Testing the reliability of systems with unstable or low-quality network connectivity

Miroslav Bures, CTU in Prague

Red Hat Research Day Europe, Brno, Sep 16th 2022

Our lab

System Testing IntelLigent Lab
Dept. of Computer Science
Faculty of Electrical Engineering
Czech Technical University in Prague

What we do

Better tools for system testing

- Faster testing process able to detect an increased amount of defects
- Complex software, electronics, IoT, mission-critical systems

IoT projects in integrated rescue system, medicine and defence

Czech Army, NATO ACT Innovation Hub, University of Defence, ...

Selected projects

Automated model-based generation of test scenarios for integration and end testing of automobiles

Test strategy and test automation for IoT-based rescue mission planning and management system

Monitoring of soldier vital functions to allow for more accurate triage and to minimize casualties

Too much dependent on a data network?

Reliability of a system operating with a limited network

IoT and complex software systems

Live example: Our Digital Triage Assistant (DTA) project

Soldiers' body sensors

DTA back-end (can be mobile)

Integration with other defense systems

Smart glasses

User interface

Forget about quality 5G network

GSM use only in emergency Mesh network needed Every component can move Stealth mode might be needed

Soldier's status estimation

(can be mobile)

DTA back-end

Smart glasses

User interface

body sensors

Weak network situation examples (video)

Source: NATO Multimedia and University of Defence

Typical challenges

Stealth mode ON / OFF

A mesh network + terrain \rightarrow

- Low bandwidth
- Intermittent connection
- Connectivity disrupted and restored

SYSTEM PROCESSES MUST RUN IN A RELIABLE WAY

Test automation now

Manual testing

test scenarios

test execution

test basis

test scenarios

test execution

Test automation now

test basis

test scenarios

test execution

Common test automation

test basis

test scenarios

test execution

Test automation now & future

Test automation in the future?

How to test it?

A process flow model:

Process parts handled by devices / system modules

Model of network outage probability

How to test it?

Test the process by paths through it

System modeling

Oxygen platform by STILL

Test case visualization

What is a "good test set"?

4 test coverage criteria

Evaluation criteria

Evaluation criterion	Description
T	Number of test cases in test set T
$\overline{ t } = \frac{1}{ T } \sum_{i=1}^{ T } t_i , t_i \in T$	Average length of test cases in test set T
$l(T) = \sum_{i=1}^{ T } t_i , t_i \in T$	Total length of test set T measured in number of edges
$\mathbf{s}(T) = \sqrt{\frac{\sum_{i=1}^{ T } (t_i - \overline{ t })^2}{ T - 1}}, T > 1$	Length dispersion of the test cases in test set T , expressed by standard deviation of test case lengths; test case length is measured in number of edges.
u_nodes(T)	Number of unique nodes in test set T
u_edges(T)	Number of unique edges in test set T
b_nodes(T)	Number of border nodes in test set T for all LCZs of G
$eff_edges(T) = \frac{u_edges(T)}{l(T)} \cdot 100\%$	Ratio of unique edges in test set T to total number of edges in test set T
$eff_b_nodes(T) = \frac{b_nodes(T)}{l(T) + T } \cdot 100\%$	Ratio of number of border nodes in test set T to total number of nodes in test set T

How to compute it?

Number of algorithms possible

Al gives good results, e.g. Artificial ANT colony Genetic algorithm

• • •

Al example: Artificial Ant colony

Nature-inspired algorithm

Ants depositing their pheromone path

"Together" they compute the best test set

An example of results

Much better than common techniques currently in place

To get the best solution for sure

Algorithm adapts to particular system model

Algorithms combined together

- Portflolio strategy
- Composition of algorithm from blocks

Machine Learning used

Solving similar issues in your software testing? Get in touch!

Miroslav Bures

Software Testing IntelLigent Lab (STILL)
Dept. of Computer Science
Faculty of Electrical Engineering
Czech Technical University in Prague

miroslav.bures@fel.cvut.cz http://still.felk.cvut.cz

