Red Hat Research Day Europe 2022

Brno
Czech Republic

-

September 15%, 2022 —

Tomas Cerny
Baylor University (USA)

“
""""""

‘ | Red Hat
Research

% ‘ Baylor University

ABOUT

-Tomas Cerny
= Assistant professor at Baylor University

= last year in my tenure o

- Research https://cs.baylor.edu/~cerny
- Cloud-native systems

= Static and dynamic analysis

- Long-term collaboration with Red Hat Research

% NSF award #1854049 IRES Track I: U.S.-Czech Student Red Hat
) Research Experience on Software Test Automation and ‘ ‘ Research

’?;

e « fg(f Quality Assurance.

OUTLINE

Static analysis for microservices
-Why do we want this?

-What is the challenge?

-How do we address it

-What do we get out of this?

O
Microservices
<:> o @ Community

https://microservices.community

Best Presentation Award

for the paper

Title: Static analysis tools in the era of cloud-native systems

Authors: Tomas Cerny and Davide Taibi
Presented by: Tomas Cerny

at the Fourth International Conference on Microservices (Microservices 2022), 10-12 May 2022
Paris, 12 May 2022

Fabrizio Montesi
president of the Microservices Community. General Chair of Microservices 2022
University of Southern Denmark iversité Sorbonne Paris-Nord

B % A Ll
mﬁ]i:;;::;: @ @ %\%

Paris Nord

\
\

o U Microservices

.‘ g . 2 <:> ® Community

{ } <:> Q O O . ® ' O https://microservices.community
. 9

Best Tool Award

for the tool paper

Title: Static analysis tools in the era of cloud-native systems

Authors: Tomas Cerny and Davide Taibi

at the Fourth International Conference on Microservices (Microservices 2022), 10-12 May 2022
Paris, 12 May 2022

Fabrizio Montesi Giulio Manzonetto
president of the Microservices Community. General Chair of Microservices 2022
University of Southern Denmark Université Sorbonne Paris-Nord

S R R bl
N @ @ b

Paris Nord

INSTICC

Institute for Systems and ies of Control and Cc¢

Best Industrial Paper Award
Certificate

for the paper entitled:

Semantic Code Clone Detection Method for
Distributed Enterprise Systems

authored by:

Jan Svacina, Vincent Bushong, Dipta Das and Tomas Cerny
received at the

12th International Conference on Cloud
Computing and Services Science
(CLOSER)

held from April 27 - 29, 2022

EEE
»)computer
soclety

2022 IEEE International Congress on Intelligent and
Service-Oriented Systems Engineering

SOSE 2022 Best Paper Award
presented to

Korn Sooksatra, Rokin Maharjan, Tomas Cerny
o SRR S S
“Monolith to Microservices: VAE-Based GNN
Approach with Duplication Consideration”
oo-Ori Engineering (IEEE SOSE 2022)

at the 2022 IEEE

/(9 August 15-18,2022 6606\
7
SO3E Gireral Chair 2022 IEEE SOSE General Chair

2022 EEE
Guido Wirtz Cesare Pautasso

MOTIVATION

-In the context of Microservices, do you recognize what this 1s?
-Why do we need it, and how did we get it?

¥apgateway

ipisfration

— uds-chirortho

Imagerie

/‘aboramire
ent-bus

uds-chirabdo

WHY DO WE GET THIS
GRAPH?

-To understand how the holistic system works,
-assess the dependencies, avoid a ripple effect, etc.

-..get a centralized system perspective,

=.. reason about the system

System-centric
perspective

HOW DO WE GET THIS
GRAPH?

-We currently obtain this graph through dynamic system analysis
- DevOps
- OpenTelemetry, etc.
- Event trace with a Correlation ID

- We extract this from a deployed system

-Challenges
= Traffic or tests needed

= Delay: development vs. deployed system @ <irabei
= No direct feedback to developers
- Incomplete system coverage

COULD WE GET THIS GRAPH

USING STATIC
ANALYSIS?

- There would be no delay =Challenges
- DevOps/Developers

= No tools for decentralized systems
= No traffic needed

- Language heterogeneity
- How do we connect it?

= More convenient for developers
- Code-change impact analysis

Conventional model Augmented reality '

CHALLENGES IN
MICROSERVICES

- Documentation quickly becomes outdated
- Poor dependency overview

= No centralized view of the system
= Ripple effect

- System-part change impacts other system parts
- Too complex systems

- Heterogeneity | team coordination | the architecture itself

- Descriptive vs. prescriptive architecture — are they the same?

