

Advancing FaaS Applications in the Cloud Continuum

Presentation for Red Hat Research Days -- Nov 16, 2022

Main Speaker: Georgios Kousiouris (HUA) Conversation Leader: Luis Tomás Bolívar (RHT) and Yiannis Georgiou (RYAX)

oPtimized HYbrid Space-time servIce Continuum in $\ensuremath{\mathsf{FaaS}}$

□ Introduction to EU Projects

- PHYSICS EU Project
 - Consortium, WPs
 - Objectives
 - Components
 - Research topics and results
- □ Red Hat role and main technologies
- □ K8s Image Layer Scheduler: benefits of open source

AGENDA

INTRODUCTION TO EU PROJECTS

3 main types

- Research and Innovation Actions (RIA)
 - Typically aiming to deliver prototypes and integrated environments (TRL 3-4-5)
- Innovation Actions (IA)
 - Start from existing prototypes (TRL3-4) and increase the TRL or target initial commercial services
- ✤ CSA actions
 - Support actions aiming at standardization, organization of dissemination etc.
- Budget Sizes: depends on the EC call for proposals

EC calls

- Centered around 7-year Framework Programs
 - FP7 (2007-2013), H2020 (2014-2020), Horizon Europe (2021-2027)
- ✤ Work programmes of 1-2 years ahead issued by the EC
- Consortia of partners organize and target a specific call:
 - PHYSICS RIA call example: <u>https://ec.europa.eu/info/funding-tenders/opportunities/portal/screen/opportunities/topic-details</u> <u>/ict-40-2020</u>
 - Call has a specific high level scope: Smart cloud/edge continuum
 - Balance between academic and industrial partners (both large players and SMEs)
 - Balance between activities: R&D (if a RIA), piloting applications, innovation, dissemination, exploitation
- Work is split into Work Packages (WPs) and tasks inside WPs

The PHYSICS Project

 $oP \texttt{TIMIZED}\ HY \texttt{BRID}\ S \texttt{Pace-time}\ \texttt{servIce}\ C \texttt{ontinuum}\ \texttt{in}\ \texttt{faaS}$

This project has received funding from the European Union's horizon 2020 research and innovation programme under grant agreement no 101017047

 $oPtimized \ HY \\ \text{Brid} \ Space-time \ servIce \ Continuum in \ faaS$

Challenges targeted by PHYSICS

Abstract usage of service offerings and clusters across the Continuum

Adaptation of code to new **serverless** computing paradigms

Optimization of resource **selection** and operation (**global** and **local** level)

Multiple Exploitation Channels and Reusable Artefacts

Project Goals

oPtimized HYbrid Space-time servIce Continuum in ${\sf faaS}$

Visual programming environment to create serverless workflows with reusable patterns and increased semantics

Platform-level functionalities to orchestrate and deploy FaaS workflows and optimize cloud/edge interplay

Provider-local resource management mechanisms to offer competitive and optimized services execution

- H2020 ICT 40 Cloud Computing: towards a smart cloud computing continuum
- Research & Innovation Action
- ♦ Project Budget: 4,985,712€
- ♦ EC Grant (100%): 4,985,712€
- Timeframe: 01-01-2021 to 31-12-2023
- ✤ 14 Partners
- ✤ GFT is Project Coordinator

GFT ■	1. GFT – Italy	InQbit The Q-Bit Innovation	8. INQBIT – Romania
Atos	2. ATOS IT – Spain	INNOVATION SPRINT	9. INNOVATION SPRINT – Belgium
Hewlett Packard Enterprise	3. HPE – Italy	innov-acts	10. INNOV-ACTS – Cyprus
Red Hat	4. RED HAT – Israel	CybeleTech	11. CYBELETECH – France
FUJÎTSU	5. FUJITSU – Germany	FILLING FILEN	12. UPM – Spain
Byte	6. BYTE COMPUTER – Greece	APOKOTTEIO TTANETTIZTHMIO HAROKOPIO UNIVERSITY	13. HUA – Greece
M LAOX	7. RYAX TECHNOLOGIES - France		14. DFKI - Germany

