dequeue hooks.

mer to order the packets on enqueue, and packets are always dequeued at the head of the queue.
This data structure allows the programmer to express many practical scheduling algorithms and
complex algorithms using a hierarchy of PIFOs.

2.1.1 Programmable packet scheduling framework design

Our vision is to create an BPF based programmable packet scheduling framework that is flexible
enough to share between the XDP and kernel Qdisc layers. The preliminary design is depicted
in Figure 1, which shows the basic building blocks for our design without the specifics of XDP
nor the Qdisc subsystem. These building blocks are then further broken down as follows:

• Queue map: This new BPF map implements a PIFO and is the main building block for the
programmer to create packet schedulers.

• Enqueue hook: This BPF hook is responsible for redirecting packets to BPF queue maps.
This is the standard XDP hook in the case of XDP. However, it is a new hook in Qdiscs.

• Timer hook: This is an optional hook and is only required for algorithms that delay packets
(for e.g., packet pacing or traffic shaping). It is responsible for dequeuing and enqueuing
packets from different PIFOs to introduce delayed packets. We implement timers using
the newly introduced BPF timer API. This API allows the programmer to schedule BPF
programs to be run at a specified time in the future, which can be used to release held
packets.

• Dequeue hook: This hook is responsible for delivering the packet from the packet scheduling
algorithm. In XDP, this is a new hook that each driver calls to transmit a packet. It
can deliver bulking by repeatedly calling the hook to dequeue multiple packets before it
transmits them.

2



The PIFO data structure is represented as an BPF map in our design. This allows the queues
to be straight-forwardly referenced by the BPF programs making up the scheduling algorithm.

From a programmer’s perspective, the BPF hooks reference the queues like any other map
type. The enqueue hook can decide which queue to direct the packet to by a map reference.
Similarly, the dequeue hook can pick which queue map to dequeue from, and return a reference
to the dequeued packet to the kernel for transmission.

2.1.2 Status of the framework

Implementation of the framework involves two separate development efforts. One is the imple-
mentation of the new BPF hooks and queue map in the kernel. The second is the implementation
of several real-world queueing algorithms using those hooks, to demonstrate the viability of the
new API.

The Linux BPF implementation is currently being prototyped, following the design outlined
above. Parallel to this, we have implemented a prototyping framework that allows us to implement
different scheduling algorithms quickly and try different API constructs. The framework allows
us to experiment with different possible ways to construct packet scheduling algorithms and how
convenient they are for programmers to use. This prototyping framework is an ongoing effort
and allows us to fine tune the API before finalizing the Linux kernel code.

2.2 Latency Monitoring

For many applications, latency is the most important metric in determining user experience. Be-
ing able to measure network latency is therefore essential for understanding network performance,
and has also proven invaluable for troubleshooting applications or network miss-configurations.
The most well known tool for measuring network latency is probably ping, which reports a Round
Trip Time (RTT) to a target node by sending a message and measuring the time until it gets a
response. Due to being standardized as part of the ICMP protocol, ping is universally available
and usually a good first choice to determine the idle latency between two specific nodes. But
the fundamental approach of actively sending out additional network traffic to measure network
latency has several problems.

1. It introduces additional network overhead. While a single ICMP packet every second is
negligible on most links, increasing the granularity of RTT reports requires sending packets
at a higher rate, which could add up to considerable overhead on slower links.

2. It only reports the RTT between a single pair of nodes. To get an overview of the latency
in a large network would require running ping between every possible node pairings which
is cumbersome and does not scale well.

3. It only provides the latency experienced by the ICMP echos. This latency does not neces-
sarily correspond with the latency experienced by traffic from other applications. Running
ping in isolation from other traffic will likely fail to capture latency spikes that are caused
by bloated network queues. Even if ping is run concurrently with other traffic, the ping
traffic may be treated differently due to for example active queue management, or even
routed differently because of e.g. a load balancer.

Passive ping (pping) uses a different approach that avoids these issues. Instead of sending
out additional network traffic, pping looks at existing traffic and reports the RTT experienced
by this traffic. This means that pping adds no network overhead, can report RTTs to any hosts
for which regular network traffic is passing through, regardless of if it’s being run on an end host
or a middlebox, and the reported latency corresponds to the network latency experienced by the
real application traffic.

3



2.2.1 BPF pping design

Kathleen Nichols proved the feasibility of this approach by implementing pping for TCP traffic,
based on the TCP timestamp option. Kathie’s C++ implementation (referred to as k-pping
below), like most user space programs, uses the traditional but rather inefficient technique of
copying packet headers to user space and parsing them there. At high line rates copying all
packet headers to user space is very resource demanding, and it may not be possible for the
program to keep up with the network traffic, leading to missed packets.

With the development of BPF pping (e-pping) in the project, we want to leverage the power
of BPF to fix this inefficiency. Using BPF, the packets can be parsed directly in kernel space while
they pass through the network stack, without ever being copied to user space. This approach
allows pping to keep up with higher line rates and imposes less overhead. Furthermore, e-pping
adds some additional features, such as JSON output, and extends pping beyond TCP so it can
be used to monitor a wider range of traffic. Currently it works for TCP traffic that uses the TCP
timestamp option and ICMP echo messages, but could be extended to also work with for example
TCP seq/ACK numbers, the QUIC spinbit and DNS queries.

The fundamental logic of pping is to timestamp a pseudo-unique identifier for packets, and
then look for matches in the reply packets. If a match is found, the RTT is simply calculated as
the time difference between the current time and the stored timestamp. The e-pping tool, just
as Kathie’s original pping implementation, uses TCP timestamps as identifiers for TCP traffic.
The TSval (which is a timestamp in and off itself) is used as an identifier and timestamped.
Reply packets in the reverse flow are then parsed for the TSecr, which are the echoed TSval
values from the receiver. The TCP timestamps are not necessarily unique for every packet (they
have a limited update frequency, normally 1000 Hz for modern Linux systems), so only the first
instance of an identifier is timestamped, and matched against the first incoming packet with a
matching reply identifier. For ICMP echo, e-pping uses the echo identifier as port numbers, and
echo sequence number as identifier to match against.

