
Time and Energy-Aware Computation
Yara Awad1 (awadyn@bu.edu) Han Dong1 (handong@bu.edu) Jonathan Appavoo1 (jappavoo@bu.edu) Sanjay Arora2 (saarora@redhat.com)

1Department of Computer Science, Boston University 2Red Hat, Inc.

Motivating Work

Each point is a run where a unique
energy/performance setting was
issued through the ITR and DVFS
registers.

In Green: latency achieved and energy
consumed with a unique, stable setting of
ITR and DVFS parameters.

In Blue: mean latency/energy achieved
when the default system control algorithms
set ITR and DVFS parameters.

A curve of energy - joules - and performance - 99% tail latency - of many runs of a Memcached/Linux
software stack subject to a rate of 600K requests per second (QPS).

Structure is revealed in the curve of varying energy/performance
points achieved as the system responds to controlled changes of ITR and

DVFS settings.

Each spike-and-dip pair represents the process
of a Bayesian optimizer as it responds to a
newly introduced QPS rate and ultimately
finds a new optimal ITR/DVFS setting.

In Red: a step function showing moments at which the
QPS rate is manually changed across a 24 hour period.

In Green: the energy/performance achieved as a
Bayesian optimizer searches for optimal ITR/DVFS
settings.

A Bayesian optimization algorithm traversing different curves of energy/performance targets, where each curve corresponds to
the software stack behavior subject to a different QPS rate.

A learnable relationship is revealed between ITR and DVFS settings and the resulting
energy/performance achieved. When directed to do so, a Bayesian optimization algorithm is able to

exploit this relationship to find the most optimal settings for execution.

Structure and learnability promote the hypothesis that deep learning
techniques integrated with fine-grain, meaningful system logs

can enable the development of a self-regulating system,
capable of detecting internal and external changes and adapting to them by
automatically adjusting energy/performance settings to optimize execution.

Idea
We deduce that network-bound software stacks, influenced

externally by varying QPS rates, will operate within different
timescales, or time signatures, defined by an

inter-response frequency and intra-response rate.

We believe that there exists a timescale for which a target
execution consumes minimal energy and exhibits optimal or

sub-optimal performance.
We propose impedance matching, or rate matching, as the missing

system primitive that would match the internal timescale of the
system, via energy/performance configuration, to the external

timescale of the world it is responding to.

Approach
The methodology lies in developing a system
component that is
1. able to learn the properties of ideal timescales for

target software stacks and
2. automatically improve the system’s energy and

performance by configuring it to that ideal
timescale under any QPS rate.

This component must be designed as a dynamic
control mechanism, based on a model that can
learn from a time-varying, multidimensional,
signal-based interpretation of the target execution.

Objectives: Toward an Architecture for Learnable Energy/Performance Control Policies

Given prior data that exposes log-based execution signals
for a set of software stacks, three stages align toward
developing a dynamic energy/performance controller:

1. Developing a numerical encoding of the execution signal

2. Learning, from encodings of executions subject to
different QPS rates, the characteristic
energy/performance behavior of a target software stack

3. Configuring the host system, through some feedback
cycle from the controller to ITR and DVFS system
drivers, toward a more optimal timescale

1. Encoding
From an execution log to a
multi-dimensional vector

representative of the log’s energy and
performance characteristics.

1. Manual statistics, characterizing logs
through their constituent percentiles.

2. Automated statistics, computed by a
recurrent neural network (RNN) as it
observes execution logs across time
and produces a vector representative
of the full execution.

2. Learning
From the state-space of execution encoding to a mapping between execution and optimal ITR/DVFS settings.

3. System
Regulation

From one execution state to another,
improving energy performance through a
more optimal setting of ITR and DVFS.

itri+1 = itri + + / − −
dvfsi+1 = dvfsi + + / − −

For an arbitrary (app, os, cpu, nic), the
controller has knowledge about optimal

execution settings for arbitrary QPS rates
such that it is able to always set the

system settings for an optimal
energy/performance.


