
Identifying mismatches between microservice testbeds and industrial perceptions of microservices
Vishwanath Sehagiri†＊, Darby Huye‡＊, Lan Liu‡, Avani Wildani†, Raja R. Sambasivan‡

†Emory University, ‡Tufts University

D.O.C.C Lab

Introduction

• Microservice architecture: de-facto way to build distributed apps in industry

• Goal: increase deployment velocity and reduce coordination across teams

• Applications designed as loosely-coupled services that:

• each provide distinct functionalities

• interact via language-agnostic protocols

• Problem: little known about industrial microservices apart from above

• E.g., Communication methods, service sizes, topological characteristics

• E.g., How different organization’s architectures vary

• Depresses ability to perform impactful research in this area

• This Work: A User study with microservice developers to characterize the design

space of industrial microservice architectures

• Identify where existing open-source testbeds’ design choices are too narrow

• Open-source microservice testbeds adopt a narrow set of design choices

• E.g., DeathStarBench, TrainTicket, BookInfo

• Likely not representative of:

• the variety of designs present in industry

• any single industrial microservice architecture

• Yet, used to inform much research and development on microservices

• Research using them may be useful to narrow or ill-defined microservice designs

Existing open-source testbeds

Methodology

(Some) of our expanded design axes

(Some) key mismatches

DeathStarBench’s Social Media Application
TrainTicket

Study design

Data Collection & Analysis

2 Pilots

Interview questions

Grounding questions

Questions that explore
features discussed in other
studies but missing from

testbeds

Questions that probe
choices for testbeds’ design

axes

12
Interviews Analysis

Results

Are there any questions
about Microservice design
that we should have asked

but didn’t?

1 2

3 4

5

Systematization
of design choices

Mismatches between
testbeds’ and

participants responses

• Recruited 12 total participants

• Initial participants via social media posts (e.g, Reddit, Twitter)

• initial participants suggested other participants (snowball sampling)

• 32 total questions designed to probe industrial microservice designs

Systematization of existing testbeds design axes and choices

• Performed via analysis of their codebases and published literature

Interviews with real microservice developers

Expanded systematization via analyses of participants’ responses

• Identified designs not present in testbed-only systematization

Communication

Topological
characteristics

Service reuse

• Communication:

• Testbeds use single, uniform communication protocol

• Industrial architectures use multiple ones that differ in use

of serialization, REST vs. RPC, and performance sensitivity

• Topology:

• Industrial architectures’ topologies extremely varied

• Some grow organically w/o a prescribed shape

• Testbeds’ topologies prescribed to be hierarchical

• Cycles common in industry but not in testbeds

• Service reuse:

• Testbeds have very limited service reuse

• Industrial architectures can exhibit significant reuse

• One participant said this was key reason for microservices

• Other observations about participants’ responses:

• They disagreed on what constitutes a service

• Could not agree on scope of a single service

Protocol:

of services:

Within apps:
Across apps:

HTTP, RPC, both

Sync, Async, both

Varies (8-30, …, 1000+)

Hierarchical, non-hierarchical, star

Endpoint, service, none

Yes, No
Yes, No

Manner:

Cycles?:

Structure:

Service defn: Business use case, single team, etc.

Axis Category Industry possibilities

• Started this effort because of concerns research using existing

testbeds may force us to use invalid assumptions

• Found industrial architectures vary greatly from testbeds

• Implications for microservice optimization and tooling

• E.g., services with cycles should be scaled together

• E.g., in-network serialization not always applicable

• E.g., aggregate analyses dependent on reuse characteristics

Conclusions & future work

Future work:

• Broader microservice testbeds

• Categorization of different type of microservice architectures

＊co first-authors Work done with input from Juraci Kröehling & Pavol Laffoy at Red Hat

