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Does the cloud meet its promises?

• Auto-scaling?  V Other…

• No vendor locking?
               
• Economy of scale?

• Self tuning cost perf avail



Issues for cloud users – examples

1. Optimization. To optimize $$ fitting of instance to app need:
• Intimate knowledge on app requirements: 

• CPU, accelerators, memory, disc type, disc size, iops, …
• Information of instance availability and prices
• Dynamic price optimization is impossible 

2. Spot instances. No guarantee when an interrupted spot will restart.
• Hibernate - state < 100G (AWS); only selected/expensive instances; other restrictions
• Stop – only stateless apps can restart; other restrictions
• Terminate - ☹



SpotOS Vision
A heaven in the clouds:

• Better prices than spot instances
• Better availability than on demand
• Better app performance 
• Better interface for users

How?

The focus of this talk - efficient use of spot instances:
Instance = spot instance
Interrupt = request for instance evacuation (2 min warning time AWS, 30 sec Azure)
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SpotOS 
Advantages

Cost:
• Optimize configuration of resources for every app
• Optimize configuration of resources globally for all apps
• Dynamically
• Optimize over a larger configuration space than currently available

High availability:
• Keep the apps working upon interrupts, with minimal delay
• Seemless failure-HA

Interaction complexity:
• Simplify the user interface with the cloud

• User does not need to be a systems/cloud expert to optimize

Performance:
• Optimize app match to resources
• Optimize locality across pools and regions for data/app gravity

Cross platform:
• Optimize cost across cloud providers, regions, pools



Configuration space - example
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Can pack together applications having 
complementary resource requirements



Configuration space - example
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High-level challenges

1. A moving target 
• Solution space: a generic design to accommodate the shifts

2. Tradeoffs, optimizations, dynamicity, …
• Solution space: traditional algorithmic computing science

4. Performance optimizations
• Solution space: traditional distributed systems

3. Adapting to cloud and app behavior
• Solution space: ML+AI



Competition
1. SPOT 

• NetApp
• Previously spot.ai

• https://spot.io/blog/azure-spot-vms/?utm_source=na&utm_medium=Guide&utm_campaig
n=Azure_cost_optimization_guide#a3

• Bottom line – claim to do parts of what we offer here (but probably not everything)
• Cost optimizations
• Cloud availability predictions (how?)

2. SKY
• Compatibility only

https://spot.io/blog/azure-spot-vms/?utm_source=na&utm_medium=Guide&utm_campaign=Azure_cost_optimization_guide#a3
https://spot.io/blog/azure-spot-vms/?utm_source=na&utm_medium=Guide&utm_campaign=Azure_cost_optimization_guide#a3
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Find the best (multi-)cloud deployment for your 
workload 
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Intermediate Products
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Handling Interrupts



Spare Resources
• GOLEM maintains a set of spare resources 

• And/or instances with empty excess capacity

• No more than a certain upper bound
• Bounds are fraction of the minimal set of resources
• Too much is high cost overhead

• No less than a certain lower bound
• Too low is high risk when interruptions occur 
• The exess empty capacity determines the number of evacuations that can happen concurrently

• May need to balance them across pools
• For locality 

• Upon a demand change, GOLEM decides whether this change can be handled withing the given bounds (without breaching 
them) or it needs to call for incremental or global rearrangement optimization

• Considerations:
1. Fast evictions following interrupts and fast rearrangements
2. Cost-optimality of obtained configuration

• Optimizing the bounds is a challenge
• Require research

• Notice: no “cold” spare resource capacity
• Instances of the same type at the same pool/region will probably be warned/interrupted together

• Better make sure there is enough spare capacity for all of them to evacuate at the same time

Current required 
volume of resources

Current excess “spare” 
resource capacity

Upper 
bound
Lower 
bound



Evacuation plan - example
Evac-plan:

1. Stop apps in snapshot-able points
2. Call AM to move App1 to instance Y 
3. Call AM to move App2 to instance Z
4. Call EDM to move mem to instance M

• Use parallelization when applicable
• Meet a strict time constraint
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Evacuation plan - example
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Optimizing Global Cost
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Plan lifecycle
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Summary

SpotOS is a necessary stage in cloud
evolution, transforming it into a 
friendly place for users:
• Learning application and cloud behavior
• Automatically optimizing [cost X performance X availability]
• Dynamically
• Over regions, pools and cloud providers
• No systems/cloud knowledge is assumed by user



Questions?



Comparison 

Advantages:
• Our spot calculator gives the user a better way to compare 
instance prices between regions and instance types.

• Our calculator lets the user filter types by spot instance specific 
properties.

Disadvantages: 
• The AWS calculator gives a more accurate estimate regarding 
different AWS services such as S3 snapshots and data 
transfers.


