
Applying Machine Learning to Linux Kernel Configurations for Performance and Energy
Han Dong1+, Jonathan Appavoo1, Sanjay Arora2

Motivation Main Findings

Finding 1: Improving Linux Performance
and Energy Efficiency with Two

Hardware Mechanisms

1Depar tment of Computer Science, Boston University. 2Red Hat, Inc.

Future Work

handong@bu.edu , saarora@redhat.com, jappavoo@bu.edu

Increasingly constrained i) energy
budgets and stagnation in ii) silicon
technology poses new challenges of
how modern software and hardware
can meet the performance and energy
requirements of modern network-
based applications.
We identify two fundamental
properties in network
processing and demonstrate
how a ML-based approach
can be used to extract more
value out of existing
software and hardware.

Our experimental study involved four broad classes of
network applications; from a NodeJS web server to a high
performance memcached-database server. From the study, we
find that Linux can be configured in new ways to improve its
performance and energy efficiency. As an example, Fig. 1shows
that tuning Linux can result in both improved performance and
energy efficiency for a NodeJS web server by over 10%. The structured approach we undertook in this project enabled us to exploit ML

for the OS in a meaningful way to achieve dramatic gains in modern datacenter
applications. For each of the three findings, we detail exciting next steps in this
work:
Finding 1: While we've only focused on two mechanisms; different types of
hardware (SSDs, RAM, GPUS, etc.) and software (e.g. Linux sysctl, .config)
settings suggest there are further opportunities to optimize Linux.
Finding 2:New opportunities from OS specialization in the LibOS suggest open
source Linux projects (e.g. Unikernel Linux, Chronokernel) can integrate new
energy efficient optimizations within the kernel.
Finding 3:The benefits of Bayesian optimization approach suggests one can
implement simple load balancers in datacenters that drive requests to
correctly pre-configured servers to minimize energy. Further, it is another step
towards self-adapting systems to enable a new generation of system policies
that are completely automated.

i)

ii)

SESA@BU http://sesa.github.io

Finding 2: Performance and Energy
Opportunities from Optimizing the Kernel

Finding 3: Applying ML to tune Linux

In order to effectively exploit ML, we conducted a rigorous
operating system (OS) experimental study and discovered that
using two hardware mechanisms to tune 1) the speed of network
interrupts and 2) the speed of request processing, enables
application performance and energy to be controlled in a well-
structured manner. This structure can then be exploited by a ML
technique, such as Bayesian optimization, to automatically configure
Linux in order to improve its performance and energy efficiency by
over 50% for a broad class of network-driven applications.

Findings 1, 2, and 3 detail the main discoveries that
document our research approach; from characterizing the
two mechanisms, detailing its effects, and to the
deployment of Bayesian optimization for automatic tuning.

Fig. 1: Linux is running kernel version
5.5 and Linux-tuned is using the same
kernel but with the two mechanisms
controlled in new ways. Each marker is
a single experimental run of the
NodeJS web server. Energy consumed
(Joules) and performance measured
(Seconds) are shown for both systems
(lower is better).

We find the effects of tuning in a specialized OS can further magnify
its benefits. Fig. 2 illustrates how OS specialization via an entirely
different OS (LibOS) results in over 100% improved performance
and energy efficiency. This finding suggests there can be dramatic
gains by adopting more specialization techniques in modern kernels.

Fig. 2: NetPIPE is a simple application that ping-pongs fixed sized messages
between two nodes. LibOS-tuned is an OS written from scratch with
optimized network processing paths and LibOS-poll uses a per-core
polling loop instead of being interrupt-driven.

Our study also reveals application behavior that is stable and well-
structured, and these behaviors can then be exploited by ML
techniques. Fig. 3 demonstrates that a Linux memcached server
can be automatically tuned using Bayesian optimization to
minimize energy use for a real world workload trace from
Twitter*. Our method allows Linux-tuned to use over 50% less
power than default Linux and has the potential to radically
improve real world data-center applications and total-cost-of-
ownership (TCO) savings.

Fig 3: Requests-per-second shows the changing request rate on a hourly
basis over a whole day. This figure shows the watt (joules/sec) usage
between default Linux and ML-enhanced Linux-tuned during this period.

+PhD candidate (graduating Fall’22)

*https://github.com/twitter/cache-trace

mailto:handong@bu.edu
mailto:jappavoo@bu.edu

