
www.kau.s
e

Red Hat Research Days June 30th 2022

∙ BPF
∙ Packet Scheduling
∙ XDP
∙ Packet queueing to XDP
∙ PIFO
∙ FQ Example
∙ Summary

Bringing packet queueing to XDP
by Frey Alfredsson, Karlstad University
Jesper Dangaard Brouer, Red Hat
Toke Høiland-Jørgensen, Red Hat
Anna Brunström, Karlstad University
Per Hurtig, Karlstad University

Attribution 4.0 International (CC BY 4.0)

Includes work from https://www.bpf.io
c

http://www.kau.se/
http://www.kau.se/

The BPF run-time environment

The BPF run-time environment

● BPF is a run-time environment to attach and run specialized
code within the Linux kernel

● The BPF ecosystem comes with a full tool-chain:
● Compilers

● Loader libraries

● Tools

●

BPF hooks

● The BPF applications are attached to hook points within the
Linux kernel

● Each hook has different sandbox rules
● Which BPF helper functions can be called

● What memory can be accessed

BPF inter-process communication

● This run-time provides us with:
● Inter-process communication is done using BPF Maps

● Inter-process communication between user- and kernel-space

● Inter-process communication between BPF attached code

● Security

● cgroups

● IDS

● IPS

● Tracing & Profiling

● Debugging

● Software chain

● Kernel internals

● Applications

● Performance

● RAID size

● Observability & Monitoring

● Monitoring

● I/O

● Network

● System calls

● Process scheduling

● Memory

● Networking
● XDP

● Acceleration
● Load balancing
● DDoS prevention

● XDP socket
● Load balancing

● cgroup
● TC hook
● Packet Processing

What can BPF do for us?

The BPF life-cycle (1/3)

● Development environment:
● Bytecode / Machine instruction language
● Compilers and tools

The BPF life-cycle (2/3)

● A runtime environment that loads the BPF code
● Multiple libraries and programs exist

● It’s recommended to use libbpf today

The BPF life-cycle (3/3)

● The kernel handles the BPF program by:
● Verifying that it does not break the kernel
● Attaching the BPF program to a hook

Packet Scheduling

● Packet Scheduling algorithm determines the order of
packets being transmitted
● A simple scheduler example:

● In this example, packets are sorted by flows into
different queues that are dequeued in a round robin
fashion

Packet scheduling and queue management

● Traffic scheduling policies
● Provide all clients with equal throughput
● Prioritize the production environment over the testing

environment
● Prioritize sparse flows

● Queue management
● Bufferbloat mitigation

● See https://www.bufferbloat.net

XDP – eXpress Data Path

● The eXpress Data Path is an in-kernel network fast-path

● XDP is a BPF hook that resides in-front of the network
stack

● It provides the following operations:
● Packet manipulation
● Packet redirection
● Packet drop
● Monitoring

XDP – eXpress Data Path

● The eXpress Data Path is an in-kernel network fast-path

● XDP is a BPF hook that resides in-front of the network
stack

● It provides the following operations:
● Packet manipulation
● Packet redirection
● Packet drop
● Monitoring

● XDP lacks packet scheduling capabilities!

XDP – eXpress Data Path

● The eXpress Data Path is an in-kernel network fast-path

● XDP is a BPF hook that resides in-front of the network
stack

● It provides the following operations:
● Packet manipulation
● Packet redirection
● Packet drop
● Monitoring

● XDP lacks packet scheduling capabilities!

