
DiffKemp: Automatic Analysis of Semantic Differences in Kernel Versions
Viktor Malík 1,2 Tomáš Vojnar 1 Petr Šilling 1

1Brno University of Technology 2Red Hat Czech

/* DIFFKEMP

Introduction

DiffKemp is a framework for automatic static analysis of semantic differences

between different versions of large-scale C projects. Our main target is the

Linux kernel, in particular the kernel of Red Hat Enterprise Linux (RHEL).

The RHEL kernel contains a list of functions, so-called Kernel Application Bi-

nary Interface (KABI), which are guaranteed to remain stable across a single

major RHEL release. The purpose of DiffKemp is to automate checking of se-

mantic stability of these functions, allowing the process of the kernel develop-

ment and deployment to be more efficient and reliable.

The approach of DiffKemp is based on compiling the code to be compared

into LLVM IR followed by using a combination of light-weight program trans-

formations and pattern matching to analyse the code. Thanks to this unique

method, DiffKemp is able to analyse semantic equivalence of code of the size

of the Linux kernel in the order of minutes while providing a very low number of

false positive results. To the best of our knowledge, this is beyond capabilities

of any other existing approach.

General Approach

The analysis in DiffKemp is built on several core concepts:

Compared versions are compiled into the LLVM Intermediate Representation

(LLVM IR) to make the comparison simpler.

Where possible, versions are compared instruction-by-instruction which is

sufficient for the (usually large) parts that are syntactically equal.

Programs are pre-processed with semantics-preserving transformations

(constant propagation, dead code elimination, …) which allow the

instruction-by-instruction comparison to succeeed more often.

If differences are still observed, DiffKemp checks if they correspond to one of

the pre-defined semantics-preserving change patterns. If so, the observed

changes are claimed as semantics-preserving.

DiffKemp Architecture

On its input, DiffKemp takes sources of the compared versions and a list of func-

tions or system parameterswhose semantics should be compared. On its output,

it provides the verdict for each function/parameter (i.e., whether its semantics

changed or not) and, if a semantic change was detected, the diff that caused it.

Snapshot

generator

Snapshot

comparator

Analysis core

built-in patterns

old version

LLVM IR

new version

LLVM IR

LLVM IR verdict

old version

functions/

parameters

new version

custom

patterns

equal/

not equal/

unknown

diff

AMotivation Example

Are the following functions semantically equal?

static struct rela *find_switch_table(...) {

struct rela *text_rela, *rodata_rela;
struct section *rodata_sec;

for (...) {
[...]
rodata_sec = text_rela->sym->sec;
[...]
if (find_symbol(rodata_sec, table_offset)&&

strcmp(rodata_sec->name, C_JUMP_TABLE))
continue;

rodata_rela = find_rela(
rodata_sec, table_offset);

if (rodata_rela) {
if (text_rela->type == R_X86_64_PC32)

file->ignore_unreachables = true;
return rodata_rela;

}
}
return NULL;

}

linux-4.18.0-147.el9/tools/objtool/check.c

static struct rela *find_switch_table(...) {

struct rela *text_rela, *table_rela;
struct section *table_sec;

for (...) {
[...]
table_sec = text_rela->sym->sec;
[...]
if (find_symbol(table_sec, table_offset)&&

strcmp(table_sec->name, C_JUMP_TABLE))
continue;

table_rela = find_rela(
table_sec, table_offset);

if (!table_rela)
continue;

if (text_rela->type == R_X86_64_PC32)
file->ignore_unreachables = true;

return table_rela;
}
return NULL;

}

linux-4.18.0-193.el9/tools/objtool/check.c

renamed variables

inverse condition

Yes, they are! But how to automatically check that?

DiffKemp allows to confirm the equivalence of the functions using several concepts:

The semantic equivalence of the renamed variables is confirmed thanks to using LLVM IR and thanks to tracking semantically

equivalent variables between the compared versions.

The semantic equivalence of the inversed condition is confirmed thanks to a built-in semantics-preserving change pattern.

The Basic Comparison Algorithm

The main semantic comparison algorithm of DiffKemp is built on several basic ideas:

Compared functions are split into smaller chunks using the same number of synchronisation points.

Synchronisation points denote places where the functions are (or should be)

in semantically equivalent states.

The code between corresponding pairs of synchronisation points is checked

for semantic equality.

Placing of synchronisation points:

Always done lazily to maintain high scalability of the approach.

Where possible, synchronisation points are placed after every instruction.

Where not possible, DiffKemp tries to apply one of the pre-defined

patterns and places the following points after the matched code.

an illustration of
synchronisation points

f(x){
S1
y = x;

S3
...

S5
}

f(x){
S2

z = x;
S4
...
...

S6
}

Supported Change Patterns

Built-in semantics-preserving change patterns:

Changes in structure data types Covers changes in user-defined structures

such as additions, removals, or renamings of fields and changes in the

structure size.

Splitting code into functions Covers situations when a part of a function is

moved into a new or an existing function which is called from the place

where the original code was.

Inverse branching conditions Covers situations when a branching condition is

replaced by an inverse condition with the branches swapped.

Code relocation Currently the most complex pattern which covers situations

when a piece of code is moved to a different part of a function (e.g. from

inside a loop to before the loop). The relocated code must be

independent from the code skipped by the relocation.

Changes in source code location Pattern specific to the Linux kernel which

covers invocations of special kernel functions and macros that report the

file name and location of the invocation.

Changes in enumeration values Covers situations when a new value is added

into an enumeration type, causing the remaining values to be shifted.

Custom user-defined change patterns:

DiffKemp allows users to define their own patterns of changes that they wish

to ignore (evaluate as semantically equal) during the comparison process. Note

that these do not necessarily have to be semantics-preserving changes but also

semantics-altering changeswhich are known to be safe and therefore do not have

to pollute the output of the comparison report.

Custom change patterns are represented using parametrized control flowgraphs,

and DiffKemp uses a specialized graph-matching procedure to recognise the pat-

terns inside the compared programs [1].

An Experimental Evaluation

We compared the semantics of KABI functions for the most recent RHEL kernels:

RHEL

versions

KABI

functions

DiffKemp verdict:

equal/not equal/unknown

Total functions

compared

Total LOC

compared

Runtime

(mm:ss)

7.5/7.6 739 608/125/6 4,954 138,546 08:15

7.6/7.7 769 636/126/7 5,155 144,971 08:46

7.7/7.8 798 611/178/9 5,319 149,030 08:44

8.0/8.1 471 360/86/25 3,374 85,514 07:16

8.1/8.2 521 335/160/26 3,607 87,722 13:33

The results show that DiffKemp is able to compare thousands of functions in the

order ofminuteswhile providing small numbers of false results (verified manually).

References

[1] Viktor Malík, Petr Šilling, and Tomáš Vojnar. Applying custom patterns in semantic equality analysis. In Proc. of

the NETYS 2022, pages 265–282. Springer, 2022.

[2] Viktor Malík and Tomáš Vojnar. Automatically checking semantic equivalence between versions of large-scale C

projects. In Proc. of ICST 2021, pages 329–339. IEEE, 2021.

https://github.com/viktormalik/diffkemp/ The project is supported by Red Hat Research, Czech Science Foundation projects 20-07487S and 23-06506S, FIT BUT internal project FIT-S-23-8151, and Europe Horizon project CHESS. vmalik@redhat.com

https://github.com/viktormalik/diffkemp/
mailto:vmalik@redhat.com