oPtimized HYbrid Space-time servIce Continuum in FAAS

High Level Project Plan

M1-M7	M8-M18	M19-M23	M24-M34	M35-M36
PHASE 1				
DESIGN • Market gap analysis	PHASE 2			
 Requirements gathering Overall architecture 	IMPLEMENTATION (1 st ITERATION) Core features and implementation development 	PHASE 3		2 nd IMPACT • Validation, usability, business
• UC scenarios	• Internal UC validation	1 st IMPACT • Collect feedback from external	PHASE 4	evaluation and impact creation
		audiences including EC	 IMPLEMENTATION (2nd ITERATION) final implementation round targeting the necessary extended functionalities 	PHASE 5
14/11/2022	*** * * * * *	This project has received funding from research and innovation programme u		10

WPs

- ✤ WP2: Requirements and Architecture
- ✤ WP3: User Layer
 - Design Environment & Function DevOps
 - Reusable Patterns, semantics and handles from WP4/5
- ✤ WP4: Platform Services
 - Semantics Management
 - Placement Optimization
 - Performance Analysis
 - Data Services
 - Deployment Orchestration Services
- ✤ WP5: Infrastructure Services
 - Resource Controllers & Semantics
 - Local placement optimizers (container node selection)
- WP6: Applications, Pilots and Platform Integration

WP7 Exploitation, Dissemination and Impact Creation

This project has receive

OPTIMIZED HYBRID SPACE-TIME SERVICE CONTINUUM IN FAAS

PHYSICS OPTIMIZE PHYSICS Technical Architecture

WP3: User Layer

- Design Environment & Function DevOps
- Reusable Patterns, semantics and handles (e.g. controllers) from WP4/5
- WP4: Platform Services
 - Semantics Management
 - Placement Optimization
 - Performance Analysis
 - Data Services
 - Deployment Orchestration Services
- WP5: Infrastructure Services
 - Resource Controllers & Semantics
 - Local placement optimizers (container node selection)

12

Project Pilots

PHYSICS Design Environment

Joint Work from GFT, HPE and HUA

This project has received funding from the European Union's horizon 2020 research and innovation programme under grant agreement no 101017047

OPTIMIZED HYBRID SPACE-TIME SERVICE CONTINUUM IN FAAS

Object Array

Input

Spli

Function

Goals of PHYSICS DE: Enhance, Abstract, **Enrich FaaS application creation**

- Customize function * environment
- Simplify the creation of * complex function workflows
 - Support complex primitives like Joins *
- Exploit reusable patterns *
- **Increase semantics**

call: http.post ards url: https://REGION / - PROJECT_ID / .cloudfunctions.net/multiply body input: \${randomgen_result.body.random} result: multiply_result return_result: return: \${multiply_result}

result: randomgen_result

- randomgen_function: call: http.get

multiply_function:

args:

⑦ 191 Commits		P 13 Branches	🛇 0 Releases		
រុះ 🕅 🕅 🕅 Branch: george 👻	test	New file Upload file HTTPS SSH	https://repo.apps.ocphub.p		ł
gkousiouris 6d25f2fb40 c	ommit to deploy		3	days a	go
data	6d25f2fb40	commit to deploy	3	days a	go
igitignore	718ca469f7	commit to deploy	8 mc	onths a	g
Dockerfile	c3c13bf4fb	commit to deploy	3 w	eeks a	g
Dockerfile_debian	718ca469f7	commit to deploy		8 months ago	
Dockerfilecustom	60e6823a28	Updated to use flow file coming from MinIO		onths a	g
Jenkinsfile	e49fb2c3e5	commit to deploy		onths a	g
Jenkinsfile-base	07b8b88cce	add proper bibeline for building debian image		onths a	g
Jenkinsfile-ow	e49fb2c3e5	commit to deploy	3 mc	onths a	g
README.md	7ec00907dc	commit to deploy	8 mc	onths a	g
python-requirements.txt	718ca469f7	commit to deploy		onths a	

OW

Function Container

F[1]

F[2]

F[n]

