
Red Hat Research Day Europe 2022
Brno
Czech Republic

September 15th, 2022

Using static analysis for microservices
Tomas Cerny

Baylor University (USA)

ABOUT
▪Tomas Cerny
▪Assistant professor at Baylor University

▪ last year in my tenure

▪Research
▪ Cloud-native systems
▪ Static and dynamic analysis

▪Long-term collaboration with Red Hat Research
▪Over 35 Baylor students on research projects with Red Hat

NSF award #1854049 IRES Track I: U.S.-Czech Student
Research Experience on Software Test Automation and
Quality Assurance.

https://cs.baylor.edu/~cerny

OUTLINE
Static analysis for microservices
▪Why do we want this?
▪What is the challenge?
▪How do we address it
▪What do we get out of this?

MOTIVATION
▪In the context of Microservices, do you recognize what this is?
▪Why do we need it, and how did we get it?

WHY DO WE GET THIS
GRAPH?

▪To understand how the holistic system works,
▪assess the dependencies, avoid a ripple effect, etc.

▪ ..get a centralized system perspective,
▪ .. reason about the system

System-centric
perspective

HOW DO WE GET THIS
GRAPH?

▪We currently obtain this graph through dynamic system analysis
▪DevOps
▪OpenTelemetry, etc.
▪Event trace with a Correlation ID
▪We extract this from a deployed system

▪Challenges
▪ Traffic or tests needed
▪Delay: development vs. deployed system
▪No direct feedback to developers
▪ Incomplete system coverage

COULD WE GET THIS GRAPH
USING STATIC
ANALYSIS?

▪ There would be no delay
▪ DevOps/Developers

▪No traffic needed
▪More convenient for developers
▪Code-change impact analysis

▪Challenges
▪No tools for decentralized systems
▪ Language heterogeneity
▪How do we connect it?

▪Documentation quickly becomes outdated
▪Poor dependency overview
▪No centralized view of the system

▪Ripple effect
▪ System-part change impacts other system parts

▪Too complex systems
▪Heterogeneity | team coordination | the architecture itself
▪Descriptive vs. prescriptive architecture – are they the same?

▪Separation of Duty : Architects / Dev Teams / DevOps

Industry practices and challenges for the evolvability assurance of
microservices, DOI: 10.1007/s10664-021-09999-9

CHALLENGES IN
MICROSERVICES

BASICS OF STATIC ANALYSIS
▪ Parsing code / codebase / bytecode / mining software repository
▪Abstract Syntax Tree / Control Flow Graph / Program Dependence Graph
▪Or other Intermediate Representation (IR)

▪Applications
▪ Pattern matching
▪ Code style
▪ Bad smells
▪ Vulnerability checks
▪ Technical debt

▪ Other reasoning

Microservice
code repositories

..

CHALLENGE: CULTURAL
CLASH
STATIC ANALYSIS IN
MICROSERVICES▪Static analysis
▪Plain ‘low-level’ code used
▪ Low-level intermediate representation

▪ Limited to a single codebase
▪ Processing linearly and combining results does not work
▪ Dependencies between microservices

▪ Language-specific

▪Microservices
▪Decentralized systems with decentralized codebases per Microservice
▪Heterogeneous system parts

INITIAL THOUGHTS
▪How to represent a system?
▪ Intermediate Representation?
▪Graph?

▪Support for a single platform?
▪Yes, but…? Actually, no multiple..

▪How do we merge microservices? Based on their dependencies?
▪ If so, can we generalize it across platforms?

▪We assessed common testbenches and frameworks for microservices
▪Observation: Common best practices are cross-platform applicable

WHAT DOES MICROSERVICE
CODE LOOK LIKE?

Observation: code uses high-level structures -> components

▪endpoints/controllers,
▪services,
▪ repositories,
▪remote calls,
▪messaging,
▪entities,
▪data-transfer objects
▪ ..

What static analysis deals with?
• Low-level code, no components
• Can we analyze code for

components?

WHAT ARE THE BEST
PRACTICES?

▪ i.e., 12-Factor app tells us how to design, build and operate
cloud-native systems.

▪What else can we conclude?
▪Many patterns for design, communication, robustness, resilience,
routing, discovery, authorization/authentication, ..

▪How do we use best practices in the source code?
▪Components and high-level structures!
▪Nice separation of concerns

WHAT ARE THE BEST
PRACTICES?

▪ i.e., 12-Factor app tells us how to design, build and operate
cloud-native systems.

▪What else can we conclude?
▪Many patterns for design, communication, robustness, resilience,
routing, discovery, authorization/authentication, ..

▪How do we use best practices in the source code?
▪Components and high-level structures!
▪Nice separation of concerns

Do static analysis
tools operate with
such components?

No!

