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The BPF run-time environment

. BPF is a run-time environment to attach and run specialized
code within the Linux kernel

. The BPF ecosystem comes with a full tool-chain:

. Compilers
Loader libraries

. Jools [
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BPF hooks

. The BPF applications are attached to hook points within the
Linux kernel

. Each hook has different sandbox rules
. Which BPF helper functions can be called

. What memory can be accessed

[ Process ] Process 1
HeBPF

write() read() sendmsg() recvmsg()
Syscall Syscall
HeBPF eBPF
v v

] Sockets aw,}F

)

VFS  cmpF [ TCP/IP__ kempF
[ Block Device ]

[ File Descriptor

Linux
Kernel

[ Network Device ]

; E
[& Storage J @ Netwc?é}(em]F




BPF inter-process communication

. This run-time provides us with:

Inter-process communication is done using BPF Maps
Inter-process communication between user- and kernel-space

Inter-process communication between BPF attached code
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What can BPF do for us?
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The BPF life-cycle (1/3)

Program == Program

——[ clang -target bpf ]

Development

. Development environment:
. Bytecode / Machine instruction language

. Compilers and tools




The BPF life-cycle (2/3)
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. A runtime environment that loads the BPF code

. Multiple libraries and programs exist
. It's recommended to use libbpf today




The BPF life-cycle (3/3)
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Runtime

. The kernel handles the BPF program by:
. Verifying that it does not break the kernel
. Attaching the BPF program to a hook




Packet Scheduling

. Packet Scheduling algorithm determines the order of
packets being transmitted

. A simple scheduler example:
Round Robin Scheduler

Queue Packet ﬂow=
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. In this example, packets are sorted by flows into
different queues that are dequeued in a round robin
fashion




Packet scheduling and queue management

. Traffic scheduling policies
. Provide all clients with equal throughput

. Prioritize the production environment over the testing
environment

. Prioritize sparse flows

. Queue management

. Bufferbloat mitigation
. See https://www.bufferbloat.net




XDP — eXpress Data Path

. The eXpress Data Path is an in-kernel network fast-path

. XDP is a BPF hook that resides in-front of the network
stack

Packet flow

. It provides the following operations:

Network

. Packet manipulation Stack

. Packet redirection

. Packet drop

. Monitoring
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XDP — eXpress Data Path

. The eXpress Data Path is an in-kernel network fast-path

. XDP is a BPF hook that resides in-front of the network
stack

Packet flow

. It provides the following operations:

Network

. Packet manipulation Stack

. Packet redirection (

. Packet drop
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A

. Monitoring

[ Nic driver ] [ Nicc;'river ]

. XDP lacks packet scheduling capabilities!

. Which the Linux kernel otherwise provides as Qdisc




Simulation of the problem

. Test setup
. 100 Gbps to 10 Gbps traffic

. 10 ms propagation delay using netem
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Packet Queuing for XDP

. We are adding programmable queuing capabilities to XDP by:
. Providing a dequeue hook to XDP
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Packet Queuing for XDP

. We are adding programmable queuing capabilities to XDP by:
. Providing a dequeue hook to XDP

. Allowing XDP to redirect packets to a new BPF map
scheduling data structure
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PIFO — Push-In First-Out

. PIFO is a data structure for programmable _ Packet flow
packet scheduling:
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PIFO — Push-In First-Out

. PIFO is a data structure for programmable _ Packet flow
packet scheduling:
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PIFO — Push-In First-Out

. PIFO is a data structure for programmable . Packet flow
packet scheduling:

. More known in the hardware world B PIFO
. APIFO is a set of queues

. Packets can be pushed in any order into
the queues

. However, packets can only be retrieved
from the head of the data structure

. PIFOs do not allow rearranging the
packets after queueing them




Implementation notes: Eiffel extensions to PIFO

. PIFOs can queue flows and other data structures
. Aflow could be a FIFO

. APIFO can internally cycle between two PIFOs for
schedulers with increasing priorities