The design of e-pping is illustrated in Figure 2. It consists of two major components, the

BPF program
(ingress + egress)

pping_kern.c

Userspace program
pping.c

Hash-map
packet_ts

Add (flow, identifier) = now

Push RTT + flow

Pull and print RTT + flow

Parse identifier and reply identifier of packet
Update flow state

Timestamp packet identifier
Match reply identifier

Calculate RTT and push to userspace

Periodically delete old flows and timestamps

Load and attach BPF programs
Pull perf-buffer and print RTTs

Periodically clean the hash-maps

Hash-map
flow_state

Update(flow) = state

Perf-buffer
events

Kernel space

User space

Lookup (reverse-flow, reply-identifier)

Figure 2: Design overview of e-pping tool.

user space program and the kernel space BPF program. Once the user space program has loaded
and attached the kernel space BPF program, the BPF program parses incoming and outgoing

4



packets, and uses BPF maps to store packet identifiers as well as some state about each flow.
When the BPF program can match a reply packet against one of the stored packet identifiers, it
pushes the calculated RTT to the user space program which in turn prints it out.

2.2.2 Initial results

We are currently in the process of evaluating the performance of the e-pping tool as well as
continuously enhancing its functionality and design. An initial performance result that illustrate
the potential of using BPF to parse the packets directly in kernel space, as opposed to performing
the parsing in user space, is shown in Figure 3. The results were obtained using a basic setup

min median mean max
no_pping 0.00 103.48 99.75 117.32
k_pping 2.00 203.08 195.63 210.96
e_pping 0.00 106.52 103.81 115.08

0 20 40 60 80 100
Time (s)

0

50

100

150

200

CP
U 

lo
ad

 (%
)

no_pping
k_pping
e_pping

Figure 3: Initial performance results on the CPU overhead of e-pping as compared to k-pping
and a baseline without any latency monitoring.

with three virtual machines in a string topology. Iperf3 servers were setup at VM3, e-pping or
k-pping was set up on VM2, and iperf3 clients were started on VM1 uploading traffic to VM3
(with the traffic being routed through VM2). The graph displays the CPU load on VM2 when
running e-pping, k-pping, or without any latency monitoring, respectively. A single bulk TCP
flow is transferred in the experiment. As can be seen in the figure, e-pping introduces negligible
CPU overhead as compared to the setup with no latency monitoring, whereas k-pping introduces
a significant overhead.

3 Communication and Outreach

While the technical work in the project is still very much in progress, several activities to promote
the project and connect with external partners has been carried out. At the start of the project,
a news article on the collaboration was published on the KAU web site2 and the project is also
represented with a project page on both the RH and KAU web sites.

Two invited talks related to the project has been given during the first year. Freysteinn
Alfredsson from KAU gave a talk on BPF and his work on scheduling for the Simbiosys Systems
Discussion Group at Emroy University, US, in June and Simon Sundberg from KAU gave a talk

2https://www.kau.se/en/cs/news/new-project-will-build-next-generation-programmable-networks

5



on pping at the meeting group on latency organized by Dave That, also in June. We have also
submitted a proposal to present the XDP queueing work at the Inria/Interdigital Workshop On
Systems in Brittany, France this coming October. Additionally, the August issue of the Red
Hat Research Quarterly magazine featured an interview with Professor Anna Brunstrom from
KAU conducted by Toke Høiland-Jørgensen from RH3. The conversation covered programmable
networking, other ongoing network trends, open source, industry-academia collaboration and
more.

The project has as an explicit goal to make its results available as open access, open source
software and open data. The developed code4 and other project materials5 are freely available
on GitHub. The project embraces an open collaboration model and we would be very happy to
receive comments, pull requests or other feedback on our work.

4 About the Project

As mentioned in the introduction, the project is a collaboration between RH and KAU. The
core project team consists of Principal Kernel Engineer Toke Høiland-Jørgensen (RH), Senior
Principal Kernel Engineer Jesper Dangaard Brouer (RH), Professor Anna Brunstrom (KAU),
Associate Professor Per Hurtig (KAU), PhD student Freysteinn Alfredsson (KAU) and PhD
student Simon Sundberg (KAU). The project funding from RH is being used to fund the PhD
position for Freysteinn Alfredsson, who started in September 2020. PhD student Simon Sundberg
is funded by national Swedish funding sources, but collaborates in the project based on his research
interests.

After a planning and recruitment phase, the technical work in the project started in September
2020, when Freysteinn Alfredsson arrived. Following a project kick-off meeting on September 8,
the project team has had bi-weekly project meetings to follow up on the work in the project and
discuss technical issues. In addition to the core project team, additional staff members from RH
and KAU as well as some representatives from Ericsson have taken part in the bi-weekly meetings
on a per interest and availability basis.

While the pandemic has forced all meetings to be carried out online and the project team
is still eagerly waiting to all meet for a joint physical workshop, the combination of research
expertise on the KAU side with the extensive development experience on the RH side has been
very fruitful and the collaboration in the project has worked very well. In particular, the involved
PhD students have greatly benefited from the detailed code reviews and other feedback on their
work provide by the RH team.

3https://research.redhat.com/blog/article/the-right-idea-at-the-right-time-networking-researchers-use-open-
source-for-real-world-results/

4pping source code: https://github.com/xdp-project/bpf-examples
5Other project materials: https://github.com/xdp-project/bpf-research

6


