Red Hat Research Days

Bringing packet queueing to XDP

by Frey Alfredsson, Karlstad University
Jesper Dangaard Brouer, Red Hat

Toke Hgiland-Jargensen, Red Hat

Anna Brunstrom, Karlstad University

Per Hurtig, Karlstad University

BPF

Packet Scheduling

XDP

Packet queueing to XDP
PIFO

FQ Example

Summary

June 30th 2022

Packet fl
[Input packets } < Packetflow

Sets timer

[ﬁeBPF Enqueue hook

1
I
I !
\7 1
RIEQimap Requeue packets '
g 7q~——p——~{@eBPF Timer hook J
i

ﬁeBPF Dequeue hook]

{ Output packets

Attribution 4.0 International (CC BY 4.0)

Includes work from https:/

http://www.kau.se/
http://www.kau.se/

User-space
Applications

[Subsystem]

Linux
Kernel

[Hardware]

The BPF run-time environment

. BPF is a run-time environment to attach and run specialized
code within the Linux kernel

. The BPF ecosystem comes with a full tool-chain:

. Compilers
Loader libraries

. Jools [

Applications Applications @ eBPF

| |

[System Calls } [BPF Helper Calls]

1 1

[Subsystem] [Subsystem]
I

User-space] Kernel-space

Linux
Kernel

Hardware]

BPF hooks

. The BPF applications are attached to hook points within the
Linux kernel

. Each hook has different sandbox rules
. Which BPF helper functions can be called

. What memory can be accessed

[Process] Process 1
HeBPF

write() read() sendmsg() recvmsg()
Syscall Syscall
HeBPF eBPF
v v

] Sockets aw,}F

)

VFS cmpF [TCP/IP__ kempF
[Block Device]

[File Descriptor

Linux
Kernel

[Network Device]

; E
[& Storage J @ Netwc?é}(em]F

BPF inter-process communication

. This run-time provides us with:

Inter-process communication is done using BPF Maps
Inter-process communication between user- and kernel-space

Inter-process communication between BPF attached code

[Process J

A

Syscall I

Linux
Kernel

[Process J

sendmsg() frecvmsg()

Syscall
HeBPF
\ A

| eBpr - [Sockets]
Maps eapr _TCP/IP)
[

Network Device]

What can BPF do for us?

. Security
A
. cgroups *
eBPF
. IDS Iy
. IPS %'

. Observability & Monitoring

. Monitoring -Metrics f—)
- Histograms | €BPF

. |/O - Events Maps
. Network VFS @@BPF

. System calls
. Process scheduling

. Memory

. Tracing & Profiling

Sl | Process |
Traces

. Debugging

. Software chain —ﬂ;
_ Kernel
. Kernel internals — KeBPF
. Applications
. Performance
. RAID size
. Networking A
I
. XDP WeaPF

. Acceleratio L’@J

. Load balancing
. DDoS prevention

. XDP socket

1 nad halancina

The BPF life-cycle (1/3)

Program == Program

——[clang -target bpf]

Development

. Development environment:
. Bytecode / Machine instruction language

. Compilers and tools

The BPF life-cycle (2/3)

_E Program = program
— (s et ot) pogrom © s
Development |
[@eBPF C/C++ libbpf Library]
Runtime

. A runtime environment that loads the BPF code

. Multiple libraries and programs exist
. It's recommended to use libbpf today

The BPF life-cycle (3/3)

= Program == Program
e e — g
—) e, L [Proces J
Development
[aeaPF C/C++ libbpf Library] sendmsg() | | recvmsg()
|
[Syscall] | [_Syscall _]
1 * HeBPF
X @ eBPF ; v |
=) g [ﬁe’a" Verifier] . FeBpF Sockets
E= S5
= & (eapr JIT Compiler | | TCP/IP]

Runtime

. The kernel handles the BPF program by:
. Verifying that it does not break the kernel
. Attaching the BPF program to a hook

Packet Scheduling

. Packet Scheduling algorithm determines the order of
packets being transmitted

. A simple scheduler example:
Round Robin Scheduler

Queue Packet ﬂow=

Input ... Output
B ElEIENEN 2]2]2]2]2 s 2 2
EE

. In this example, packets are sorted by flows into
different queues that are dequeued in a round robin
fashion

