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Introduction

• Microservice architecture: de-facto way to build distributed apps in industry 

•  Goal: increase deployment velocity and reduce coordination across teams 

• Applications designed as loosely-coupled services that:  

• each provide distinct functionalities 

• interact via language-agnostic protocols 

• Problem:  little known about industrial microservices apart from above 

• E.g., Communication methods, service sizes, topological characteristics 

• E.g., How different organization’s architectures vary 

• Depresses ability to perform impactful research in this area 

• This Work: A User study with microservice developers to characterize the design 

space of industrial microservice architectures  

• Identify where existing open-source testbeds’ design choices are too narrow

• Open-source microservice testbeds adopt a narrow set of design choices 

• E.g., DeathStarBench, TrainTicket, BookInfo 

• Likely not representative of: 

• the variety of designs present in industry 

• any single industrial microservice architecture 

• Yet, used to inform much research and development on microservices 

• Research using them may be useful to narrow or ill-defined microservice designs
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• Recruited 12 total participants  

• Initial participants via social media posts (e.g, Reddit, Twitter) 

• initial participants suggested other participants (snowball sampling) 

• 32 total questions designed to probe industrial microservice designs 

Systematization of existing testbeds design axes and choices 

•  Performed via analysis of their codebases and published literature

Interviews with real microservice developers

Expanded systematization via analyses of participants’ responses

• Identified designs not present in testbed-only systematization 

Communication

Topological 
characteristics

Service reuse

• Communication:  

• Testbeds use single, uniform communication protocol 

• Industrial architectures use multiple ones that differ in use 

of serialization, REST vs. RPC, and performance sensitivity 
   

• Topology:  

• Industrial architectures’ topologies extremely varied 

• Some grow organically w/o a prescribed shape 

• Testbeds’ topologies prescribed to be hierarchical 

• Cycles common in industry but not in testbeds 
    

• Service reuse:  

• Testbeds have very limited service reuse 

• Industrial architectures can exhibit significant reuse 

• One participant said this was key reason for microservices 

• Other observations about participants’ responses:  

• They disagreed on what constitutes a service  

• Could not agree on scope of a single service 

Protocol: 

# of services: 

Within apps: 
Across apps: 

HTTP, RPC, both

Sync, Async, both

Varies (8-30, …, 1000+)

Hierarchical, non-hierarchical, star

Endpoint, service, none

Yes, No
Yes, No

Manner: 

Cycles?:  

Structure:

Service defn: Business use case, single team, etc.

Axis Category Industry possibilities 

• Started this effort because of concerns research using existing 

testbeds may force us to use invalid assumptions 

• Found industrial architectures vary greatly from testbeds 

• Implications for microservice optimization and tooling 

• E.g., services with cycles should be scaled together 

• E.g., in-network serialization not always applicable 

• E.g., aggregate analyses dependent on reuse characteristics 

Conclusions & future work

Future work:  

• Broader microservice testbeds 

• Categorization of different type of microservice architectures
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