Lightweight Always-on Network
Latency Monitoring with eBPF

Simon Sundberg, Anna Brunstrém, Simone Ferlin-Reiter,
Toke Heiland-Jgrgensen & Jesper Dangaard Brouer

B KAU.SE/CS

Simon Sundberg 2022-09-15

Agenda

Why network latency matters

Problems with existing network latency monitoring tools

What eBPF is and how it can solve these problems
e Results and future work

2 Simon Sundberg 2022-09-15 @35 KAU.SE/CS

Why monitor network latency?

* Interactive applications are latency sensitive
— Tactile Internet
— Video conferencing / VolP
— Gaming
— Browsing / Web shopping

* To monitor QoE — monitor latency
— Also useful for SLA validation, network management, attack detection etc.

3 Simon Sundberg 2022-09-15 @35 KAU.SE/CS

What’s wrong with ping?

 Many latency monitoring tools rely on active probing
— (f/h/n)ping, IRTT, netlatency, RIPE Atlas Does it take the same time for cars and

* Drawbacks:
— Adds network overhead
— Only monitors between agents
— Not indicative of application traffic

Simon Sundberg 2022-09-15

Passively measure RTT

e Infer RTT from real traffic
— Match packet and replies t

* Passive Ping (PPing)

— Can run live and continuously
report RTTs

— Uses TCP timestamps t6
o Updated at limited frequency

PPing available at https://github.com/pollere/pping

A

I
TSval =17 !
TSecr=0 :

1

Simon Sundberg 2022-09-15

Timestamps

(A—B,17)| t

RTT =14 -t4

TSval =123
TSecr=17

B KAU.SE/CS

https://github.com/pollere/pping

So what’s wrong with PPing then?

* Packet capturing has high overhead ,,| -+ iterface T+ Fraction |
-f- PPing

— Can’t keep up with high packet rates 121 .
\%1.0— s
. 8 0.8 15§
* PPing consequences e 2
D 0.6 - 2

— Misses RTT samples & ol v

— May missmatch packets 0.2 2

0.0 T T —- 0

0 100 1000

1 1
* What if we didn’t need to capture the packets? Mo flows
— With eBPF we can peek at packets in the kernel

Simon Sundberg 2022-09-15 @35 KAU.SE/CS

What is eBPF?

* Runtime environment in kernel * Use cases
— Attach small programs to various — Observability, Security, Networking
hooks
e Workflow Process [Process }
Wt d © A
— Compile to eBPF bytecode oPFO | B brogran sendnsg() - drecvnsg()
— Load into kernel E"j@ Q eeer)
. v
o Verified X O &heapF verifier (Sockets)
o Jitted g qE) aPP [TCP/IP]
— Attach to hook — X &hesPF JIT Compiler } freere [etwork Device |

Figure from https://ebpf.io/what-is-ebpf

Simon Sundberg 2022-09-15 ix@3E KAU.SE/CS

https://ebpf.io/what-is-ebpf

What is XDP and tc BPF?

e eXpress Data Path (XDP)

— Ingress hook at the earliest part of network stack

* Traffic control (tc)
— Ingress or egress hook inside the network stack

* Hooks that enable a programmable data plane in the Linux kernel
— Can inspect and modify packets
— Take actions such as accepting, dropping and redirecting packets

8 Simon Sundberg 2022-09-15 @35 KAU.SE/CS

An evolved PPing (ePPing)

* Implement all packet processing logic in eBPF
— Only send computed RTT samples to userspace for reporting

6. Print RTT] Periodically delete old flows and timestamps

Userspace program J

User space

Kernel space
P !- mup ts = <reverse-flow, @ ©

Hash-map
Perf-buffer
events

N
[— n ”| packet TS
2. Add <flow, id> = now__

\

Y
eBPF program]4 Update <flow> = state

U

A
(ingress + egress) J‘ 7| Hash-map <«
flow state
. Parse packet v

4. RTT =now - ts

ePPing available at https://github.com/xdp-project/bpf-examples/tree/master/ppin

Simon Sundberg 2022-09-15 ix@3E KAU.SE/CS

https://github.com/xdp-project/bpf-examples/tree/master/pping

How does it perform?

,,’ point
100 GbE 100 GbE v.

Sender Middlebox Receiver

* Setup:

e 10 Iperf flows:

100 ~
50 A

2 & g0
a 40 A 4}
G _ g

5 30 - § o 60 -
o) o
< o ©
(@)} @] (0]

3 20 - @ 40 1
c Q
= S

10 - s 20-

0 - . . . 0 -

baseline PPing ePPing baseline PPing ePPing

10 Simon Sundberg 2022-09-15 | 5 KAU.SE/CS

Performance in bottlenecked scenario

e Limit CPU to single core
— Core is 100% utilized 50
. %15 :
* ePPing vs no. of flows =
— More flows — more RTTs 10
— Reporting all RTTs has high 5| o= baseline
51 --M- PPing (misses packets)
overhead —¥— ePPing (all)
— Sampling RTTs per flow reduces ol rot=eimed .]
1 10 100 1000
overhead No. flows

11 Simon Sundberg 2022-09-15 @35 KAU.SE/CS

Conclusion and future work

e We have:

— Implemented passive latency monitoring in eBPF
o Can run on any Linux device which sees the traffic
o Measures RTT live and continuously

— Tested ePPing’s performance
o Can handle 10+ Gbps on single core

* We want to:
— Improve reporting of RTT by sampling/aggregating
— Add support for additional protocols (QUIC, DNS)

12 Simon Sundberg 2022-09-15 @35 KAU.SE/CS

Thank you for your time!

Questions?

13 Simon Sundberg 2022-09-15 B KAU.SE/CS

