
[AI for Cloud Ops] RTQA: Real-time Code Feedback for Data Scientists
Ayse Kivilcim Coskun 1 Gianluca Stringhini 1 Alan Liu 1 Mert Toslali2 Anthony Byrne 2 Saad Ullah 2 Lesley Zhou 2

1Principal Investigator 2PhD Student

Strong Foundations

Rapid experimentation/iteration essential to modern data science and software development.

Initial PoCs often written as scripts or notebooks.

Business pressure means production products often built atop development/research code.

Manual code reviews sometimes skipped/ineffective.

As features are added, small cracks in the foundation can grow, causing big problems.

Figure 1. Strong foundations are needed for reliable production software.

Real-time Quality Assurance (RTQA)

Figure 2. Mockup of the output for our RTQA JupyterLab plugin.

RTQAprovides feedback to developers and scientists during development/experimentation. Real-

time feedback could warn about outdated modules, security vulnerabilities, and performance

bottlenecks, before the code even reaches the QA phase.

RTQA: JupyterLab Plugin

1. JuptyterLab is a popular multi-language IDE.

Often used with Python, R, and Julia.

2. Client/server architecture means extensions can be easily deployed to multiple users.

Ideal for maximizing availability of backend extensions/frameworks.

Figure 3. Envisioned architecture for the RTQA famework.

PoC Analytics Engine: Praxi

Praxi is a fully-automated, machine-

learning-based method for discovering

cloud software as it’s installed.

Learns to associate “filesystem

footprints” to labeled events, e.g.,

“install apache2 v2.4.2”.

Achieves > 96% accuracy 14x faster
than existing methods.

Praxi is used with RTQA to de-

tect unsafe/vulnerable pre-built com-

ponents, e.g., outdated Python mod-

ules, potentially-dangerous tools (e.g.,

popen()-ing package mgr.), and unsafe

calls to foreign code (e.g., C-backed

modules).

Figure 4. Praxi Architecture

Moving Forward

Figure 5. Overview of the RTQA Framework.

We are working on the following projects to be integrated in the RTQA framework:

1. Vulnerability Detection:

Our goal is to provide static code analysis (e.g., unsafe foreign code calls) at the line-of-code level to the

developer in real-time.

Preventing vulnerabilities to pile up, becoming too complex to resolve, and reaching the deployment phase.

2. Code Performance Analysis:

Our goal is to help developers analyze their code’s performance via profiling and tracing.

Automated tools to extract code execution flows, localize performance variations, pinpoint bugs and

optimization points in code.

3. Privacy in Network Telemetry Data:

Our goal is to protect user’s differential privacy inside network telemetry data.

User privacy: users does not want to release their private data to the third party. (e.g., GPS track location, IP

address, etc.) Can we provide a systematic solution to encode telemetry data in a private way?

Large storage: network telemetry usually have large metrics and traces. Can we extract features that are useful

to answer queries while compressing the data?

Heavy computation demand: while preserving the user privacy, we still need to be able to answer a lot of

queries with high accuracy.

4. Machine Learning as a Service:

Praxi and other analytics engines require large, up-to-date ML models, so it is impractical to store copies on

user’s local machines.

Will be utilizing Red Hat’s OpenShift Data Science platform and Kubeflow to build hosted ML pipeline. This

can iteratively update models daily, e.g., with latest modules released on PyPI or vulnerabilities reported on

SafetyDB.

And whatever else you’d like to add!

github.com/operate-first/ai-for-cloud-ops

PRs welcome!

https://research.redhat.com/blog/research_project/ai-for-cloud-ops/ Red Hat Research Project AI for Cloud Ops

https://research.redhat.com/blog/research_project/ai-for-cloud-ops/