Join

Function

FaaS

Invoker

Abstract packaging, testing and * deployment Jenkins

Case	Measured Quantity
Number of errors	10
Errors solved with Node-RED test	7
Errors needing FaaS deployment	3
Local Node-RED test	1-2 seconds
FaaS deployment and test (including image creation)	5 minutes
Time saved	35 minutes

url: https://REGION /-PROJECT_ID /.cloudfunctions.net/randomgen

OPTIMIZED HYBRID SPACE-TIME SERVICE CONTINUUM IN FAAS

Baseline Technologies

http

Node-RED *

[post] /init

TEST MANUALL

http request

- Programming environment for event * driven applications
 - **Built-in nodes** *
 - * NPM extension nodes
 - * Subflows (groups of functions) as nodes
- Combined workflow orchestration and * function execution abilities
- Used as the main execution **runtime** * and function **choreographer** for **PHYSICS** functions

return and and a star programme under grant agreement no 101017047

- Openwhisk
 - **Open source FaaS platform**
 - Supported by IBM

Consul

Controller

CouchDB

- Main tool behind IBM Cloud **Functions Service**
- Can execute functions based on custom container images

Kafka

Invoker

Docker

Docker

Docker

Docker

 $oPtimized \ HY \\ Brid \ Space-time \ servIce \ Continuum \ in \ faaS$

PHYSICS Design Environment Function Artefact Creation Lifecycle

PHYSICS Design Environment Backend

PHYSICS

1

(t)

Admin Panel

Node Red

Branch

george

Logs

oPtimized HYbrid Space-time servIce Continuum in $\ensuremath{\mathsf{FAAS}}$

Design Environment Demo

- Full video available at: <u>https://www.youtube.com/watch?v=D02sFdfCD-o</u>
- Function creation
- Function
 Build
 Managem
 ent
- Function Testing
- Logging
- App creation

min Panel Builds Test Graphs		
vailable Flows:		
HelloFunctionV2	39ef55a8.55f96a 🗸	
Flow 4	a0c24f9aa45959ea	
TEST OW	682ea5c4e31c2450	
Sequence_v2	104348eeda17061b 🗸	
Hello_Service_v2	7cf35d6fe22c0878 🗸	
Hello_DMS	3dc59d6aea6e35a4 ✓	5
Test DMS+SJ	32b38369e8dc6e19	,
splitjoinFunction	e98bf48d7a877d25 🗸	
Choreographer Service	d616400b75eac2fb 🗸	
DYNAMIC CLUSTERS FOR LOCALITY	5f22488fe1374de3	

Embedded Node Red with enriched PHYSICS patterns and annotators- used to create and annotate flows

								Deploy -
*	Q filter nodes	HelloFunctionV2	Flow 4	TEST OW	Sequence_v2	Hello_Service_v2 + -	🕆 debug	i 🖉 🕸 🔻
Admin Panel	✓ PHYSICS Helpers					^		▼ all nodes ▼ 💼 all ▼
Node Red Branch george Logs	Async Get/Set Flow/Global			[post] /init		http 💦		,
	 PHYSICS BranchJoin Edge ETL Service to HTTP out OWSkeleton EdgeETLCro nPastHistory Function 		Executor Mode SizingAnnotator	OW SKELETON with	hello world function			

View and build list of available functions, created in Node Red tool.

🚸 PHYSI	CS	Test	bb5bb4964ce8bd2a 🗸			~
Admin Panel		New test flow	144b41aec7c48ed8	3 🗸		^
ode Red		Document ID	URL	Action name	Built date	
anch		62b972a9f245128e087ca33f	registry.apps.ocphub.physics- faas.eu/custom/master:181	New_test_flow_master_0b0db467-a484-4023- 9acc-626931e3afe5.json	6/27/22, 11:04 AM	Ō
ister gs	G	62b973d4f245128e087ca340	registry.apps.ocphub.physics- faas.eu/custom/master:182	New_test_flow_master_84f3a58e-f092-4697- 8981-c5fe490d2f54.json	6/27/22, 11:09 AM	Ō
5-		Rebuild				
		Next flow	3dcaccf50e4be70d			
		HelloFunctionV2	506cf45e1ab62d	b5 🗸		`

oPtimized HYbrid Space-time servIce Continuum in $\ensuremath{\mathsf{FAAS}}$

Invoke OpenWhisk functions built by user or for other branches

Admin Panel		Function * test
Node Red		My branch
Branch master	1	Test_master_17be2c66-9985-4f47-af47-eb2dcb176124.json
Logs	(f)	Test_master_8af985c9-be02-43ec-a168-2d11513343d3.json
		Test_master_ae3343a9-eb2e-4945-af87-9e60f674fdc2.json
		Test_master_d50e4333-667b-4b5e-9c4c-d17aa9102538.json