GOAL: IMPROVE STATIC
ANALYSIS CAPABILITIES

▪ Recognize high-level structures/components in code
▪ Combine results across analyzed codebases
▪ Operate on heterogeneous platforms

▪Choosing the proper system Intermediate Representation (IR)
▪ If it was component-based, it likely fits many platforms
▪We use a component dependency graph as IR

CHALLENGES (NEXT FEW SLIDES)

1. How to operate on heterogeneous platforms

2. How can we recognize high-level structures?

3. How to combine multiple codebases

..

1. OPERATE ON
HETEROGENOUS PLATFORMS

▪Low-Level Virtual Machine (LLVM)*

▪Designed around a language-independent Intermediate Representation (IR)
▪ The IR serves as a portable, high-level assembly language that can be
optimized with a variety of transformations
▪Meant for compilers – removes the high-level language features
▪ Suits heterogeneous platforms
▪ Unsuitable for component detection

▪No good alternative exists that would make it simple to detect components.

*LLVM https://llvm.org/

1. OPERATE ON
HETEROGENOUS PLATFORMS

▪Our response

Our own solution Language-Agnostic Abstract Syntax Tree (LAAST)
▪Recently published at IEEE Access’221

▪Using RUST language-based core that can parse multiple languages
▪The benefit of LAAST – all languages parsed into the same IR

1Advancing Static Code Analysis With Language-Agnostic Component
Identification, DOI: 10.1109/ACCESS.2022.3160485

2. RECOGNIZING HIGH-LEVEL
STRUCTURES

Typically, components or coding conventions.

▪ Generalized mechanism: component detectors
▪ Platform-specific patterns to detect components in platform unspecific approach

▪ Language-Agnostic Abstract Syntax Tree1 is an easy-to-traverse
▪ Detect high-level structures through a set of generic parsers - “detectors,”
▪ Detectors: Recursively visit tree nodes to check if expected properties exist on a given

subtree to “match” a component.

▪ Some can be detected by annotation; others are more complex structures
▪ i.e., inheritance, dependencies, specific properties or menthods
▪ Java vs. C++ vs. Python vs. Go

1Advancing Static Code Analysis With Language-Agnostic Component
Identification, DOI: 10.1109/ACCESS.2022.3160485

2. RECOGNIZING HIGH-LEVEL
STRUCTURES

Sample: Class | LAAST and pattern matching | Resulting structure

▪ Evaluated on TrainTicket (ISCE | Java) and DeathStarBench (APLOS | C++) system testbeds
▪ Component detection : Precision 96-100%, Recall 86-100%

1Advancing Static Code Analysis With Language-Agnostic Component
Identification, DOI: 10.1109/ACCESS.2022.3160485

3. CONNECTING CODEBASES
Having each codebase IR in the form of a component-dependency
graph, we can combine them into a holistic system IR

Three ingredients
1. Inter-service calls detection – can be very precise
2. Parsing deployment descriptors (i.e., docker files)
3. Microservice overlaps (bounded context/domain driven dev.)
▪ Detecting overlaps in data entities

Reconstructing the Holistic Architecture of Microservice Systems using Static
Analysis, DOI: 10.5220/0011032100003200

SUMMARY OF THE PROCESS
1. Analyze each system part codebase
▪ produce LAAST (auxiliary IR to face heterogeneity)

2. Detect components and extract component graph
▪ system part IR – i.e., single microservice

3. Combine component graphs based on various strategies
▪ holistic system IR – as if the system was a virtual monolith

SO WHAT.. ?

SUMMARY OF THE PROCESS
1. Analyze each system-part heterogenous codebase -> LAAST
2. Detect components to extract a system-part intermediate representation
3. Determine holistic system IR based on various ingredients

 Outcome: System intermediate representation
 Based on a component dependency graph

SO WHAT..(?)..CAN WE DO
WITH THIS?

Static analysis tools in the era of cloud-native systems,
DOI: 10.48550/arXiv.2205.08527

EXPERIMENTAL EVALUATION
WHAT PROVED TO WORK

We have applied our proposed approach to many problems
1. Software Architecture Reconstruction (SAR)
2. Visualization of microservice system architecture
3. Reasoning about access policy consistencies (JSR-375) in microservices
4. Detecting microservice bad smells
5. Reasoning about microservice semantic code clones

1. SOFTWARE ARCHITECTURE
RECONSTRUCTION (SAR)

Show the decentralized architecture as the system centric perspective
Phases: Extraction | Construction | Manipulation | Reasoning (analysis)
Views: Domain view | Technology view | Service view | Operation view

On Automatic Software Architecture Reconstruction of Microservice
Applications April 2021 DOI: 10.1007/978-981-33-6385-4_21

