

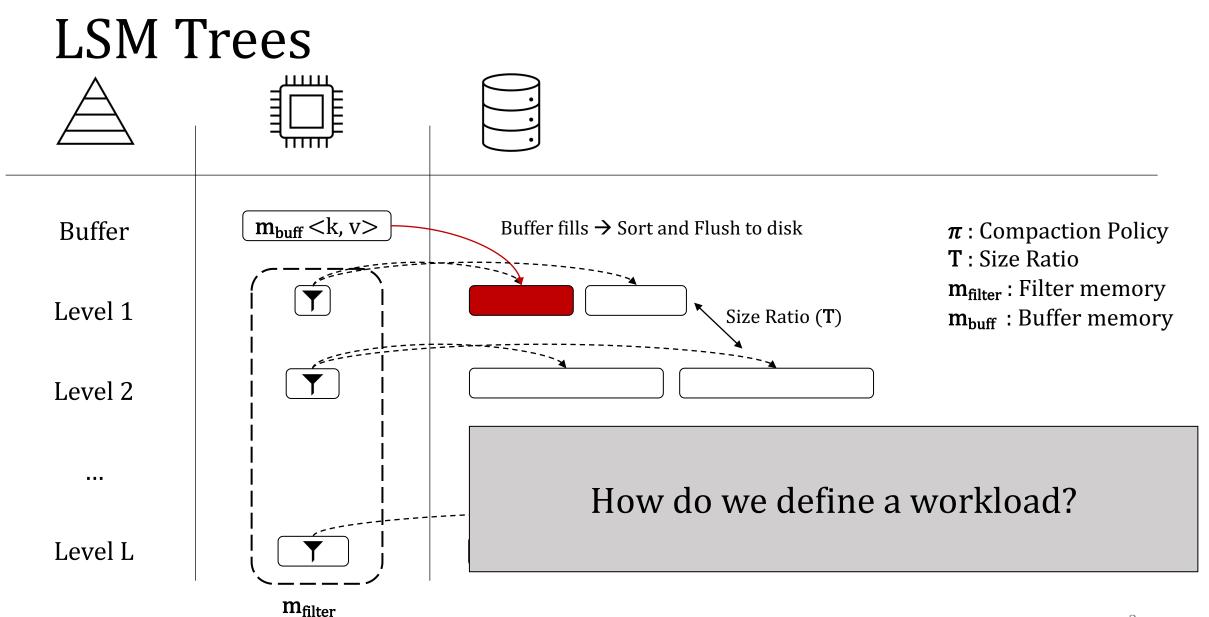
ENDURE: A Robust Tuning Paradigm for LSM Trees Under Workload Uncertainty

Andy Huynh, Harshal A. Chaudhari, Evimaria Terzi, Manos Athanassoulis

Age of Log-Structured Merge-Trees

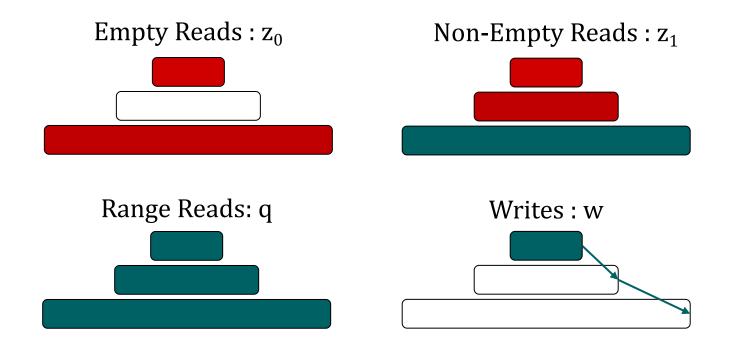
ि DiSC

How do we go about tuning these knobs?



Query Types

Workload : (z_0, z_1, q, w)



Cool! How do we go about tuning?

