
SpotOS
Ilya Kolchinsky, Idan Levi, Orit Wasserman, Gabi BenHanokh, Josh
Salomon, Avishay Traeger – Red Hat

Assaf Schuster – Technion, Israel Institute of Technology

Disclaimer – This work started from a patent by Orit Wasserman and Josh Salomon

Does the cloud meet its promises?

• Auto-scaling? V Other…

• No vendor locking?

• Economy of scale?

• Self tuning cost perf avail

Issues for cloud users – examples

1. Optimization. To optimize $$ fitting of instance to app need:
• Intimate knowledge on app requirements:

• CPU, accelerators, memory, disc type, disc size, iops, …
• Information of instance availability and prices
• Dynamic price optimization is impossible

2. Spot instances. No guarantee when an interrupted spot will restart.
• Hibernate - state < 100G (AWS); only selected/expensive instances; other restrictions
• Stop – only stateless apps can restart; other restrictions
• Terminate - ☹

SpotOS Vision
A heaven in the clouds:

• Better prices than spot instances
• Better availability than on demand
• Better app performance
• Better interface for users

How?

The focus of this talk - efficient use of spot instances:
Instance = spot instance
Interrupt = request for instance evacuation (2 min warning time AWS, 30 sec Azure)

SpotOS
,Scheduling
,Migrations
,Allocations
,Interactions
,Predictions

,Optimizations
.…

C
loud

Interrupts, warnings
Monitoring stats

Instance hire
Instance release

Users

Requests
to execute +
Basic App
Characteriz-
ations

SpotOS – a distributed abstraction layer providing
easy+efficient+affordable cloud usage

Resource management

Cloud3

C
loud2

Interrupts, warnings
Monitoring stats

Instance hire
Instance release

Users

Requests
to execute +
Basic App
Characteriz-
ations

SpotOS – a distributed abstraction layer providing
easy+efficient+affordable multi-cloud usage Cloud1

SpotOS
,Scheduling
,Migrations
,Allocations
,Interactions
,Predictions

,Optimizations
.…

SpotOS
Advantages

Cost:
• Optimize configuration of resources for every app
• Optimize configuration of resources globally for all apps
• Dynamically
• Optimize over a larger configuration space than currently available

High availability:
• Keep the apps working upon interrupts, with minimal delay
• Seemless failure-HA

Interaction complexity:
• Simplify the user interface with the cloud

• User does not need to be a systems/cloud expert to optimize

Performance:
• Optimize app match to resources
• Optimize locality across pools and regions for data/app gravity

Cross platform:
• Optimize cost across cloud providers, regions, pools

Configuration space - example

App1

App2

Instance

App3

Can pack together applications having
complementary resource requirements

Configuration space - example

Instance A Instance B

Application X

App X state I App X state II

High-level challenges

1. A moving target
• Solution space: a generic design to accommodate the shifts

2. Tradeoffs, optimizations, dynamicity, …
• Solution space: traditional algorithmic computing science

4. Performance optimizations
• Solution space: traditional distributed systems

3. Adapting to cloud and app behavior
• Solution space: ML+AI

Competition
1. SPOT

• NetApp
• Previously spot.ai

• https://spot.io/blog/azure-spot-vms/?utm_source=na&utm_medium=Guide&utm_campaig
n=Azure_cost_optimization_guide#a3

• Bottom line – claim to do parts of what we offer here (but probably not everything)
• Cost optimizations
• Cloud availability predictions (how?)

2. SKY
• Compatibility only

https://spot.io/blog/azure-spot-vms/?utm_source=na&utm_medium=Guide&utm_campaign=Azure_cost_optimization_guide#a3
https://spot.io/blog/azure-spot-vms/?utm_source=na&utm_medium=Guide&utm_campaign=Azure_cost_optimization_guide#a3

C
loud

Users
 execute

Designing
SpotOS

Interrupts, warnings

Instance hire
Instance release

Resource
mgmt

 Cloud Cost Optimizer
(CCO)

C
loud

Costs, Instance availability

Candidate
configurations

Users
 execute

SpotOS

Interrupts, warnings

Instance hire
Instance release

Resource
mgmt

Demand
(Compiled from
Monitoring, warnings, predictions, user requests)

spot instance types – in the thousands
apps – up to thousands
per app components – dozens

Configuration space size – super exponential

Find the best (multi-)cloud deployment for your
workload

Cloud Cost
Optimizer

Exponential Complexity

Complex multi-component
applications

Multiple cloud providers

Multiple performance objectives

Multiple instance types, regions and other
parameters

Costs, Instance availability

C
loud

Learning Module (ML)

Interrupts, warnings

Predictions
Provisioning

Costs, Instance avail

Candidate
configurations

Instance hire
Instance release

App stats
Cloud stats

Users
 execute

Demand
(Compiled from
Monitoring, warnings, predictions, user requests)