= Separation of Duty : Architects / Dev Teams / DevOps

Industry practices and challenges for the evolvability assurance of
microservices, DOI: 10.1007/s810664-021-09999-9

BASICS OF STATIC ANALYSIS

- Parsing code / codebase / bytecode / mining software repository
- Abstract Syntax Tree / Control Flow Graph / Program Dependence Graph
= Or other Intermediate Representation (IR)

- Applications
- Pattern matching
= Code style "-
- Bad smells
= Vulnerability checks
- Technical debt Microservice |

. code repositories
= Other reasoning _l

- —

OCHALLENGE: CULIURAL
CLASH

STATIC ANALY®SIS IN
SMESROSERVICES

= Plain ‘low-level’ code used
- Low-level intermediate representation
- Limited to a single codebase
= Processing linearly and combining results does not work
- Dependencies between microservices

= Language-specific

-Microservices
- Decentralized systems with decentralized codebases per Microservice

= Heterogeneous system parts
g y P @

INITIAL THOUGHTS

- How to represent a system?
- Intermediate Representation?

= Graph?

- Support for a single platform?
= Yes, but...? Actually, no multiple..

- How do we merge microservices? Based on thelr dependencies?
- If so, can we generalize it across platforms?

= We assessed common testbenches and frameworks for microservices
= Observation: Common best practices are cross-platform applicable @

WHAT DOES MICROSERVICE
CODE LOOK LIKE?

Observation: code uses high-level structures -> components

-endpoints/controllers,

services, What static analysis deals with?
-repositories, * Low-level code, no components
“remote calls, e Can we analyze code for

" Inessaging, components?

= entities,

- data-transfer objects

WHAT ARE THE BEST
PRACTICERS?

-1.e., 12-Factor app tells us how to design, build and operate
cloud-native systems.

=What else can we conclude?

- Many patterns for design, communication, robustness, resilience,
routing, discovery, authorization/authentication, ..

How do we use best practices in the source code?
«Components and high-level structures!
- Nice separation of concerns

L

WHAT ARE THE BEST
PRACTICERS?

-1.e., 12-Factor app tells us how to design, build and operate
cloud-native systems.

=What else can we conclude?

- Many patterns for design, communication, robustness, resilience,
routing, discovery, authorization/authentication, ..

Do static analysis

-How do we use best practices in the source code? RS Wiﬂ})
- Components and high-level structures! such components?
- Nice separation of concerns [\\[e)

GOAL: IMPROVE STATIC
ANALY®SIS CAPABILITIES

- Recognize high-level structures/components in code
- Combine results across analyzed codebases

« Operate on heterogeneous platforms

- Choosing the proper system Intermediate Representation (IR)

- If it was component-based, it likely fits many platforms
- We use a component dependency graph as IR

CHALLENGES (NEXT FEW SLIDES)

1. How to operate on heterogeneous platforms
2. How can we recognize high-level structures?

3. How to combine multiple codebases

1. OPERATE ON
HETEROGENOUS PLATFORMS

-Low-Level Virtual Machine (LLVM)"
- Designed around a language-independent Intermediate Representation (IR)

- The IR serves as a portable, high-level assembly language that can be
optimized with a variety of transformations

- Meant for compilers — removes the high-level language features
= Suits heterogeneous platforms
= Unsuitable for component detection

- No good alternative exists that would make it simple to detect components.

*LLVM https://llvm.org/ @

1. OPERATE ON
HETEROGENOUS PLATFORMS

-Our response

Our own solution Language-Agnostic Abstract Syntax Tree (LAAST)
-Recently published at IEEE Access’22*
- Using RUST language-based core that can parse multiple languages
= The benefit of LAAST - all languages parsed into the same IR

2. RECOGNIZING HIGH-LEVEL
STRUCTURES

Typically, components or coding conventions.

= Generalized mechanism: component detectors
- Platform-specific patterns to detect components in platform unspecific approach

- Language-Agnostic Abstract Syntax Tree! is an easy-to-traverse
= Detect high-level structures through a set of generic parsers - “detectors,”

= Detectors: Recursively visit tree nodes to check if expected properties exist on a given
subtree to “match” a component.