The LSM-Tuning Problem

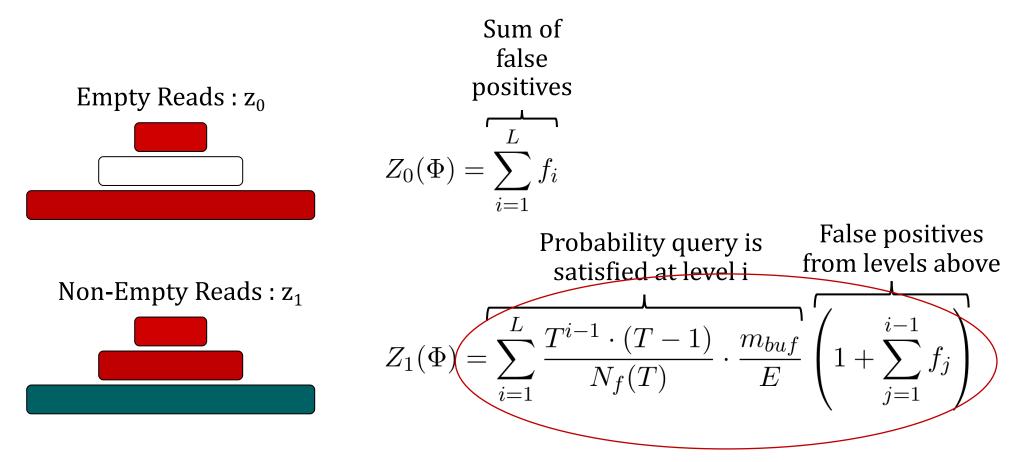
lab Sada DSiO

w: Workload (z_0, z_1, q, w) Φ : LSM Tree Design $(m_{buff}, m_{filter}, T, \pi)$ *C*: Cost

 $\Phi^* = argmin_{\Phi} C(\boldsymbol{w}, \Phi)$

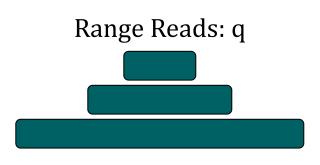
lab DisC

Point Reads

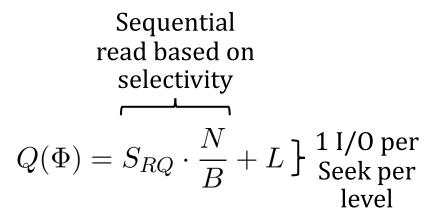


[1] Niv Dayan, Manos Athanassoulis, and Stratos Idreos. 2017. Monkey: Optimal Navigable Key-Value Store. In Proceedings of the 2017 ACM International Conference on Management of Data (SIGMOD '17).

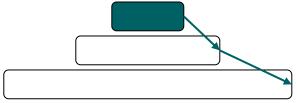
Range-Reads and Writes

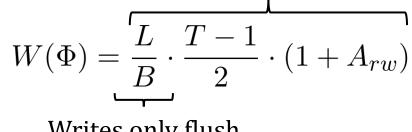


踪 요 DiSC



Average number of merges a write will participate in





Writes only flush once buffer is full

[1] Niv Dayan, Manos Athanassoulis, and Stratos Idreos. 2017. Monkey: Optimal Navigable Key-Value Store. In Proceedings of the 2017 ACM International Conference on Management of Data (SIGMOD '17).

The LSM-Tuning Problem

w:Workload (z₀, z₁, q, w) $\Phi: LSM Tree Design (m_{buff}, m_{filter}, T, \pi)$ C:Cost (I/O)

