
AUTOMATICALLY DETECTING LIFETIME ANNOTATION BUGS IN THE RUST LANGUAGE

Vikram Nitin*, Sanjay Arora†, Anne Mulhern†, Baishakhi Ray*

* - Columbia University, † - Red Hat Research

Project
Website

vikram.nitin@columbia.edu, {saarora, amulhern}@redhat.com, rayb@cs.columbia.edu

Ownership

SOME FEATURES OF RUST

WHY RUST?
Efficient performance while providing strong memory safety, thread safety, and type checking.

Borrowing

BORROW CHECKING AND LIFETIMES

RUST uses lifetimes, a construct that assists the compiler in verifying the validity of each
borrow. Both borrow variables and the borrowed values have lifetimes, as illustrated below

The lifetime of a borrow variable cannot be longer than the lifetime of the borrowed value.
The following code will not compile because the borrow checker will flag an error.

RAW POINTERS AND UNSAFE CODE

RUST's borrow checker can be too restrictive sometimes because its analysis is inherently
conservative. So RUST provides "raw pointers" (*const,*mut) that don't have borrow checking.

Dereferencing raw pointers requires an unsafe block

let b : i32 = 5;

let a : const* i32 = &b;

unsafe{println!("{}", *a);}

Acknowledgements : This research was supported by a grant from Red Hat Research
[1] Bae, Yechan, et al. "RUDRA: finding memory safety bugs in Rust at the ecosystem scale." Proceedings of the ACM
SIGOPS 28th Symposium on Operating Systems Principles. 2021.

LIFETIME ANNOTATIONS

Consider a function that takes two borrows as inputs and returns one borrow.

fn foo(x: &i32, y: &i32) -> &i32 {/*..*/}

The two input borrows could have different lifetimes, in which case an appropriate
lifetime must be assigned to the output borrow. It could be annotated as follows,
indicating that the returned borrow refers to x.

fn foo<'a,'b>(x: &'a i32, y: &'b i32)

 -> &'a i32 {/*..*/}

Here 'a and 'b are lifetime annotation parameters. At compile-time, the compiler assigns
concrete scopes to each lifetime parameter. Appropriate lifetime annotations can guide
the borrow checker to ensure memory safety. Consider the following example :

struct Foo {

 inner: *mut String

}

impl Foo {

 fn get<'a>(&'a mut self) -> &'a String {

 unsafe{&*self.inner}

 }

}

The implicit borrow to foo on line 6 needs to last till line 8, but the foo object is
valid only until line 6. So this will raise a compilation error, which is good.

OUR SYSTEM

When RUST code is compiled, it goes through a High-level
Intermediate Representation (HIR) and a Mid-level Intermediate
Representation (MIR). We implement a hybrid analysis
that combines information from the HIR and the MIR, as shown
in the diagram alongside.

We implement our system as a subroutine within the Rudra [1]
project.

Our code will soon be made publicly available.

BUG PATTERNS

Incorrect lifetime annotations on functions that handle raw pointers can cause memory safety
violations. We consider the specific case of structures containing raw pointers.

Consider a function that manipulates a raw pointer inside a structure. Then there are three
broad categories of manipulations that involve a borrowed value. The function could :

1. Take a borrow as input and update the raw pointer to point to the borrowed value.
2. Read from the raw pointer and return a borrow to the value that it's pointing to.
3. Take a borrow as input and create a new structure object with the raw pointer
pointing to the borrowed value.

We define three patterns of bugs based on these three operations. A full discussion of the
three patterns is beyond the scope of this poster, but we discuss the first pattern here.

The function foo takes an input borrow inp with lifetime 'c, but the lifetime of the structure
object is 'a. Further, there is a dataflow from inp to self.inner. This means that the
structure could potentially outlive the borrowed value.

let i = "Hello".to_string();

let mut obj = Foo{inner: &i};

{

 let j = "ABC".to_string();

 obj.foo(&j);

}

// obj now contains an invalid pointer

	0aba8f8a-cc5d-40ad-91dd-5c83a0787e44.vsdx
	Page-1