Packet scheduling and queue management

. Traffic scheduling policies
. Provide all clients with equal throughput

. Prioritize the production environment over the testing
environment

. Prioritize sparse flows

. Queue management

. Bufferbloat mitigation
. See https://www.bufferbloat.net

XDP — eXpress Data Path

. The eXpress Data Path is an in-kernel network fast-path

. XDP is a BPF hook that resides in-front of the network
stack

Packet flow

. It provides the following operations:

Network

. Packet manipulation Stack

. Packet redirection

. Packet drop

. Monitoring

XDP — eXpress Data Path

. The eXpress Data Path is an in-kernel network fast-path

. XDP is a BPF hook that resides in-front of the network
stack

Packet flow

. It provides the following operations:

Network

. Packet manipulation Stack

. Packet redirection

. Packet drop

[@fesPF XDP }
A

. Monitoring !

[Nic driver] [Nic driver J

. XDP lacks packet scheduling capabilities!

XDP — eXpress Data Path

. The eXpress Data Path is an in-kernel network fast-path

. XDP is a BPF hook that resides in-front of the network
stack

Packet flow

. It provides the following operations:

Network

. Packet manipulation Stack

. Packet redirection (

. Packet drop

[ﬁeBPF XDP }
A

. Monitoring

[Nic driver] [Nicc;'river]

. XDP lacks packet scheduling capabilities!

. Which the Linux kernel otherwise provides as Qdisc

Simulation of the problem

. Test setup
. 100 Gbps to 10 Gbps traffic

. 10 ms propagation delay using netem

Single TCP Upload Stream

10 Linux
---- XDP

8
L 6
&=
(S
r—-
2 I R B T B T g SO -v\}r'
0
10 20 30 40 50 60 70

Packet Queuing for XDP

. We are adding programmable queuing capabilities to XDP by:
. Providing a dequeue hook to XDP

Packet flow

Network
Stack

Y

. adisc

\

[@'eBPF XDP J {meBPF XDPQJ

A

[Nic driver } [Nicd’river }

Packet Queuing for XDP

. We are adding programmable queuing capabilities to XDP by:
. Providing a dequeue hook to XDP

. Allowing XDP to redirect packets to a new BPF map
scheduling data structure

Packet flow

Network
Stack

Y

. adisc

\

' eBPF XDP eBPF XDPQ

A

[Nic driver } [Nicd’river }

PIFO — Push-In First-Out

. PIFO is a data structure for programmable _ Packet flow
packet scheduling:
PIFO
||
H B
H EE
HE NN
TReT
HEEEN

PIFO — Push-In First-Out

. PIFO is a data structure for programmable _ Packet flow
packet scheduling:

. More known in the hardware world PIFO
|
H B

H BN

HE NN

Trne

HENER

PIFO — Push-In First-Out

. PIFO is a data structure for programmable _ Packet flow
packet scheduling:
. More known in the hardware world PIFO
. APIFO is a set of queues
|
H B
H BN
HE NN
Trne
HENER

PIFO — Push-In First-Out

. PIFO is a data structure for programmable _ Packet flow
packet scheduling:
. More known in the hardware world PIFO
. APIFO is a set of queues
. Packets can be pushed in any order into B =
the queues H BB
HE NN
TPeY
HENER

PIFO — Push-In First-Out

. PIFO is a data structure for programmable _ Packet flow
packet scheduling:

from the head of the data structure

. More known in the hardware world L PIFO
. APIFO is a set of queues '
. Packets can be pushed in any order into B =
the queues B e
. However, packets can only be retrieved = = = =
NER

PIFO — Push-In First-Out

. PIFO is a data structure for programmable . Packet flow
packet scheduling:

. More known in the hardware world B PIFO
. APIFO is a set of queues

. Packets can be pushed in any order into
the queues

. However, packets can only be retrieved
from the head of the data structure

PIFO — Push-In First-Out

. PIFO is a data structure for programmable . Packet flow
packet scheduling:

. More known in the hardware world B PIFO
. APIFO is a set of queues

. Packets can be pushed in any order into
the queues

. However, packets can only be retrieved
from the head of the data structure

. PIFOs do not allow rearranging the
packets after queueing them

Implementation notes: Eiffel extensions to PIFO

. PIFOs can queue flows and other data structures
. Aflow could be a FIFO

. APIFO can internally cycle between two PIFOs for
schedulers with increasing priorities

Primary Secondary

Priority 0 100 200 300 400 500 600 700 800 900

Fair Queuing (FQ)