$$\Phi^* = argmin_{\Phi} C(\boldsymbol{w}, \Phi)$$

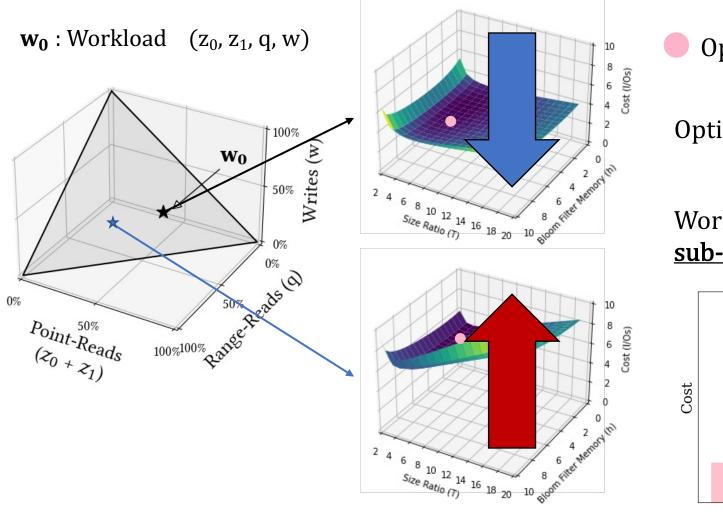
Define our cost function

명 역 DiSC

$$C(\hat{\mathbf{w}}, \Phi) = \hat{\mathbf{w}}^{\mathsf{T}} \mathbf{c}(\Phi) = z_0 \cdot Z_0(\Phi) + z_1 \cdot Z_1(\Phi) + q \cdot Q(\Phi) + w \cdot W(\Phi)$$

Tuning Problems

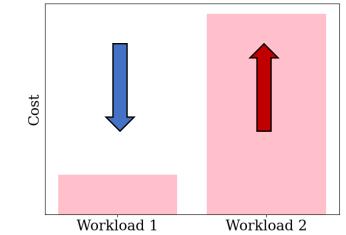
Bb Bb DSiO



Optimal configuration for the workload

Optimal tuning depends on workload

Workload uncertainty leads to **<u>sub-optimal</u>** tuning



Outline

lab Sada DSiO

Introduction

LSM Trees Notation

Nominally Tuning LSM Trees

ENDURE: Robustly Tuning LSM Trees

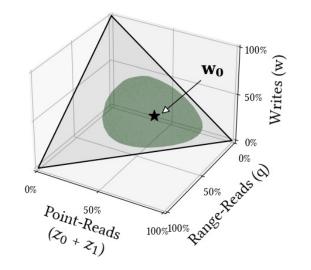
The ENDURE Pipeline

ENDURE Evaluation

The LSM-Tuning Problem

ि स्थ DisC

w : Workload (z_0, z_1, q, w) Φ : LSM Tree Design $(m_{buff}, m_{filter}, T, \pi)$ C: Cost(I/O)



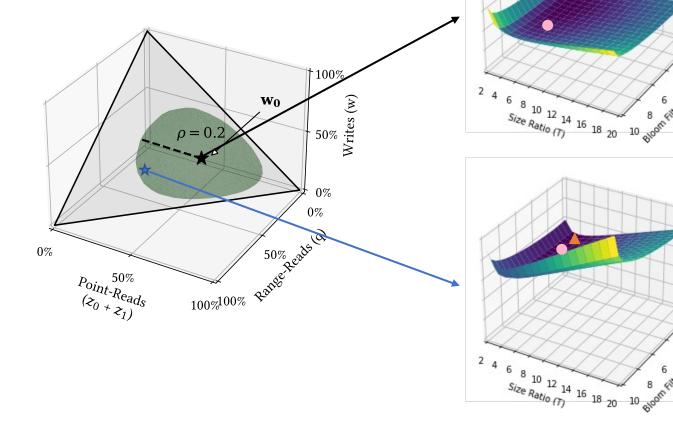
$\Phi^* = argmin_{\Phi} C(\boldsymbol{w}, \Phi)$	Nominal
$U_{\rm w}^{ ho}$: Uncertainty Neighborhood of Workloads ho: Size of this neighborhood	Robust
$\Phi^* = \operatorname{argmin}_{\Phi} \mathcal{C}(\widehat{w}, \Phi)$	

s.t.,
$$\widehat{\boldsymbol{w}} \in U_w^\rho$$

Robust Tuning

Bb Bb DSiO

 $\mathbf{w_0}$: Workload (z_0, z_1, q, w)



 $\Phi^* = \operatorname{argmin}_{\Phi} C(\widehat{w}, \Phi)$ s.t., $\widehat{w} \in U_w^{\rho}$