 Cloud Cost Optimizer
(CCO)

SpotOS

Global lake manager (GOLEM) C
loud

Learning Module (ML)

Interrupts, warnings

Predictions
Provisioning

Costs, Instance avail

Candidate
configurations

Instance hire
Instance release

App monitoring

App stats
Cloud stats

Users
 execute

Front
side
UX

Demand
(Compiled from
Monitoring, warnings, predictions, user requests)

 Cloud Cost Optimizer
(CCO)

SpotOS

Global lake manager (GOLEM) C
loud

App migration (AM)

Learning Module (ML)

Interrupts, warnings

Predictions
Provisioning

Costs, Instance avail

Candidate
configurations

Instance hire
Instance release

Migrate
from/to

App monitoring

Resource management

Operation
complete

App stats
Cloud stats

Users
 execute

Front
side
UX

App
deploy
ment

Deploy
execute

Demand
(Compiled from
Monitoring, warnings, predictions, user requests)

 Cloud Cost Optimizer
(CCO)

SpotOS

Global lake manager (GOLEM) C
loud

App Migration (AM) External Distributed
Memory (EDM)

Learning Module (ML)

Interrupts, warnings

Predictions
Provisioning

Costs, Instance avail

Candidate
configurations

Instance hire
Instance release

Migrate
from/to

Move mem
from/to

App monitoring

Resource management

Operation
complete

App stats
Cloud stats

Users
 execute

Front
side
UX

App
deploy
ment

Deploy
execute

Demand
(Compiled from
Monitoring, warnings, predictions, user requests)

 Cloud Cost Optimizer
(CCO)

SpotOS

Intermediate Products

Global lake manager (GOLEM) C
loud

App migration (AM) External Distributed
Memory (EDM)

learning Module (ML)

Interrupts, warnings

Predictions
Provisioning

Candidate
configurations

Instance hire
Instance release

Migrate
from/to

Move mem
from/to

App monitoring

Resource management

Operation
complete

App stats
Cloud stats

Users

 execute
Front
side
UX

App
deploy
ment

Deploy
execute

Demand
(Compiled from
Monitoring, warnings, predictions, user requests)

SpotOS

 Cloud Cost Optimizer
(CCO)

Costs, Instance availability

App
resource
requirements $$

Optimal
available
configurations

Status:
Available for AWS
In the works for Azure

Global lake manager (GOLEM) C
loud

App migration (AM) External Distributed
Memory (EDM)

Interrupts, warnings

Predictions
Provisioning

Costs, Instance avail

Candidate
configurations

Instance hire
Instance release

Migrate
from/to

Move mem
from/to

App monitoring

Resource management

Operation
complete

Users
 execute

Front
side
UX

App
deploy
ment

Deploy
execute

Demand
(Compiled from
Monitoring, warnings, predictions, user requests)

 Cloud Cost Optimizer
(CCO)

SpotOS Costs, Instance avail

Learning Module (ML)

App stats
Cloud statsApp resource demands

and behavior

Status:
In the works

Global lake manager (GOLEM) C
loud

App migration (AM) External Distributed
Memory (EDM)

Learning Module (ML)

Interrupts, warnings

Predictions
Provisioning

Costs, Instance avail

Candidate
configurations

Instance hire
Instance release

Migrate
from/to

Move mem
from/to

App monitoring

Resource management

Operation
complete

App stats
Cloud stats

 execute
Front
side
UX

App
deploy
ment

Deploy
execute

Demand
(Compiled from
Monitoring, warnings, predictions, user requests)

 Cloud Cost Optimizer
(CCO)

SpotOS Costs, Instance avail

= App migration (AM)
 K8 high availability and

stateful pod migration

Status:
In the works

Global lake manager (GOLEM) C
loud

App migration (AM)

Learning Module (ML)

Interrupts, warnings

Predictions
Provisioning

Costs, Instance avail

Candidate
configurations

Instance hire
Instance release

Migrate
from/to

Move mem
from/to

App monitoring

Resource management

Operation
complete

App stats
Cloud stats

 execute
Front
side
UX

App
deploy
ment

Deploy
execute

Demand
(Compiled from
Monitoring, warnings, predictions, user requests)

 Cloud Cost Optimizer
(CCO)

SpotOS

 External Distributed
Memory (EDM)

Status: Preliminary working prototype
Use: Large state app can exe on standard instance

Handling Interrupts

Spare Resources
• GOLEM maintains a set of spare resources

• And/or instances with empty excess capacity

• No more than a certain upper bound
• Bounds are fraction of the minimal set of resources
• Too much is high cost overhead

• No less than a certain lower bound
• Too low is high risk when interruptions occur
• The exess empty capacity determines the number of evacuations that can happen concurrently