2. VISUALIZATION OF
MICROSERVICES 1 OF 3

Using SAR to extract a visual view facilitates human-centered reasoning
▪Common direction conventional models
▪Problems:
▪ two-dimensional space; no interaction
▪does not fit the volume of microservices hundreds

Reconstructing the Holistic Architecture of Microservice Systems using
Static Analysis, DOI: 10.5220/0011032100003200

2. VISUALIZATION OF
MICROSERVICES 2 OF 3

More ambitions
▪Something to fit the volume of microservices
▪ Three-dimensional space
▪Augmented reality
▪ Interaction
▪Microvision prototype
▪ https://www.youtube.com/watch?v=7arBUbglEko

Microvision: Static analysis-based approach to visualizing microservices in
augmented reality, SOSE 2022

VISUALIZATION OF
MICROSERVICES 3 OF 2 ☺

More ambitions Summer’22

▪ Fall 2022 student research

2. VISUALIZATION OF
MICROSERVICES 3 OF 3

3. REASONING : ACCESS POLICY
CONSISTENCY

We can detect endpoint access policy enforcements
▪ Components are recognized with all properties
▪ i.e., JSR-375 Role-based access control

▪ Check whether different endpoints apply equivalent access policy
▪Perform across microservices (through inter-service communications)
▪Detect consistency errors across microservices

On automated RBAC assessment by constructing a centralized perspective for
microservice mesh, DOI:10.7717/peerj-cs.376

1 of 3

3. ACCESS POLICY
CONSISTENCY

We can detect enforced endpoint access
policy
▪ Components recognized with all properties
▪ i.e., JSR-375 Role-based access control

▪ Determine access policy equivalence
across different endpoints
▪Perform across microservices
▪ (through inter-service communications)
▪Detect consistency errors

On automated RBAC assessment by constructing a centralized perspective for
microservice mesh, DOI:10.7717/peerj-cs.376

1 of 31 of 2

3. ACCESS POLICY
CONSISTENCY

Detecting 5 violations
▪ Missing role violations
▪ Unknown access violations
▪ Entity access violations
▪ Conflicting hierarchy violations
▪ Unrelated access violations

On automated RBAC assessment by constructing a centralized perspective for
microservice mesh, DOI:10.7717/peerj-cs.376

TrainTicket testbench

2 of 2

4. MICROSERVICE BAD SMELLS

Having System IR and reading
“On the Definition of Microservice Bad Smells,
DOI: 10.1109/MS.2018.2141031”

 Pattern matching on the holistic system IR
▪ Detecting 11 bad smells.
▪ MSANose tool

Automated Code-Smell Detection in Microservices Through Static
Analysis: A Case Study, DOI: 10.3390/app10217800

5. SEMANTIC CODE CLONES
With too much development autonomy, or upon system integration.
▪ Certain features might coexist but are hidden in heterogeneity.
Syntactic clone
▪ Looks the same / does it do the same thing
▪ Approach using system IR considering components in control flow as
a heuristic to narrow our similarity identification, then detecting which
operations we perform with data and whether the data seem similar.
▪High Accuracy received on TrainTicket Benchmark
▪List of microservices/endpoints that are similar, ordered by similarity

Semantic Code Clone Detection Method for Distributed Enterprise Systems, DOI:
10.5220/0011032200003200

5. SEMANTIC CODE CLONES

Semantic Code Clone Detection Method for Distributed Enterprise
Systems, DOI: 10.5220/0011032200003200

WHAT DID WE
DEMONSTRATE?

▪ Static analysis can be beneficial to decentralized system analysis.
▪ It can do much more! I.E., help developers with codebase changes.

WHAT DID WE
DEMONSTRATE?

▪Robustness of our System IR to various tasks for Microservices
▪Targeting problems/gaps in the Microservices

▪Possibly foundation to holistic static analysis of Microservices

▪With such promising results, we can broaden our future research.

CONCLUSION
▪Arguing why static analysis is not used in cloud-native systems
▪Recognizing barriers to progress
▪Introducing our experimental solution
▪System IR based on component awareness

▪Sharing promising evaluation

▪Asking you to contribute!
▪https://github.com/cloudhubs

This material is based upon work supported by the
National Science Foundation under Grant No. 1854049,
a grant from Red Hat Research.

FUTURE WORK
▪Architectural Degradation and Technical Debt detection
▪Improve component and component dependency parsing
▪Broaden language support beyond Java/C++/Go
▪Heterogenous system benchmark study

▪Messaging integration to get a more comprehensive perspective
▪work in progress

▪Integration with dynamic analysis
▪Continuous restructuring of microservices
▪ IEEE SOSE 2022 Best Paper Award for Soft K-means approach2

2Monolith to Microservices: VAE-Based GNN Approach with Duplication
Consideration, SOSE 2022

WHAT DID WE MISS?

Questions?

Post your questions/remark to
Tomas_Cerny@baylor.edu