Cost (I/Os)

6

4

8

6 4

2

2 Memory (m)

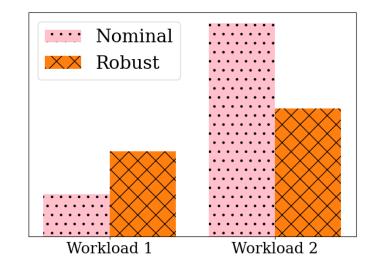
Filter

Cost (I/Os)

Files Menory (D)

Optimal configuration for the workload

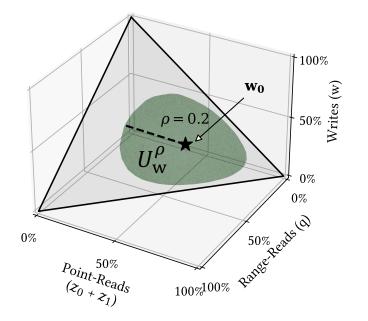
Robust configuration for the workload neighborhood



Uncertainty Neighborhood

Workload Characteristic

踪 요 DiSC



Neighborhood of workloads (ρ) via the KL-divergence

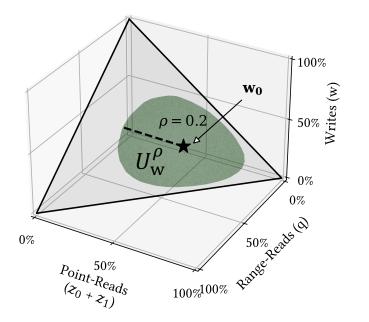
$$I_{KL}(\widehat{w}, w) = \sum_{i=1}^{m} \widehat{w}_i \cdot \log(\frac{\widehat{w}_i}{w_i})$$

 $U_{\rm W}^{
ho}$: Uncertainty Neighborhood of Workloads ho : Size of this neighborhood

Calculating Neighborhood Size

Workload Characteristic

BS de DiSC



Historical workloads

maximum/average uncertainty among workload pairings

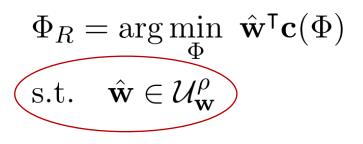
User provided workload uncertainty

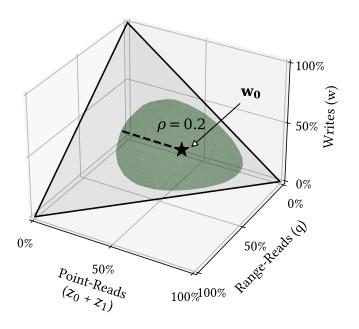
 U_{W}^{ρ} : Uncertainty Neighborhood of Workloads ρ : Size of this neighborhood

Solving Robust Problem

Iterating over every possible workload is expensive

망요 이정 Disc





Solving Robust Problem

Iterating over every possible workload is expensive

Rewrite as a min-max

BS C

Find the dual of the maximization problem to reduce to a feasible problem [2]

$$\Phi_{R} = \arg\min_{\Phi} \hat{\mathbf{w}}^{\mathsf{T}} \mathbf{c}(\Phi)$$

s.t. $\hat{\mathbf{w}} \in \mathcal{U}_{\mathbf{w}}^{\rho}$
$$\mathbf{w} \in \mathcal{U}_{\mathbf{w}}^{\rho} \hat{\mathbf{w}}^{\mathsf{T}} \mathbf{c}(\Phi)$$

