
1 KAU.SE/CSSimon Sundberg 2022-09-15

Simon Sundberg, Anna Brunström, Simone Ferlin-Reiter,
Toke Høiland-Jørgensen & Jesper Dangaard Brouer

Lightweight Always-on Network
Latency Monitoring with eBPF

2 KAU.SE/CSSimon Sundberg 2022-09-15

Agenda

• Why network latency matters

• Problems with existing network latency monitoring tools

• What eBPF is and how it can solve these problems

• Results and future work

3 KAU.SE/CSSimon Sundberg 2022-09-15

Why monitor network latency?

• Interactive applications are latency sensitive
– Tactile Internet
– Video conferencing / VoIP
– Gaming
– Browsing / Web shopping

• To monitor QoE → monitor latency
– Also useful for SLA validation, network management, attack detection etc.

4 KAU.SE/CSSimon Sundberg 2022-09-15

What’s wrong with ping?

• Many latency monitoring tools rely on active probing
– (f/h/n)ping, IRTT, netlatency, RIPE Atlas

• Drawbacks:
– Adds network overhead

– Only monitors between agents

– Not indicative of application traffic

Photo by Ferliana Febritasari

Does it take the same time for cars and
scooters to move through a traffic jam?

5 KAU.SE/CSSimon Sundberg 2022-09-15

Passively measure RTT

• Infer RTT from real traffic
– Match packet and replies

• Passive Ping (PPing)
– Can run live and continuously

report RTTs

– Uses TCP timestamps
○ Updated at limited frequency

PPing available at https://github.com/pollere/pping

https://github.com/pollere/pping

6 KAU.SE/CSSimon Sundberg 2022-09-15

So what’s wrong with PPing then?

• Packet capturing has high overhead
– Can’t keep up with high packet rates

• PPing consequences
– Misses RTT samples

– May missmatch packets

• What if we didn’t need to capture the packets?
– With eBPF we can peek at packets in the kernel

7 KAU.SE/CSSimon Sundberg 2022-09-15

What is eBPF?

• Runtime environment in kernel
– Attach small programs to various

hooks

• Workflow
– Compile to eBPF bytecode

– Load into kernel

○ Verified

○ Jitted

– Attach to hook
Figure from https://ebpf.io/what-is-ebpf

• Use cases
– Observability, Security, Networking

https://ebpf.io/what-is-ebpf

8 KAU.SE/CSSimon Sundberg 2022-09-15

What is XDP and tc BPF?

• eXpress Data Path (XDP)
– Ingress hook at the earliest part of network stack

• Traffic control (tc)
– Ingress or egress hook inside the network stack

• Hooks that enable a programmable data plane in the Linux kernel
– Can inspect and modify packets

– Take actions such as accepting, dropping and redirecting packets

9 KAU.SE/CSSimon Sundberg 2022-09-15

An evolved PPing (ePPing)

• Implement all packet processing logic in eBPF
– Only send computed RTT samples to userspace for reporting

ePPing available at https://github.com/xdp-project/bpf-examples/tree/master/pping

https://github.com/xdp-project/bpf-examples/tree/master/pping

10 KAU.SE/CSSimon Sundberg 2022-09-15

How does it perform?

• Setup:

• 10 Iperf flows:

100 GbE 100 GbE

11 KAU.SE/CSSimon Sundberg 2022-09-15

Performance in bottlenecked scenario

• Limit CPU to single core
– Core is 100% utilized

• ePPing vs no. of flows
– More flows → more RTTs

– Reporting all RTTs has high
overhead

– Sampling RTTs per flow reduces
overhead

12 KAU.SE/CSSimon Sundberg 2022-09-15

Conclusion and future work
• We have:

– Implemented passive latency monitoring in eBPF
○ Can run on any Linux device which sees the traffic
○ Measures RTT live and continuously

– Tested ePPing’s performance
○ Can handle 10+ Gbps on single core

• We want to:
– Improve reporting of RTT by sampling/aggregating
– Add support for additional protocols (QUIC, DNS)

13 KAU.SE/CSSimon Sundberg 2022-09-15

Thank you for your time!
Questions?

