Al for Cloud Ops

at the Boston University Red Hat Collaboratory

AYSE K. COSKUN ALAN LIU GIANLUCA STRINGHINI

2

Red Hatters: Marcel Hild, Steven Huels, Daniel Riek

IBM Researcher: Fabio Oliveira

PhD students: Anthony Byrne, Mert Toslali, Saad Ullah, Lesley Zhou

The Next Generation of Cloud Computing

- Most innovations in the cloud are motivated by efficiency and scale
- Automation reduces the need for expensive expert-dependent monitoring and management
- Artificially-intelligent cloud operations are the next logical step
 - o Circumvents the slowest and most expensive element: the human operator
 - Recognizes known problems, makes resource management decisions to improve performance and efficiency, and many others

Why AI? Why now?

Machine Learning Models

Image recognition
Speech recognition
Robotics
Navigation
... many others

Computer System Administration

File_Name: SIGFILESDKXA64_500500.SYS2

File_Size: 100 KB 105KB

Our Vision

- Cloud computing has already grown beyond what manual operations methods can manage
- We're working on ways to automatically optimize efficiency and detect potential problems in cloud applications and infrastructure
- Our work will lead to a higher performance, more reliable, and secure future for cloud computing

See how we're realizing this vision at: https://research.redhat.com/blog/research_project/ai-for-cloud-ops/ and sign up on: https://github.com/operate-first/ai-for-cloud-ops/

6

An easily-extensible, alive framework for the community

8

Code analysis and SW discovery before deployment

Code analysis and SW discovery before deployment

Code analysis and SW discovery before deployment

Cross-layer data fusion and analytics at *runtime*

Cross-layer data fusion and analytics at *runtime*

12

Automated Cloud Software Discovery

- Cloud apps become more complex over time
 - Eventually, manual software audits become impractical
- Praxi is a fully-automated, machine-learning-based method of discovering unwanted cloud software
 - Achieves >96% accuracy 14x faster than prev. method
- ACE discovers unwanted functions/libraries in opaque binary cloud software before execution
 - Detects known-vulnerable functions with 99% accuracy
 - 5.2x faster than prev. method and no model training reg'd

ACE applied to serverless software component discovery

Praxi: [Byrne et al., TCC'20] and GitHub ACE: [Byrne et al., WoSC'20] and GitHub

VAIF: Variance-driven Automated Instrumentation Framework

- A logging framework that automatically enables the logs needed to diagnose performance problems
- Insight: requests with similar critical paths will have similar response times
 - If not, this behavior may represent performance problems
- Enabler: distributed tracing
 - Provides discriminate context needed for effective diagnosis

Illustration of distributed tracing

VAIF adjusts tracing in response to performance problems

- Automatically enriches traces with additional tracepoints to localize problems
- Only enables 3-37% of all possible tracepoints to localize problems in HDFS, Openstack, and DeathStarBench applications
 - Problems include slow code paths, resource contention, and problematic third-party code

Run-Time Network Analytics

Why Run-Time Network Analytics?

Closed-loop control

Al-based Control:
Performance Evaluation
Failure Diagnosis
Security Analysis

. . .

Performing Cross-Layer Network Analytics

- High latency?
- Low throughput?
- Under attack?
- Network failures?
- **Idea:** Cross-layer, fine-grained online analytics engine via sketches to obtain real-time visibility from the network.
- New: Does not require offline analysis like NetFlow/sFlow.

Sketch-based Network Analytics

- Lightweight, online sketch data structures to perform various analytical tasks.
- Collect and analyze sketches from different platforms to obtain aggregated results.

How Simple Sketches work?

Estimate Heavy Hitter Flows (HH)

• High-accuracy, low resource usage with theoretically and empirically proven accuracies.

21 Al for Cloud Ops 2/16/2022

UnivMon sketch for estimating various metrics

Control plane

- Metric estimation
- Monitoring configuration

Data Plane

- Multi-data collection
- Sketch counter updates

[Liu et al., SIGCOMM'19] [Liu et al., SIGCOMM'16]

For example, **600KB** can estimate a broad range of metrics (e.g., entropy, heavy hitters, histogram) with >98% accuracy, processing over 16 million records.

CocoSketch: Multidimensional Queries in the Network

Key benefits

- Support queries on multiple keys.
- 2. Without the need to predefine each key.

- Key: any combination of packet-header fields.
- 5-tuple (SrcIP, DstIP, SrcPort, DstPort, Protocol).
- E.g., can we query the SrcIPs that are sending a lot of traffic to many DstIPs? (Potential malicious user)

Failure Detection via Sketch-based Analytics

- Fast failure detection model training via sketches (e.g., network failures).
- Real-time, sketch-based model inference (using sketches as input).

Al Analytics for Security

Al Analytics for Security

Two threat models:

- The users of Jupyter notebooks make mistakes, use insecure modules, and introduce security vulnerabilities that could be exploited by others (e.g., through malicious files)
- A malicious user might write malicious code in a Jupyter notebook to compromise the security of the cloud infrastructure (e.g., perform a DoS attack)

Idea: collect telemetry events generated by Jupyter Lab notebooks, use them to train Al models, and use these models to detect potential attacks or predict and mitigate them ahead of time

What does vulnerable/malicious code look like?

Known vulnerable/insecure modules or functions:

- Code injection: eval
- Untrusted data serialization: pickle.load
- Insecure cryptography/network functions

Insecure/vulnerable/malicious code blocks

```
import os
while 1:
os.fork()
```

Predicting and understanding attacks using Al

Tiresias - predict upcoming attacks using IPS logs

Idea: use sequences of attack steps (i.e., IPS logs) to train a LSTM model

Use this model to predict the likely action that an attacker will take next

Goal: develop proactive defenses

4,495 possible security events (IDS alerts)
We make the correct prediction 85% of the time

How can we apply these ideas to the cloud?

- Leverage the telemetry generated by the execution of code blocks in Jupyter notebooks to train a model (e.g., LSTM)
- Pre-deployment mode: match code blocks written by the user to previously observed ones and alert the user if past code was deemed unsafe/insecure
- Runtime analytics: monitor the execution of code blocks and deploy
 mitigations (kill process, rate limit, ...) if the model believes that the code is
 about to perform malicious actions

attack2vec - understanding emerging attack trends

Most modern attacks are multi-step

Idea: treat single attack steps as words in a sentence

Train vector embedding models to learn how single steps (e.g., the exploitation of a CVE) are used as part of more complex attacks

A steep change in the vector embedding for a certain attack step indicates that a new attack strategy has emerged

How can we apply these ideas to the cloud?

- Match code blocks to previously observed ones
- Analyze the context in which these code blocks are executed, especially malicious ones
- **Situational awareness**: warn cloud operators when malicious code blocks are used in a new way, as a new defense strategy might be needed

Project website: https://research.redhat.com/blog/research_project/ai-for-cloud-ops/
Sign up on: https://github.com/operate-first/ai-for-cloud-ops/