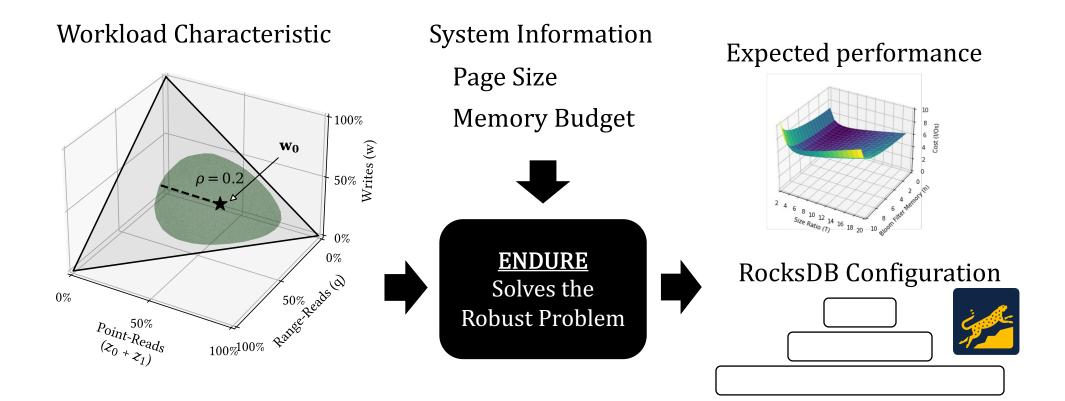
$$\mathbf{w} \in \mathcal{U}_{\mathbf{w}}^{\rho} \hat{\mathbf{w}}^{\mathsf{T}} \mathbf{c}(\Phi)$$

$$\mathbf{w} \in \mathcal{U}_{\mathbf{w}}^{\rho} \hat{\mathbf{w}}^{\mathsf{T}} \mathbf{c}(\Phi)$$

[2] Aharon Ben-Tal, Dick den Hertog, Anja De Waegenaere, Bertrand Melenberg, and Gijs Rennen. 2013. Robust Solutions of Optimization Problems Affected by Uncertain Probabilities.

ENDURE Pipeline

Bb Bb DSiO



Testing Suite

망요 DiSC

ENDURE in Python, implemented in tandem with RocksDB

Uncertainty benchmark

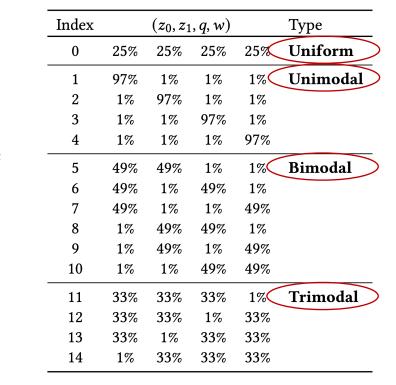
- 15 expected workloads
- 10K randomly sampled workloads as a test-set

Normalized delta throughput

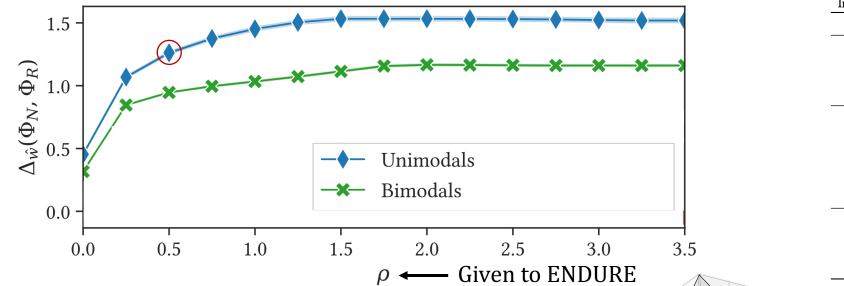
$$\Delta_{\mathbf{w}}(\Phi_1, \Phi_2) = \frac{1/C(\mathbf{w}, \Phi_2) - 1/C(\mathbf{w}, \Phi_1)}{1/C(\mathbf{w}, \Phi_1)}$$