= Some can be detected by annotation; others are more complex structures
= 1.e., iInheritance, dependencies, specific properties or menthods

= Java vs. C++ vs. Python vs. Go

'Advancing Static Code Analysis With Language-Agnostic Component
Identification, DOI: 10.1109/ACCESS.2022.3160485

2. RECOGNIZING HIGH-LEVEL

MMM T TZ7NMTMITTNY T 1Y

[{
“identifier": "Method".
"pattern”: "#{call_from}",
"subpatterns”: [
Class: CallExample -LC"'-‘“‘ root parser, no match {
class calleExample { ‘/”’//,,rﬁ‘\5\\\\ "identifier”: "Callexpression",
void funca() {3} . E— "pattern”: "#{call_to}",
- Method: funcA . Method: funcB Check root parser, match! Switch to T e
void funcB() { funca(); } ! looking for subpattern "subpatterns”: [1,
} y "callback": “/* write to context */"
CallExpression: funcA Match subpattern!| No subpatterns . fa1":
for subpattern, so run subpattern's éssential”: true
callback here, }
1,
“callback™: “printIin(\"hello world!\");",
"egssential’: true
}

Sample: Class | LAAST and pattern matching | Resulting structure

- Evaluated on TrainTicket (ISCE | Java) and DeathStarBench (APLOS | C++) system testbeds
= Component detection : Precision 96-100%, Recall 86-100%

'Advancing Static Code Analysis With Language-Agnostic Component @

Identification, DOI: 10.1109/ACCESS.2022.3160485

Having each codebase IR in the form of a component-dependency

7

Rem(%\
—
| I—

’\

3. CONNECTING COL

 —

—

NS

:

’
’
’
’
N i
< 7
D T
SL

i%iﬁ

Endpoints

Call-

_—

entities graphs

Data '

Microservice A Matching data entity Microservice B

graph, we can combine them into a holistic system IR

Three ingredients

1.
2.
3.

Inter-service calls detection — can be very precise

Parsing deployment descriptors (i.e., docker files)

Microservice overlaps (bounded context/domain driven dev.)

- Detecting overlaps in data entities

/R

Reconstructing the Holistic Architecture of Microservice Systems using Static

Analysis, DOI: 10.5220/0011032100003200

SUMMARY OF THE PROCESS

1. Analyze each system part codebase
- produce LAAST (auxiliary IR to face heterogeneity)

2. Detect components and extract component graph
- system part IR — 1.e., single microservice

3. Combine component graphs based on various strategies
holistic system IR — as if the system was a virtual monolith

SO WHAT..?

SUMMARY OF THE PROCESS

. Analyze each system-part heterogenous codebase -> LAAST
2. Detect components to extract a system-part intermediate representation

3. Determine holistic system IR based on various ingredients

Outcome: System intermediate representation

Based on a component dependency graph

WITH THIS’P.

EXPERIMENTAL EVALUATION
WHAT PROVED TO WORK

We have applied our proposed approach to many problems

1.

o s WD

Software Architecture Reconstruction (SAR)

Visualization of microservice system architecture

Reasoning about access policy consistencies (°83%) in microservices
Detecting microservice bad smells

Reasoning about microservice semantic code clones

1. SOFTWARE ARCHITECTURE
RECONSTRUCTION (SAR)

Show the decentralized architecture as the system centric perspective
Phases: Extraction | Construction | Manipulation | Reasoning (analysis)
Views: Domain view | Technology view | Service view | Operation view

ts-cancel-service]
Account User Auth UserDTO te:CaNCEISerVIcE N
ts-user-service |\ /S ——omts-inside-payment-service
UuID: id UUID: userld String: userld UUID: userld 7 L\ SZ N
String: accountiD String: username String: username String: username l 1 / YA T po N\
String: loginld String: passwor: d String: password String password l A gt X N E
String: password Int: gender Int gender T, . o = - x = i
Int: gender Int: documentType Int gocumeanvpe l ts-user-service [ts-notification-service | ts-inside-payment-service ts-notification-service S/ ts-other-order-service]
String: name String: documentNum Gender String documen tNum I / 1%) 4 4 /
Int: documentType String: email . String email l 1 l — v \ \ L NN
String: documentNum it code . . = ’ LN N TN\ /A ts-payment-service
Stiing:cma‘:; ; String name I ts-order-service l ts-other-order-service l ts-payment-service ts-verification-service | /o7 XE\ "‘ 17 it
A <=,
DocumentType Gender S-user-service - - ts-auth-service A A ¥ ts-station-service
Int: code Int: code @ -
String: name String: name _
Fig. 2. Service View from TrainTicket
ts-admin-user-service Gender User Fig. 3. Operation View from TrainTicket
UUID: userld

