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Why monitor network latency?

* Interactive applications are latency sensitive
— Tactile Internet
— Video conferencing / VolP
— Gaming
— Browsing / Web shopping

* To monitor QoE — monitor latency
— Also useful for SLA validation, network management, attack detection etc.
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What’s wrong with ping?

 Many latency monitoring tools rely on active probing
— (f/h/n)ping, IRTT, netlatency, RIPE Atlas Does it take the same time for cars and

* Drawbacks:
— Adds network overhead
— Only monitors between agents
— Not indicative of application traffic
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Passively measure RTT

e Infer RTT from real traffic
— Match packet and replies t

* Passive Ping (PPing)

— Can run live and continuously
report RTTs

— Uses TCP timestamps t6
o Updated at limited frequency

PPing available at https://github.com/pollere/pping
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https://github.com/pollere/pping

So what’s wrong with PPing then?
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* What if we didn’t need to capture the packets? Mo flows
— With eBPF we can peek at packets in the kernel
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What is eBPF?

* Runtime environment in kernel * Use cases
— Attach small programs to various — Observability, Security, Networking
hooks
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Figure from https://ebpf.io/what-is-ebpf

Simon Sundberg 2022-09-15 ix@3E KAU.SE/CS



https://ebpf.io/what-is-ebpf

What is XDP and tc BPF?

e eXpress Data Path (XDP)

— Ingress hook at the earliest part of network stack

* Traffic control (tc)
— Ingress or egress hook inside the network stack

* Hooks that enable a programmable data plane in the Linux kernel
— Can inspect and modify packets
— Take actions such as accepting, dropping and redirecting packets
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An evolved PPing (ePPing)

* Implement all packet processing logic in eBPF
— Only send computed RTT samples to userspace for reporting
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ePPing available at https://github.com/xdp-project/bpf-examples/tree/master/ppin
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https://github.com/xdp-project/bpf-examples/tree/master/pping

How does it perform?
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Performance in bottlenecked scenario

e Limit CPU to single core
— Core is 100% utilized 50
. %15 :
* ePPing vs no. of flows =
— More flows — more RTTs 10
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Conclusion and future work

e We have:

— Implemented passive latency monitoring in eBPF
o Can run on any Linux device which sees the traffic
o Measures RTT live and continuously

— Tested ePPing’s performance
o Can handle 10+ Gbps on single core

* We want to:
— Improve reporting of RTT by sampling/aggregating
— Add support for additional protocols (QUIC, DNS)
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Thank you for your time!

Questions?
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