Nominal vs Robust: > 0 is better

1 means 2x speedup



Impact of Workload Type



<u>**Unbalanced**</u> workloads result in overfitted nominal tunings

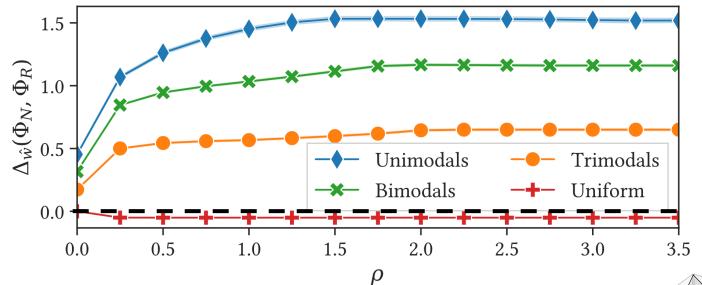
_I	ndex	(z_0, z_1, q, w)				Туре
	0	25%	25%	25%	25%	Uniform
	1	97%	1%	1%	1%	Unimodal
	2	1%	97%	1%	1%	
	3	1%	1%	97%	1%	
	4	1%	1%	1%	97%	
_	5	49%	49%	1%	1%	Bimodal
	6	49%	1%	49%	1%	
	7	49%	1%	1%	49%	
	8	1%	49%	49%	1%	
	9	1%	49%	1%	49%	
	10	1%	1%	49%	49%	
	11	33%	33%	33%	1%	Trimodal
	12	33%	33%	1%	33%	
	13	33%	1%	33%	33%	
	14	1%	33%	33%	33%	

50% E

 $P_{oint-Reads}$ $(z_0 \neq z_1)$

Impact of Workload Type

Bb Bb DSiO



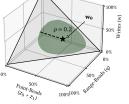
Uniform	25%	25%	25%	25%	0
Unimodal	1%	1%	1%	97%	1
	1%	1%	97%	1%	2
	1%	97%	1%	1%	3
	97%	1%	1%	1%	4
Bimodal	1%	1%	49%	49%	5
	1%	49%	1%	49%	6
	49%	1%	1%	49%	7
	1%	49%	49%	1%	8
	49%	1%	49%	1%	9
	49%	49%	1%	1%	10
Trimodal	1%	33%	33%	33%	11
	33%	1%	33%	33%	12
	33%	33%	1%	33%	13
	33%	33%	33%	1%	14

 (z_0, z_1, q, w)

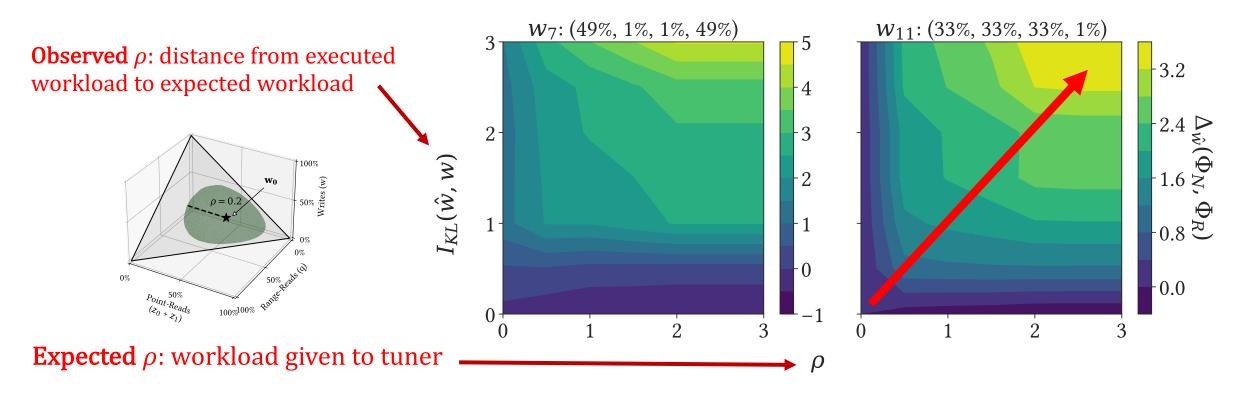
Type

Index

<u>Unbalanced</u> workloads result in overfitted nominal tunings Tuning with uncertainty ($\rho > 0.5$) provides benefits