Setting parameters for invoke

Put JSON for parameters			
Parameter key *	Parameter value *		
first	test value		
Parameter key *	Parameter value *		
second	other value		
+			
Invoke			

Other HelloSPEC_testNode_george_dcacbf41-e154-42e6-a632-58bb8f20af44.json HelloSPEC_testNode_george_d01e7b5e-d116-4657-b90c-1e578a6c93f5.json HelloSPEC_testNode_george_8dbe280d-ed7b-4ee6-a3f2-373375973965.json

Example view for the result of function invocation.

	Invoke
Check automatically until success - requests: 6, updated at 10:39:47 AM	
Activation ID: 070f49fc6ed74da48f49fc6ed72da488	
ost recent results	
Hello_DMS_george_a763502c-95ae-4f88-91d3-047a2b02d4ba.json	070f49fc6ed74da48f49fc6ed72da488
Params name Blazej	
<pre>Result { "data": "hello Blazej", "dmsResult": { "error": "The action did not return a dictionary." } }</pre>	

App creation from selected graphs: package and manage multiple functions as one application for deployment

Create Graph	
Name: New test	
Flows	
Flow 1	https://registry.apps.ocphub.physics-faas.eu/custom/master:214
Flow 2	registry.apps.ocphub.physics-faas.eu/custom/master:200
Hello_DMS	registry.apps.ocphub.physics-faas.eu/custom/master:190
Test DMS+SJ	https://registry.apps.ocphub.physics-faas.eu/custom/master:193
splitjoinFunction	registry.apps.ocphub.physics-faas.eu/custom/master:203
Choreographer Service	https://registry.apps.ocphub.physics-faas.eu/custom/master:184
App Graph	
Flow 4	registry.apps.ocphub.physics-faas.eu/custom/master:187
TEST OW	registry.apps.ocphub.physics-faas.eu/custom/master:188
	Cancel Create

oPtimized HYbrid Space-time servIce Continuum in $\ensuremath{\mathsf{FAAS}}$

Created Draft view

Consists of the flows that are already built

and

Flows for which had been triggered built process.

Draft 15 Built flows registry.apps.ocphub.physics-faas.eu/custom/george:97 registry.apps.ocphub.physics-faas.eu/custom/george:98 Flows waiting for build Choreographer Service 0 d616400b75eac2fb splitjoinFunction 0 e98bf48d7a877d25

Displaying logs from microservices with useful information

oPtimized HYbrid Space-time servIce Continuum in $\ensuremath{\mathsf{FAAS}}$

User repository synchronization tool

View for checking the status

🕸 PHYSICS	Admin Panel Builds Test Graphs
Admin Panel	Repository
Node Red	Get Status Synchronize
Branch master Logs T	<pre>Checked FETCHED { "raw": "", "remote": "https://repo.apps.ocphub.physics-faas.eu/PHYSICS/test", "branches": [], "tags": [] } STATUS { "not_added": [], "conflicted": [], "conflicted": [], "remamed": [], "remamed": [], "files": [], "staged": [], "head": 0, "behind": 0, "current": "master", "tacking": "origin/master", "detached": false }</pre>

Result of the synchronization of the repository

oPtimized HYbrid Space-time servIce Continuum in $\ensuremath{\mathsf{FaaS}}$

Deployment status

OPTIMIZED HYBRID SPACE-TIME SERVICE CONTINUUM IN FAAS

Usage in a Function

Parameterization

Flow 2	Flo	Edit subflow instance: SplitJoinMultiple						
		Edit subflow template		Delete	Can	cel	Done	
		© Properties				♥ 🔳	e ji	
		Name	Name	e				
		splitsize	• 09	1				
		execution	faas				~	
		maxOWmilliseci						
plitJoinMultiple		innerActionNam	₹ ∎ Z	dockeraction				
		Shell script	▼ ª _Z	/path/to/script				