● Which the Linux kernel otherwise provides as Qdisc

Simulation of the problem

● Test setup
● 100 Gbps to 10 Gbps traffic
● 10 ms propagation delay using netem

Single TCP Upload Stream

● We are adding programmable queuing capabilities to XDP by:

● Providing a dequeue hook to XDP

Packet Queuing for XDP

● We are adding programmable queuing capabilities to XDP by:

● Providing a dequeue hook to XDP

● Allowing XDP to redirect packets to a new BPF map
scheduling data structure

Packet Queuing for XDP

PIFO – Push-In First-Out

● PIFO is a data structure for programmable
packet scheduling:

PIFO – Push-In First-Out

● PIFO is a data structure for programmable
packet scheduling:
● More known in the hardware world

PIFO – Push-In First-Out

● PIFO is a data structure for programmable
packet scheduling:
● More known in the hardware world
● A PIFO is a set of queues

PIFO – Push-In First-Out

● PIFO is a data structure for programmable
packet scheduling:
● More known in the hardware world
● A PIFO is a set of queues
● Packets can be pushed in any order into

the queues

PIFO – Push-In First-Out

● PIFO is a data structure for programmable
packet scheduling:
● More known in the hardware world
● A PIFO is a set of queues
● Packets can be pushed in any order into

the queues
● However, packets can only be retrieved

from the head of the data structure

PIFO – Push-In First-Out

● PIFO is a data structure for programmable
packet scheduling:
● More known in the hardware world
● A PIFO is a set of queues
● Packets can be pushed in any order into

the queues
● However, packets can only be retrieved

from the head of the data structure

PIFO – Push-In First-Out

● PIFO is a data structure for programmable
packet scheduling:
● More known in the hardware world
● A PIFO is a set of queues
● Packets can be pushed in any order into

the queues
● However, packets can only be retrieved

from the head of the data structure
● PIFOs do not allow rearranging the

packets after queueing them

Implementation notes: Eiffel extensions to PIFO

● PIFOs can queue flows and other data structures
● A flow could be a FIFO

● A PIFO can internally cycle between two PIFOs for
schedulers with increasing priorities

Fair Queuing (FQ)

time_bytes = 0

// FQ scheduling algorithm
if pkt.flow_id in flows:
 flow = get_flow(pkt.flow_id, flows);
 prio = max(time_bytes, flow.end_bytes);
else:
 flow = new_flow(pkt, time_bytes);
 add_flow(flow, flows);
 prio = time_bytes;
flow.end_bytes = pkt.len;
add_pkt(pkt, flow);

Fair Queuing (FQ)

// FQ scheduling algorithm
if pkt.flow_id in flows:
 flow = get_flow(pkt.flow_id, flows);
 prio = max(time_bytes, flow.end_bytes);
else:
 flow = new_flow(pkt, time_bytes);
 add_flow(flow, flows);
 prio = time_bytes;
flow.end_bytes = pkt.len;
add_pkt(pkt, flow);

time_bytes = 0

Fair Queuing (FQ)

// FQ scheduling algorithm
if pkt.flow_id in flows:
 flow = get_flow(pkt.flow_id, flows);
 prio = max(time_bytes, flow.end_bytes);
else:
 flow = new_flow(pkt, time_bytes);
 add_flow(flow, flows);
 prio = time_bytes;
flow.end_bytes = pkt.len;
add_pkt(pkt, flow);

time_bytes = 0

Fair Queuing (FQ)

// FQ scheduling algorithm
if pkt.flow_id in flows:
 flow = get_flow(pkt.flow_id, flows);
 prio = max(time_bytes, flow.end_bytes);
else:
 flow = new_flow(pkt, time_bytes);
 add_flow(flow, flows);
 prio = time_bytes;
flow.end_bytes = pkt.len;
add_pkt(pkt, flow);

time_bytes = 0

Fair Queuing (FQ)

// FQ scheduling algorithm
if pkt.flow_id in flows:
 flow = get_flow(pkt.flow_id, flows);
 prio = max(time_bytes, flow.end_bytes);
else:
 flow = new_flow(pkt, time_bytes);
 add_flow(flow, flows);
 prio = time_bytes;
flow.end_bytes = pkt.len;
add_pkt(pkt, flow);

time_bytes = 0

Fair Queuing (FQ)

