
P

Applications will not run in supervisor mode on Linux without system modification. Panics, kernel “Oops”s, and plain
old processor resets will occur. Because Linux cleanly separates the application and kernel worlds using hardware
mechanisms, we use interposition on the relevant data structures in order to modify system behavior. The system
call handler and Interrupt Descriptor Table (IDT) are our main points of interest.

For a motivating example, consider the “stack starvation” problem. Kernel stacks do not fault because they are
preallocated and pinned. Correspondingly, the Linux page fault handler does not manage stack faults in supervisor
execution mode, instead, a panic occurs. Linux pages application stacks, so elevated threads will trigger this panic.
A simple mitigation is to flip a single bit in the IDT, telling the hardware to use a special stack (interrupt stack tables).
Of course this can be done with a memory write, but we use interposition to allow future context switching back to
the unmodified Linux IDT. The program we use to enact this mitigation is a user process built using standard
compilation with GCC and uses dynamic linking to our user level library. The only piece we add is our selective use
of the kElevate syscall.

Implementation Detail: Mechanistically, our mitigator pre-allocates its own stack space in user mode and pins it (as
any application could do on Linux). Then we make the kElevate syscall so we can (function) call the kernel’s page
allocator getting the address of a page. Still elevated, we read the protected system register, the IDTR which holds
the location of the IDT. Then we use glibc’s memcpy() function (demonstrating use of glibc) to copy the system IDT
to our allocated page and flip the bit mentioned above. Finally we load the IDTR with the new location of our copied
IDT and use the kElevate syscall to lower the thread back to user mode. Now any page faults on that core will use
the interrupt stack table mechanism and we will never double fault on a stack page in the future.

Visualizing examples of applications’ requirement spaces.

Applications have diverse requirements from the systems that run them.The requirement space of the union of
all apps can be found by taking the maximum along each dimension: it is large. Because these requirements
exist in a natural tension (e.g. security trades off with latency), simultaneously meeting all these requirements
may not just be a hard problem, but a logical contradiction. To remain useful, OSs compromise by only
delivering on a subspace of these requirements.

Introducing the Chrono-kernel:
Kernel Privilege for the People

Context: Like Kernel Modules, elevated
threads are unlimited in their power to change
the system, so they are similarly protected
behind superuser access. Unlike Kernel
Modules, elevated threads are built to run from
the application context.
Elevated applications use standard build
processes. ABI compatibility may be

maintained if desired. When running in
kernel privilege, an elevated thread can

make structural changes to Linux. It
can interpose on system structures

like the interrupt descriptor table,
modifying or replacing core

system components and
code.

Getting a Linux process’s parent pid getppid() is one of the shortest syscalls. It
approximates the total HW and SW costs of the syscall path. We call it in a loop and

box plot the individual latencies.
“Linux” is a completely standard Fedora 35 environment.

“Chrono-kernel” is the same environment plus the kElevate mechanism
simply showing a comparable result; the system call path has not been

perturbed.
“Elevated” actually uses kElevate, showing the latency when running

the application in supervisor mode.
“ShortCut” flattens the syscall handler away entirely because the

elevated thread is able to make a function call to the getppid
handler.

Discussion: syscalls take longer in the elevated case
because a slow Iret is used instead of the faster sysret instruction. We use Iret out of convenience to preserve
existing kernel exit code; when higher performance is desired, interposition can be used to change the Iret into
a ret making elevated syscalls even faster than the Linux baseline. The time savings on the ShortCut case
are mostly due to skipping system software on the ingress and egress paths, hardware overheads are
relatively low.

Problem:
General purpose OSs like Linux

meet the needs of many applications, yet
some with extreme requirements (e.g. latency,

throughput, security, etc.) slip through the cracks.
Unfortunately, these apps are often the most valuable (e.g. high

 Approach: Instead of resorting to
kernel bypass or custom operating
system construction, the goal of this
project is to marry the convenience of
application programming on Linux with
the full power of the kernel’s mode of
execution.

A Chrono-kernel is a system that offers
first-class support for application threads to
access supervisor execution mode. We
retrofit Linux with a new mechanism,
kElevate, turning it into a Chrono-kernel.
kElevate allows any set of application
threads to toggle into the supervisor mode
of hardware execution in ~10 nanoseconds.

We call these “elevated” threads.

 Deployment: kElevate has wide
applicability, it runs baremetal, in

containers, and in virtualization. It can be
invoked from any language via the syscall

interface.

We have retrofitted Linux with the kElevate
mechanism in an x86_64 prototype, and we have
demonstrated the same technique is viable on an
ARM64 proof of concept.

A Use Case: When running in kernel
privilege, an elevated thread can exploit
the low level internal interfaces of the
kernel, in addition to the usual syscall
API, utilizing the kernel as a library.
We demonstrate using this to
shortcut standard syscall paths
as well as to perform more
aggressive shortcutting
deep in the kernel.