Int: code
String: username

String name
String password
Int gender

Domaln Vlew Int documentType

String documentNum
String email

On Automatic Software Architecture Reconstruction of Microservice @

Fig. 1. Merged Domain View from TrainTicket .] .
Applications April 2021 DOI: 10.1007/978-981-33-6385-4 21

2. VISUALIZATION OF
MICROSERVICES ! ©F°

sing SAR to extract a visual view facilitates human-centered reasoning

«Common direction conventional models |
- Problems: s | U Emmw ERm)

- two-dimensional space; no interaction AR (R Vo

Trip Tri
String trainTypeld String startingStation
- String routeld String terminalStation
< String trip :

- does not fit the volume of microservices Mundreds E==l B | B @ o

TrainType
String id

A 2 ; Date startingTime int confortClass

SRR Date endTime String trainTypeld

String priceF orEconomyClass
String priceForConfortClass

ts-admin-user-servica

GET/
¥

fordert CPOST fregister>
GET Horderld){status) GET /{orderld) o isto

ST s oi Resul
et oD RUTL DELETE /userid} boolean status. UUID accountld boolean status.
— s String message UUID previousOrderld String message String tripld
cer . String loginToken =
GET (deriqy POST f20m ’ ”
FUT g ‘GET f{orderld)/(status} GET Werify/{verityCode}
DELETE /{orderld} GET fidi{arderid) 1
i % 1 1
ts-verification-code-service
I ‘ i | I‘_ GET. AT Account . Order FoodStore
— uuID id Ticket uuID id uuID id
cer/ | ‘ String accountld o Date boughtDate String stationld
P0ST GET Hordartaiistania) ts-traveiz-service String loginld Siring startstation Date travelDate String storeName
POST order_cancal_success String password String destStation Date travelTime String telephone
GET fforderid) A int gender UUID accountid String businessTime
s String name String contactsName double deliveryFee
GET Horde int documentType int documentType
ET Hord PuT/ String documentNum String contactsDocumentNumber
GET Hforderid) (T e, String email String trainNumber
DELETE firpsi{tripid) int coachNumber
int seatClass
te-train-service String seatNumber
String from
String to
int status.
String price
e eil String differenceMoney

DELETE Arips/(tripld)

/

POST/
info- s
GET/ DELETE] "
ts-admin-route-service
POST fadmin POST/

|
PUT/ PUTY !

o, DELETE/ POST/
l ELETE /(routeld)

. e Reconstructing the Holistic Architecture of Microservice Systems using
Static Analysis, DOI: 10.5220/0011032100003200

2. VISUALIZATION OF
MICROSERVICES 2 ©F 3

More ambitions

-Something to fit the volume of microservices
- Three-dimensional space
- Augmented reality
=« Interaction
- Microvision prototype

= https://www.youtube.com/watch?v=7arBUbglEko

Prev Next
Pause

'\ ¥ Step Step

Request Info Cancel Request

Microvision: Static analysis-based approach to visualizing microservices in
augmented reality, SOSE 2022

L what are you looking for?

2. VISUALIZATION OF
MICROSERVICES S OF3

- Fall 2022 student r

1 of3

3. REASONING : ACCESS POLICY
CONSISTENCY

We can detect endpoint access policy enforcements

- Components are recognized with all properties
= 1.e.,JSR-375 Role-based access control

- Check whether different endpoints apply equivalent access policy

Perform across microservices (through inter-service communications)
Detect consistency errors across microservices

3. ACCESS POLICY
CONSISTENCY

We can detect enforced endpoint access

policy

- Components recognized with all properties
= 1.e.,JSR-375 Role-based access control

= Determine access policy equivalence
across different endpoints

-Perform across microservices
= (through inter-service communications)

Detect consistency errors

On automated RBAC assessment by constructing a centralized perspective for
microservice mesh, DOI:10.7717/peerj-cs.376