// FQ scheduling algorithm
if pkt.flow_id in flows:
 flow = get_flow(pkt.flow_id, flows);
 prio = max(time_bytes, flow.end_bytes);
else:
 flow = new_flow(pkt, time_bytes);
 add_flow(flow, flows);
 prio = time_bytes;
flow.end_bytes = pkt.len;
add_pkt(pkt, flow);

time_bytes = 0

Fair Queuing (FQ)

// FQ scheduling algorithm
if pkt.flow_id in flows:
 flow = get_flow(pkt.flow_id, flows);
 prio = max(time_bytes, flow.end_bytes);
else:
 flow = new_flow(pkt, time_bytes);
 add_flow(flow, flows);
 prio = time_bytes;
flow.end_bytes = pkt.len;
add_pkt(pkt, flow);

time_bytes = 0

Fair Queuing (FQ)

// FQ scheduling algorithm
if pkt.flow_id in flows:
 flow = get_flow(pkt.flow_id, flows);
 prio = max(time_bytes, flow.end_bytes);
else:
 flow = new_flow(pkt, time_bytes);
 add_flow(flow, flows);
 prio = time_bytes;
flow.end_bytes = pkt.len;
add_pkt(pkt, flow);

time_bytes = 0

Fair Queuing (FQ)

// FQ scheduling algorithm
if pkt.flow_id in flows:
 flow = get_flow(pkt.flow_id, flows);
 prio = max(time_bytes, flow.end_bytes);
else:
 flow = new_flow(pkt, time_bytes);
 add_flow(flow, flows);
 prio = time_bytes;
flow.end_bytes = pkt.len;
add_pkt(pkt, flow);

time_bytes = 100

Fair Queuing (FQ)

// FQ scheduling algorithm
if pkt.flow_id in flows:
 flow = get_flow(pkt.flow_id, flows);
 prio = max(time_bytes, flow.end_bytes);
else:
 flow = new_flow(pkt, time_bytes);
 add_flow(flow, flows);
 prio = time_bytes;
flow.end_bytes = pkt.len;
add_pkt(pkt, flow);

time_bytes = 100

Weighted Fair Queuing (WFQ)

time_bytes = 0

// WFQ scheduling algorithm
if pkt.flow_id in flows:
 flow = get_flow(pkt.flow_id, flows);
 prio = max(time_bytes, flow.end_bytes);
else:
 flow = new_flow(pkt, time_bytes);
 add_flow(flow, flows);
 prio = time_bytes;
flow.end_bytes = pkt.len / flow.weight;
add_pkt(pkt, flow);

PIFO Hierarchy

● More complex packet scheduling algorithms can
be constructed by creating a hierarchy of PIFOs

Future Work

● Compare

● Rate limiting a different type of packet scheduling
practice were throughput is capped:

● Shaping algorithms rely on timers and have the
capability of delaying packets.

Policing and Shaping

XDP queuing with shaping

● We intend to provide shaping in the future using the new
BPF timer API
● XDP hook enqueues packets into a delay PIFO
● Using the timer hook, we can requeue the delayed

packets from the delay PIFO and into the active PIFO

Summary

● Bringing packet queueing to XDP
● We are adding programmable packet scheduling

capabilities to XDP by providing:
● A new XDP dequeue hook
● A new BPF PIFO map

● Future work is adding shaping though BPF timers

Summary

● New XDP Dequeue hook and PIFO map:
● https://git.kernel.org/pub/scm/linux/kernel/git/toke/linux.git/log/?h=xdp-queueing-05

● Scheduler examples and testing framework will be available at:
● https://github.com/xdp-project/bpf-examples

● Papers:
● PIFO: Sivaraman, Anirudh, et al. “Programmable packet scheduling at line rate”

● Eiffel extension: Saeed, Ahmed, et al. “Eiffel: Efficient and flexible software packet
scheduling”

https://git.kernel.org/pub/scm/linux/kernel/git/toke/linux.git/log/?h=xdp-queueing-05
https://github.com/xdp-project/bpf-examples