// FQ scheduling algorithm
if pkt.flow_id in flows:
flow = get_flow(pkt.flow_id, flows);
prio = max(time_bytes, flow.end_bytes);
else:
flow = new_flow(pkt, time_bytes);
add_flow(flow, flows);
prio = time_bytes;
flow.end_bytes = pkt.len;
add_pkt(pkt, flow);

Priority 0 100 200 300 400

Flow 1

end_bytes =
Flow 2

end_bytes =
Flow 3

end_bytes =

time_bytes = 0

Fair Queuing (FQ)

// FQ scheduling algorithm
if pkt.flow_id in flows:
flow = get_flow(pkt.flow_id, flows);
prio = max(time_bytes, flow.end_bytes);
else:
flow = new_flow(pkt, time_bytes);
add_flow(flow, flows);
prio = time_bytes;

> flow.end_bytes = pkt.len;
> add_pkt(pkt, flow);

Priority 0 100 200 300 400

Flow 1
— end_bytes = 100
Flow 2
end_bytes =
Flow 3
- end_bytes =

time_bytes = 0

Fair Queuing (FQ)

// FQ scheduling algorithm
if pkt.flow_id in flows:
flow = get_flow(pkt.flow_id, flows);
prio = max(time_bytes, flow.end_bytes);
else:
flow = new_flow(pkt, time_bytes);
add_flow(flow, flows);
prio = time_bytes;

< flow.end_bytes = pkt.len;
> add_pkt(pkt, flow);

Priority 0 100 200 300 400

Flow 1
. end_bytes = 100
Flow 2
. — - end_bytes = 200
Flow 3
end_bytes =

time_bytes = 0

Fair Queuing (FQ)

Priority

0

100

200

// FQ scheduling algorithm
if pkt.flow_id in flows:
flow = get_flow(pkt.flow_id, flows);
—l prio = max(time_bytes, flow.end_bytes);
else:
flow = new_flow(pkt, time_bytes);
add_flow(flow, flows);
prio = time_bytes;
flow.end_bytes = pkt.len;
add_pkt(pkt, flow);

300 400
Flow 1
— . end_bytes =200
Flow 2
- end_bytes =200
Flow 3
end_bytes =

time_bytes = 0

Fair Queuing (FQ)

Priority

0

100

200

// FQ scheduling algorithm
if pkt.flow_id in flows:
flow = get_flow(pkt.flow_id, flows);
—_— prio = max(time_bytes, flow.end_bytes);
else:
flow = new_flow(pkt, time_bytes);
add_flow(flow, flows);
prio = time_bytes;
flow.end_bytes = pkt.len;
add_pkt(pkt, flow);

300 400
Flow 1
- end_bytes = 200
Flow 2
Flow 3
end_bytes =

time_bytes = 0

Fair Queuing (FQ)

// FQ scheduling algorithm
if pkt.flow_id in flows:
flow = get_flow(pkt.flow_id, flows);
prio = max(time_bytes, flow.end_bytes);
else:
flow = new_flow(pkt, time_bytes);
add_flow(flow, flows);
prio = time_bytes;
flow.end_bytes = pkt.len;
add_pkt(pkt, flow);

Priority 0 100 200 300 400

Flow 1
— end_bytes = 200
Flow 2
Flow 3
2 end_bytes =

— time_bytes = 0

Fair Queuing (FQ)

Priority

0

100

200

// FQ scheduling algorithm
if pkt.flow_id in flows:
flow = get_flow(pkt.flow_id, flows);
—_— prio = max(time_bytes, flow.end_bytes);
else:
flow = new_flow(pkt, time_bytes);
add_flow(flow, flows);
prio = time_bytes;
flow.end_bytes = pkt.len;
add_pkt(pkt, flow);

300 400
Flow 1
—— end_bytes =300
Flow 2
Flow 3
end_bytes =

time_bytes = 0

Fair Queuing (FQ)

// FQ scheduling algorithm

. if pkt.flow_id in flows:
flow = get_flow(pkt.flow_id, flows);
prio = max(time_bytes, flow.end_bytes);
else:

flow = new_flow(pkt, time_bytes);
add_flow(flow, flows);
prio = time_bytes;
flow.end_bytes = pkt.len;
add_pkt(pkt, flow);

Priority 0 100 200 300 400

Flow 1
end_bytes = 300
Flow 2
EE—— end_bytes = 400

Flow 3

2
end_bytes =

—g time_bytes = 0

Fair Queuing (FQ)