Applcation X

JAR files

1 of 2

Discovery
Module

d

Microservice A

controfierMethodA1 controllerMethodA2

sewviceMethodA l
¢ serviceMethodA2

Microservice B

repositoryMethodA1

controllerMethodB1

v

serviceMelhodB1

v

repositoryMethodB1

Module

Flow Maltcher

Microservice A

controllerMethodAY controllerMethodA2

I l
Y
servicoMothodA1
¢ serviceMethodA2 ~

Microservice B

}

repositoryMethodAl

Ana
Module

controllerMethodB1

.

servicoMethodB1

v

Y

repositoryMethodB1

lysis

J

Applcation X

Y

!

seviceMethodA1

controllerMeathodA controllerMethodA2

ropositoryMethodAl controllerMethodB1

sarviceMethodB1

reposio

serviceMethodA2

!

!

!
|

ryMethodB1

2of2

3. ACCESS POLICY

(CONKSISTENCYY

CMS UMS

st grea Langet s 0.0 1L SNAPSHOT jor
s U earpet Con - 0.0, SNAFSHOT jue

[ode hay forecs oo sorvioe Qs Service coeateCondl gunation }‘

POST hetpSocalbont: | 2348 cuchigeratxn 4 ode havlor ocs s controlier Confl gerativoContmilier creaseContguration ‘

ConfigurationController::getExaminee() UserinfoController::getUserByld()

Roles: {admin, superAdmin}
Reduction & aggregation: {user, admin}

Roles: {user, admin}
Reduction & aggregation: {user}

| odu boy bot oo con scrvice QenService petConfigurations }

1 GET hrp:ocaiivont: | 2345/ cond gunation

__4(\0. by horocs g conteolics Coalfi germticaController S -d,\l)('nn!.;munm-li

GET \

edu baylorecs oo servive QnmsService getCategory InfolDuos

GET bttp:localbns: | 2388 cascgoryinfo

J\:u Doy bor cos s costroller Category InfoController Sad AN asegory [nfos
L

K
|

Y

Unvtms-cmatarpet'con-0. 1.0 jar

UserRepository::getByld()
Roles: {}

UmsService::getExamineelnfo()
Roles: {}

o buy hoe oo cm acevice EmnService getQuestiom Forfiues

I (GET batpo/localbont: 100002 e vaes'{ 38 | \questions

[
.1 odu bay boeecs ems conmrolier ExamController s ADNQuestom ForExam

Reduction & aggregation: {user} Reduction & aggregation: {user, admin)

odu oy loroos cms sorvice EonServioe deleteINIT var I. DELETE hitpo\focalhont: 10000 xam'{ W}
]

1

o by bor oos e acrvace EmScervice cecatcEvam L_ _POST hip.ocaBoss |00 2exsm

_.t

adu haylorecs e controller ExamConneolicr cocate v

£ 1000 0xs
odu Doy hor.ocs cms service EomSeryice getExams GHT hapolilocathost 003 exam

ode haylor oos eron coatroller ExanControlicr deletcINITEvam]

adu bayloreoy e controlicr ExamController St ABE vams

Detecting 5 violations

GET herpoocalbost: 10002 e xam

|
|
|
|
|

b
odu baylor e crm service EamService petINTTExamn I
e rns-amalarpet/ves | DSSNAPSHOT jar

Missing role violations |

CT hepebocalbost SO0 'userindo'omalllal) ser'{ oo §
! s = . S L ede baylorecs wms coomolier User InfoConmolior Emalilallse

o baylorocs oms sorvice. UmaServioe s Ematl Valsd

Unknown access violations

o bany boe oox cam acrvice UsaService getEvamenecisfo

GET M Bocalbyont MOL e { .
TET Barpo\Socaliyon useriafovenerBy l/{id) edu bayloroos s controller UnarlnfoController getUser By Id

[

.l
11
1
)|
11

GET http\Socalhost: 008 \ssenind 3
- Ll e en odu baylorecs ums controller. UserfafoControlker get ATl Users l

odu baylorecs coms sery e UmsServioe gt AN U sers

Entity access violations

Conlflicting hierarchy violations

Unrelated access violations

On automated RBAC assessment by constructing a centralized perspective for

microservice mesh, DOI:10.7717/peerj-cs.376

TrainTicket testbench

@

Smell

4. MICROSERVICE BAD 105 v standards

Wrong Cuts
Not Having an API Gateway

‘ - Hard-Coded Endpoint
Having System IR and reading i ;; Ver‘s’io‘;ing“ points

“On the Definition of Microservice Bad Smells, Microservice Greedy
DOI: 10.1109/MS.2018.2141031” Shared Persistency