OS extension allows application or system library developers to
renegotiate the OS compromise. This allows for modifying system
interfaces or implementation with application specific changes. Extension
is typically not a general improvement that applies to all applications. We differentiate between
conformant and transgressive extensions (see below). Both optimize a chosen application along some
axes. kElevate can be used to extend Linux at runtime following either model.

We show baremetal latency plots demonstrating that a server using the kElevate mechanism improves significantly
when using shortcutting directly into the ksys_read and ksys_write handlers. Further, we provide results for making
shortcuts much deeper into the kernel, at tcp_sendmsg and tcp_recvmsg, cutting out the trip through the VFS layer
to disambiguate the file descriptor.

Redis is an open source key value store, often used for in memory caching for microservices, it is one of the most
popular applications by Docker’s rankings. Redis makes read and write syscalls for its network traffic. The Redis
server shortcuts significantly improve the throughput (by a third) and latency (a quarter) it achieves. A datacenter
provider typically controls the software of both the Redis client and the server, so they have the opportunity to
shortcut on both sides of the communication. We are currently quantifying the power savings as well.

Ongoing work: We are applying the same set of shortcuts to Memcached and Apache. This will demonstrate that
our approach is general enough to be reused. We are interested in building tools that application developers can
incorporate even if they are not kernel experts. These shortcuts may be used even when the application source
code is not available (ABI compatible). Finally, we are also developing microkernel-like servers which can interface
with unprivileged applications, securely accelerating their workloads.

Our Linux prototype
uses the kElevate
mechanism to turn Linux
into a Chrono-kernel. At
any point, an application
can access the supervisor
mode on the thread
granularity. Any subset of
threads in the system can be
concurrently elevated. In these
diagrams, elevated threads are
marked with a badge.

1

4

Our implementation
introduces kElevate as a

new system call.
Interposition can be used to

further optimize access to
this primitive. For the X86_64
prototype, this involved a total

of 357 LoC changes. We are able
to keep changes to the kernel

minimal because once the primitive of
privileged execution is exposed, you can

script with kernel power. Now, changes that
used to go into the kernel can instead be executables living

in the filesystem.

Redis Throughput

S
Average

Throughput (MB/s)
Percent Throughput

Improvement wrt Linux
Average Latency

(msec)
Percent Latency

Improvement wrt Linux

Linux 4.87 - 1.70 -

ksys_{read/write} 5.50 12.9% 1.51 11.2%

tcp_{send/recv} 6.45 32.4% 1.28 24.7%

High Freq. Trading ML Classifier Container Orchestrator

Right: In blue: the union of all application requirements, in orange: a
visualization of the realized OS compromise. In green: an example
application whose requirements are met by the OS. In red: an
application app with more extreme requirements that are not met by
the OS.

Left: Conformant extensions play along with the OS compromise by strictly improving along a subset of
axes. Importantly, this preserves all expected properties for co-running applications.

Right: Transgressive
extension violates the OS
compromise by regressing on a
subset axes that are not required
by the chosen app. This relaxes
the constraints of the
compromise, inserting slack. This
frees the developer by opening a
larger optimization space.

Three more approaches to interposition are illustrated below:
A: An unmodified entry points to the original handler.
B: A handler pointer is modified to point to an interposer which does work before continuing to the original handler.
C: Here the original handler has been entirely replaced with a custom handler.

Original
IDT, now
inactive

5

 & Small reads and writes can be
accelerated by about 35% and 20% respectively. The
relative savings decreases as a function of number of
bytes because cpu bound work takes up a relatively

larger fraction of execution time. ShortCut makes use
of the access to the kernel internal interfaces

ksys_read() and ksys_write() respectively (see below).

 The receive system call is a bit noisier than the others
on most configurations. Interestingly not only does the

ShortCut case improve on latency, the standard deviation is
much smaller, which has positive implications on using
kElevate in real-time contexts.

We have many more tasks than we have developers to implement them! We are looking for help from both types
of developers: application and kernel. We are looking for applications with clear kernel bound latency/throughput/
real-time optimization objectives and kernel hackers who would be interested in helping us get through our to-do
lists or bring their own perspectives to the work. If this sounds interesting to you please contact Tommy
(tommyu@bu.edu).

You and the Chrono-kernel!

3

B C

A

D

D

A

B C

Not Yet Peer Reviewed

Back traces from profiling Redis. In blue: skipping the
syscall entry and exit code. In green: skipping the VFS

and socket disambiguation.

Larry Woodman,

Ulrich Drepper,

Richard Jones,

Daniel Bristol de Olivera

Thomas Unger,

Arlo Albelli,

Ryan Sullivan,

Orran Krieger,

Jonathan Appavoo

Contact:

tommyu@bu.edu

Red Hat Funded this Research

2

Mechanism

Modifying System Data Structures

Extension Schema
Microbenchmark Experiments

Macrobenchmarks