// FQ scheduling algorithm

. if pkt.flow_id in flows:
flow = get_flow(pkt.flow_id, flows);
prio = max(time_bytes, flow.end_bytes);
else:
flow = new_flow(pkt, time_bytes);
add_flow(flow, flows);
prio = time_bytes;
flow.end_bytes = pkt.len;
add_pkt(pkt, flow);

Priority 0 100 200 300 400

Flow 1
- end_bytes = 300
Flow 2
end_bytes =400
2
Flow 3
end_bytes =

—l time_bytes = 100

Fair Queuing (FQ)

Priority

I

0

100

200

' g

300

400

// FQ scheduling algorithm
if pkt.flow_id in flows:
flow = get_flow(pkt.flow_id, flows);
prio = max(time_bytes, flow.end_bytes);
else:
flow = new_flow(pkt, time_bytes);
add_flow(flow, flows);
prio = time_bytes;

< flow.end_bytes = pkt.len;

Flow 1
— end_bytes =300
Flow 2
end_bytes =400
Flow 3
- end_bytes =200

time_bytes = 100

Weighted Fair Queuing (WFQ)

// WFQ scheduling algorithm
if pkt.flow_id in flows:
flow = get_flow(pkt.flow_id, flows);
prio = max(time_bytes, flow.end_bytes);
else:
flow = new_flow(pkt, time_bytes);
add_flow(flow, flows);
prio = time_bytes;

flow.end_bytes = pkt.len / flow.weight;
e add_pkt(pkt, flow);

Priority 0 100 200 300 400

Flow 1

end_bytes =
Flow 2

end_bytes =
Flow 3

end_bytes =

time_bytes = 0

PIFO Hierarchy

. More complex packet scheduling algorithms can
be constructed by creating a hierarchy of PIFOs

Packet flow

PIFO Hierarchy

e

]

. Compare

Policing and Shaping

. Rate limiting a different type of packet scheduling
practice were throughput is capped:

. Shaping algorithms rely on timers and have the
capability of delaying packets.

\ Shaping

Q Q
< <
(=2 (=2

< e
e <
= =

\J
\j

XDP queuing with shaping

. We intend to provide shaping in the future using the new
BPF timer API

. XDP hook enqueues packets into a delay PIFO

. Using the timer hook, we can requeue the delayed
packets from the delay PIFO and into the active PIFO

— Y

Packet flow
Input packets } -—
Event

Sets ti
[‘aeBPF Enqueue hook } ----oslmer___ y
I
PIFO map § Y
/“H “““ paces {@'eBPF Timer hook J
(1

[Output packets J

Summary

. Bringing packet queueing to XDP

. We are adding programmable packet scheduling
capabilities to XDP by providing:

. Anew XDP dequeue hook
. Anew BPF PIFO map

. Future work is adding shaping though BPF timers

Packet flow

[Input packets } :Zkitﬂ w
Network .
{ ?t:lc?(r [awPF Enqueue hook } ————— Sets timer_ _ _ ,I
A
Y
[Qdisc P|i)uanap Requeue packets
(1 Y

€& =y Y

PIFO map
‘eBPF XDP eBPF XDPQ

[aeBPF Dequeue hook

A

A

[Nic driver] [Nic driver] [

Output packets

Summary
. New XDP Dequeue hook and PIFO map:

https://qit.kernel.org/pub/scm/linux/kernel/qgit/toke/linux.git/log/?h=xdp-queueing-05

. Scheduler examples and testing framework will be available at:

https://github.com/xdp-project/bpf-examples

. Papers:

PIFO: Sivaraman, Anirudh, et al. “Programmable packet scheduling at line rate”

Eiffel extension: Saeed, Ahmed, et al. “Eiffel: Efficient and flexible software packet

scheduling”
Packet flow
Packet flow
[Input packets } ‘E
Network i
{ Stack [ﬁCBPF Enqueue hook } ----- etstimer___,
i
A PIFO map '
[Qdisc N/ug eeUeP2t [eBPF Timer hook]
B L
G L
[ﬁe,am: XDP [@eaPF XDPQ
i [@?BPF Dequeue hook J

A

[Nic driver] [Nic driver] [

Output packets }

https://git.kernel.org/pub/scm/linux/kernel/git/toke/linux.git/log/?h=xdp-queueing-05
https://github.com/xdp-project/bpf-examples