Available semantic nodes

- Function relative placement (Affinity, Antiaffinity)
- Function Locality (e.g. Cloud/Edge)
 - Dynamically retrieves available clusters
- Importance (High/Medium/Low)
- OptimizationGoal (Performance, Energy etc)
- ✤ Function Sizing
- ✤ CPU Architecture requirements
- Intrafunction monitoring
- DMS interface for linking to data services
 - ✤ Can indicate data locality

PHYSICS Helpers

OPTIMIZED HYBRID SPACE-TIME SERVICE CONTINUUM IN FAAS

Node-RED specific artefacts

- Pattern implementations as Node-RED reusable subflows
 - Exploitable as individual artefacts
 - Inclusion in Node-RED repo with documentation
 - https://flows.nodered.org/collection/HXSkA2JJLcG
 <u>A</u>
 - Included in PHYSICS RAMP as artefacts along with other PHYSICS components
 - https://marketplace.physics-faas.eu/assets

This project has received funding from the Eur research and innovation programme under gr

OpenWhisk Operator

PHYSICS RAMP

- **Reusable Artefacts Marketplace Platform** *
 - https://marketplace.physics-faas.eu/assets *
- Catalogue of available PHYSICS artefacts *
 - Operators, Node-RED flows, Datasets, * Services, Semantic Models
 - Links to repositories and usage guides *
 - Ability to download and use *
 - Looking for testers from the community! *
 - Ability to request a specific asset or an * extension to an asset

Add New Asset	All Dataset F	low NodeRed Flow	Pattern Semantics
Request Asset	Service		
Latest assets Application Ontology Dataset of Baseline Overheads for FaaS Workflows 	Application Ontology •	Dataset of Baseline Overheads for FaaS Workflows	Artificial Delay Test flow
 Artificial Delay Test flow Health-Endpoint Monitoring Circuit-Breaker Priority-Queue Asynchronous Request-Reply Openwhisk Sliding Window Action Monitor Resource Semantics Ontology OW Skeleton Interface for Node-RED flows as functions 	Health-Endpoint Monitoring	Circuit-Breaker	Priority-Queue
	Asynchronous Request-Reply	Openwhisk Sliding Window Action Monitor	Resource Semantics Ontology
	OW Skeleton Interface for Node- RED flows as functions	Edge ETL Data Collector Service Pattern	Request Aggregator Service Flow
g from the European Union's h	orizon 2020		<u> </u>

OPTIMIZED HYBRID SPACE-TIME SERVICE CONTINUUM IN FAAS

PHYSICS Performance Aspects

oPtimized HYbrid Space-time servIce Continuum in faaS

Target Workflow

35

Function Choreography Overheads in Different Modes

Function 2

Execution Loop

O

PHYSICS Set Rate Load Generator

- Node-RED subflow
 - ✤ Can be executed as a function
- ✤ Supports function chaining
 - ✤ To bypass OW timeout

input Data-

-F1&F2 Output-

Function 1

Execution Loop

-input Data-

1

-input Data-

-F1 Output-

Function n

Post

Processing

-collated Output->

Execution Loop

T

oPtimized HYbrid Space-time servIce Continuum in $\ensuremath{\mathsf{FAAS}}$

PHYSICS Load Generator Metrics

PHYSICS
Space time continuum

AWS

eHealth OW

K8S

Azure

eHealth

OW

K8S

measurements

- ✤ Identification of
 - Function sizing considerations
 - Main cluster features
 - As interpreted from relative execution time, wait time, latency
 - Missconfigurations
 - Concurrent containers effect

Clust er	#wo rker s	Worker Size	Container Pool Memory per Node	Location
HUA	1	4 vCPU-8 GB RAM	8192 MB	Greece
AWS	4	4 vCPU-16 GB RAM	8192 MB	Sweden
Azure	3	8 vCPU-32 GB RAM	2048 MB	Netherlands