Primary Secondary

Priority 0 100 200 300 400 500 600 700 800 900




Fair Queuing (FQ)

// FQ scheduling algorithm
if pkt.flow_id in flows:
flow = get_flow(pkt.flow_id, flows);
prio = max(time_bytes, flow.end_bytes);
else:
flow = new_flow(pkt, time_bytes);
add_flow(flow, flows);
prio = time_bytes;
flow.end_bytes = pkt.len;
add_pkt(pkt, flow);
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// FQ scheduling algorithm
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Fair Queuing (FQ)
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// FQ scheduling algorithm
if pkt.flow_id in flows:
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Fair Queuing (FQ)
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// FQ scheduling algorithm
if pkt.flow_id in flows:
flow = get_flow(pkt.flow_id, flows);
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flow = new_flow(pkt, time_bytes);
add_flow(flow, flows);
prio = time_bytes;
flow.end_bytes = pkt.len;
add_pkt(pkt, flow);

300 400
Flow 1
—— end_bytes =300
Flow 2
Flow 3
end_bytes =

time_bytes = 0




Fair Queuing (FQ)

// FQ scheduling algorithm

. if pkt.flow_id in flows:
flow = get_flow(pkt.flow_id, flows);
prio = max(time_bytes, flow.end_bytes);
else:

flow = new_flow(pkt, time_bytes);
add_flow(flow, flows);
prio = time_bytes;
flow.end_bytes = pkt.len;
add_pkt(pkt, flow);
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Fair Queuing (FQ)

// FQ scheduling algorithm

. if pkt.flow_id in flows:
flow = get_flow(pkt.flow_id, flows);
prio = max(time_bytes, flow.end_bytes);
else:
flow = new_flow(pkt, time_bytes);
add_flow(flow, flows);
prio = time_bytes;
flow.end_bytes = pkt.len;
add_pkt(pkt, flow);
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Fair Queuing (FQ)
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// FQ scheduling algorithm
if pkt.flow_id in flows:
flow = get_flow(pkt.flow_id, flows);
prio = max(time_bytes, flow.end_bytes);
else:
flow = new_flow(pkt, time_bytes);
add_flow(flow, flows);
prio = time_bytes;
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Weighted Fair Queuing (WFQ)

// WFQ scheduling algorithm
if pkt.flow_id in flows:
flow = get_flow(pkt.flow_id, flows);
prio = max(time_bytes, flow.end_bytes);
else:
flow = new_flow(pkt, time_bytes);
add_flow(flow, flows);
prio = time_bytes;

flow.end_bytes = pkt.len / flow.weight;
e add_pkt(pkt, flow);
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PIFO Hierarchy

. More complex packet scheduling algorithms can
be constructed by creating a hierarchy of PIFOs
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Policing and Shaping

. Rate limiting a different type of packet scheduling
practice were throughput is capped:

. Shaping algorithms rely on timers and have the
capability of delaying packets.
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XDP queuing with shaping

. We intend to provide shaping in the future using the new
BPF timer API

. XDP hook enqueues packets into a delay PIFO

. Using the timer hook, we can requeue the delayed
packets from the delay PIFO and into the active PIFO
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Summary

. Bringing packet queueing to XDP

. We are adding programmable packet scheduling
capabilities to XDP by providing:

. Anew XDP dequeue hook
. Anew BPF PIFO map

. Future work is adding shaping though BPF timers
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Summary
. New XDP Dequeue hook and PIFO map:

https://qit.kernel.org/pub/scm/linux/kernel/qgit/toke/linux.git/log/?h=xdp-queueing-05

. Scheduler examples and testing framework will be available at:

https://github.com/xdp-project/bpf-examples

. Papers:

PIFO: Sivaraman, Anirudh, et al. “Programmable packet scheduling at line rate”

Eiffel extension: Saeed, Ahmed, et al. “Eiffel: Efficient and flexible software packet

scheduling”
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