[nappropriate Service Intimacy
Shared Libraries

Pattern matching on the holistic system IR Cyclic Dependency

- Detecting 11 bad smells. Tl i e

eeeeee

- MSANose tool

Automated Code-Smell Detection in Microservices Through Static
Analysis: A Case Study, DOI: 10.3390/appl0217800

5. SEMANTIC CODE CLONES

With too much development autonomy, or upon system integration.
= Certain features might coexist but are hidden in heterogeneity.
Syntactic clone

- Looks the same / does it do the same thing

- Approach using system IR considering components in control flow as
a heuristic to narrow our similarity identification, then detecting which
operations we perform with data and whether the data seem similar.

- High Accuracy received on TrainTicket Benchmark
= List of microservices/endpoints that are similar, ordered by similarity

Semantic Code Clone Detection Method for Distributed Enterprise Systems, DOI:
10.5220/0011032200003200

5. SEMANTIC CODE CLONES

Source Graph
Code Transformation

CFGS Graph
Quantification

CFGA
Controller
Argument: String orderid
HTTP method: GET
Return Type: Order

Property

Figure 1: Schema of the algorithm.

sim(a;, b;) = ctr(a;, b;) + rfc(ai, b;) +rp(ai, b;)

CFG B

Controller
Argument: String orderid
HTTP method: GET
Return Type: FoodOrder

Repository
Database operation: READ
Argument: String Orderid

Return Type: Order

Repository
Database operation: READ
Argument: String Orderld

Return Type: FoodOrder

CFG pairs with

CFGs ...) similarity .
Similarity [Classification J Classified
function Clones

INr| MS A MS B | Sim |
1 | ts-contacts admin-basic-info | 37.5 %
2 | ts-config ts-train 16.6 %
3 | ts-config admin-basic-info | 16.6 %
4 | ts-config ts-travel2 333 %
5 | ts-config ts-travel 333 %
6 | ts-order-other | ts-order 87.5 %
7 | ts-preserve preserve-other 50.0 %
8 | ts-security ts-train 50.0 %
9 | ts-security ts-seat 16.6 %
10| ts-train ts-seat 16.6 %
11| ts-train ts-travel2 16.6 %
12| ts-train ts-travel 16.6 %
13| ts-travel2 ts-travel 66.6 %

Semantic Code Clone Detection Method for

Systems, DOI:

10.5220/0011032200003200

Http: POST
Argument: Pos
i Return: Pos
service]‘—

controller

PR
repository.save()]—u_. service.save()]

Op: create

[restTemplate.call()]

repository

save() I

Figure 2: Example of control-flow graph.

@

Distributed Enterprise

WHAT DID WE
DEMONSTRATE?

= Static analysis can be beneficial to decentralized system analysis.

= It can do much more! I.E., help developers with codebase changes.

api-gateway

Imagerie
uds-chirabdo

Prev

'\ ¥ Step Rause Step ‘

Request Info Cancel Request

laboratoire

WHAT DID WE
DEMONSTRATE?

Robustness of our System IR to various tasks for Microservices
- Targeting problems/gaps in the Microservices

-Possibly foundation to holistic static analysis of Microservices

- With such promising results, we can broaden our future research.

@

/ré,,.(This material is based upon work supported by the
NSl National Science Foundation under Grant No. 1854049,

S agrant from Red Hat Research.

CONCLUSION | |

.
2N

- Arguing why static analysis is not used in cloud-native systems
-Recognizing barriers to progress

-Introducing our experimental solution
=System IR based on component awareness

-Sharing promising evaluation

- Asking you to contribute!
= https://github.com/cloudhubs

FUTURE WORK

- Architectural Degradation and Technical Debt detection

-Improve component and component dependency parsing
-Broaden language support beyond Java/C++/Go
- Heterogenous system benchmark study

-Messaging integration to get a more comprehensive perspective
=work in progress

-Integration with dynamic analysis

- Continuous restructuring of microservices
-IEEE SOSE 2022 Best Paper Award for Soft K-means approach?

Monolith to Microservices: VAE-Based GNN Approach with Duplication @

Consideration, SOSE 2022

;
-

Questions?

WHAT DID WE MISS?