Client

eH∈alth

OW-DE

HUA

Edge

Red Hat Role and Main Technologies

 $oPtimized \ HY \\ \text{Brid} \ Space-time \ servIce \ Continuum in \ faaS$

Red Hat Main Role

- Infrastructure
 - ✤ Lower layers of the stack
 - ✤ Selection of infrastructure components: K8s, multicluster orchestration & networking
 - ✤ Infrastructure and APIs extensions
- Integration
 - ✤ API definitions (CRDs)
 - Kubernetes Operators
 - ✤ Kubernetes Webhooks

Technologies

- Kubernetes as the core (also OKD, OpenShift Community version)
- Submariner and Open Cluster Management (OCM) for multicluster setup
- MicroShift for low-footprint k8s devices
- Prometheus for monitoring data (both infrastructure and applications)
- OpenWhisk for Function as a Service
- K8s Operators and Webhooks
 - Kubernetes way to manage applications/components running on top of Kubernetes

oPtimized HYbrid Space-time servIce Continuum in faaS

Components architecture

 $oPtimized \ HY \\ Brid \ Space-time \ servIce \ Continuum \ in \ faaS$

Function Registration

 $oPtimized \ HY \\ Brid \ Space-time \ servIce \ Continuum \ in \ faaS$

K8s Image Layer Scheduling: Benefits of Open Source

Two-level scheduling for the continuum

Proposing a two-level scheduling procedure for the placement of the application components to available and suitable candidate cloud and Edge resources:

PHYSICS

- Ist Scheduling Level Global allows the selection of most adapted cluster considering aspects such as performance, energy, etc
- 2nd Scheduling Level Local enables the selection of most adapted node considering FaaS related optimizations, etc

1st level - Global Continuum Placement

- Implemented our first version of Global Continuum Placement component:
 - as a multi-objective scheduler allowing multiple objectives such as: Performance, Energy, etc
 - allowing the expression of both constraints and resources needs
 - the code is published as open-source: <u>https://github.com/RyaxTech/global-continuum-placement</u>
- Currently working on multi-objective optimizations based on linear programming
 - trying to minimize makespan and the amount of downloaded data by containers and function's I/O while considering platform heterogeneity
 - adaptable to various objectives
 - an article is being prepared to be submitted to CCGrid-2023

2nd level - Local Adaptive Scheduling

- Focus in intelligent scheduling algorithms for efficient resource sharing (CPU, memory, storage, network), load balancing and managing resources for FaaS execution.
- Based on the results of our studies using simulations and observations
 - Our first algorithm aims to minimize the delays due to image downloading for function execution: minimizing Cold starts
 - Kubernetes already provides an ImageLocality plugin
 - We have implemented a variation of ImageLocality taking into account the existence of Containers' Layers and trying to favor the execution of functions on nodes where layers of the containers to be deployed exist already. The new scheduler is named LayersLocality

Layers Locality Scheduling Implementation

- ✤ For this implementation we need the following:
 - To get the available layers on each node (name and size)
 - For each new pod compute a score per node considering the cumulative size of already available layers
- For this we had to make changes on various areas of the different involved software without breaking retro-compatibility:
 - Kubernetes internal interfaces to add the Layers info into Kubernetes: optional Layers field in the core.v1.Node.NodeStatus API
 - Container Runtime CRI-O adapted to get available layers name and size on node and send it through annotations (no API change)

Towards pushing Layers Locality Scheduling in upstream K8S

- Open-source code and installation documentation available online on github <u>https://github.com/RyaxTech/k8s-container-layer-locality</u> <u>https://github.com/RyaxTech/kubernetes</u> <u>https://github.com/RyaxTech/cri-o</u>
- Discussions have been started with "sig-scheduling" Kubernetes group to push the new "Layers Locality" scheduler to the upstream Kubernetes.
- Currently working on experiments to compare the new scheduler with the typical Kubernetes scheduler and show the performance improvement for FaaS applications.

Real PHYSICS

Thank you for the attention!

www.physics-faas.eu

linkedin.com/company/physicsh2020

https://twitter.com/H2020Physics

info@physics-faas.eu

This project has received funding from the European Union's horizon 2020 research and innovation programme under grant agreement no 101017047