• May need to balance them across pools
• For locality

• Upon a demand change, GOLEM decides whether this change can be handled withing the given bounds (without breaching
them) or it needs to call for incremental or global rearrangement optimization

• Considerations:
1. Fast evictions following interrupts and fast rearrangements
2. Cost-optimality of obtained configuration

• Optimizing the bounds is a challenge
• Require research

• Notice: no “cold” spare resource capacity
• Instances of the same type at the same pool/region will probably be warned/interrupted together

• Better make sure there is enough spare capacity for all of them to evacuate at the same time

Current required
volume of resources

Current excess “spare”
resource capacity

Upper
bound
Lower
bound

Evacuation plan - example
Evac-plan:

1. Stop apps in snapshot-able points
2. Call AM to move App1 to instance Y
3. Call AM to move App2 to instance Z
4. Call EDM to move mem to instance M

• Use parallelization when applicable
• Meet a strict time constraint

GOLEM

Evacuation
planner

1. Need an evac-plan
For Instance X

Evac-plan

2. Warning or
interrupt for Xcloud

Instance X
App1
App2
mem3

Evacuation plan - example
Evac-plan:

1. Stop apps in snapshot-able points
2. Call AM to move App1 to instance Y
3. Call AM to move App2 to instance Z
4. Call EDM to move mem to instance M

• Use parallelization when applicable
• Meet a strict time constraint

GOLEM

Evacuation
planner

1. Need an evac-plan
For Instance X

Evac-plan

2. Warning or
interrupt for X

Evac
manager

3. Evacuate X

done

cloud

Instance X
App1
App2
mem3

Evacuation plan - example

Instance X
App1
App2
mem3

Evac-plan:
1. Stop apps in snapshot-able points
2. Call AM to move App1 to instance Y
3. Call AM to move App2 to instance Z
4. Call EDM to move mem to instance M

• Use parallelization when applicable
• Meet a strict time constraint

GOLEM

Evacuation
planner

1. Need an evac-plan
For Instance X

Evac-plan

2. Warning or
interrupt for X

Evac
manager

3. Evacuate X

done

Istce Y
App1

Istce Z
App2

Istce M
mem3AM

EDM

Move X.1 to Y

Move X.2 to Z

Move X.3 to M

cloud

Optimizing Global Cost

Plan lifecycle

0. user requests, app demands, forecasts, breach spare bounds…

Demand
Manager

1. Demands

GOLEM
2. Use spare?
Rearrange?

Plan lifecycle

CCO
3. Request
config

Candidate
configurations

0. user requests, app demands, forecasts, breach spare bounds…

Demand
Manager

1. Demands

GOLEM
2. Use spare?
Rearrange?

Plan lifecycle

CCO
3. Request
config

 Configuration
Elector

Candidate
configurations

4. Elect
config

0. user requests, app demands, forecasts, breach spare bounds…

Demand
Manager

1. Demands

GOLEM
2. Use spare?
Rearrange?

Plan lifecycle

CCO
3. Request
config

 Configuration
Elector

Candidate
configurations

4. Elect
config

cloud

5. Request
resources

Resources

0. user requests, app demands, forecasts, breach spare bounds…

Demand
Manager

1. Demands

GOLEM
2. Use spare?
Rearrange?

Plan lifecycle

CCO
3. Request
config

 Configuration
Elector

Candidate
configurations

4. Elect
config

Rearrange
ment

Planner6. Request
plan

plan

cloud

5. Request
resources

Resources

0. user requests, app demands, forecasts, breach spare bounds…

Demand
Manager

1. Demands

GOLEM
2. Use spare?
Rearrange?

Plan lifecycle

CCO

GOLEM
2. Use spare?
Rearrange?

3. Request
config

 Configuration
Elector

Candidate
configurations

4. Elect
config

Rearrangement
Planner

6. Request
plan

plan

Rearrang
ement
master

7. rearrange

Done atomic1, atomic2, … atomicn

cloud

5. Request
resources

Resources

EDM

AM

deploy

0. user requests, app demands, forecasts, breach spare bounds…

Demand
Manager

1. Demands

Summary

SpotOS is a necessary stage in cloud
evolution, transforming it into a
friendly place for users:
• Learning application and cloud behavior
• Automatically optimizing [cost X performance X availability]
• Dynamically
• Over regions, pools and cloud providers
• No systems/cloud knowledge is assumed by user

Questions?

Comparison

Advantages:
• Our spot calculator gives the user a better way to compare
instance prices between regions and instance types.

• Our calculator lets the user filter types by spot instance specific
properties.

Disadvantages:
• The AWS calculator gives a more accurate estimate regarding
different AWS services such as S3 snapshots and data
transfers.