Relationship of Expected and Observed ρ



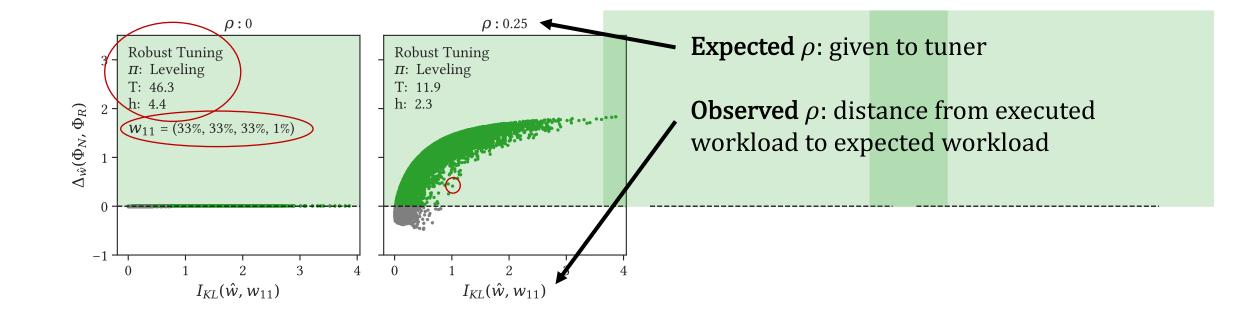
Highest throughput when observed and expected ρ match

Lowest throughput when ρ is mismatched

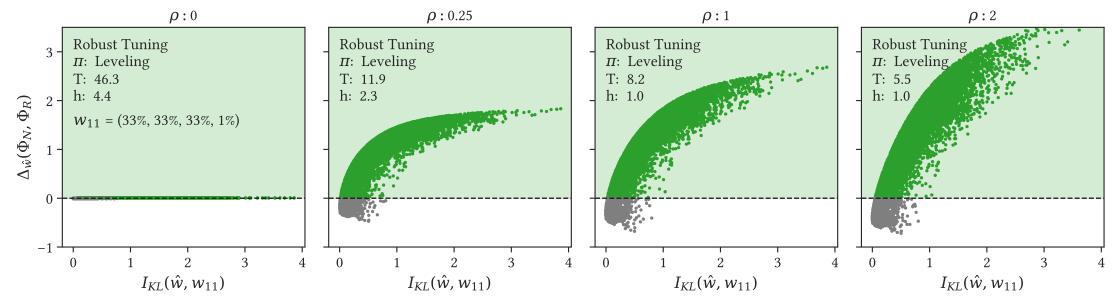
踪 요 DiSC

Impact of Observed vs Expected ρ

망요 이정 Disc



Impact of Observed vs Expected ρ



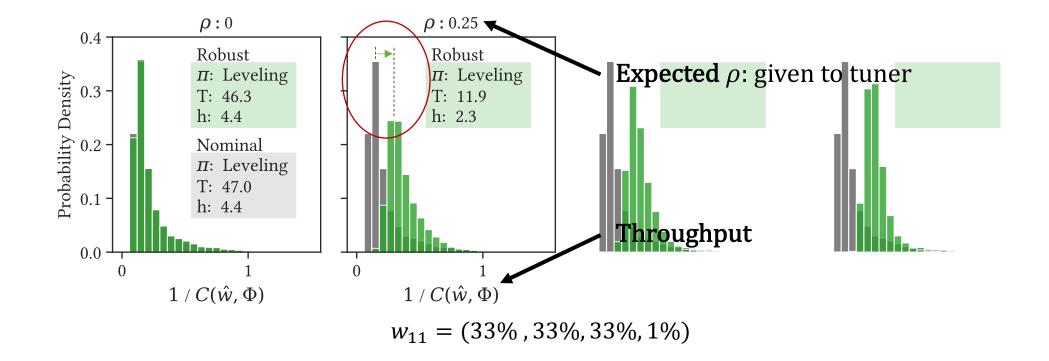
- Higher expected ρ accounts for more uncertainty,
- Potential speed up of 4x

踪 요 DiSC

• Higher expected $\rho \rightarrow$ anticipates writes \rightarrow shallow tree

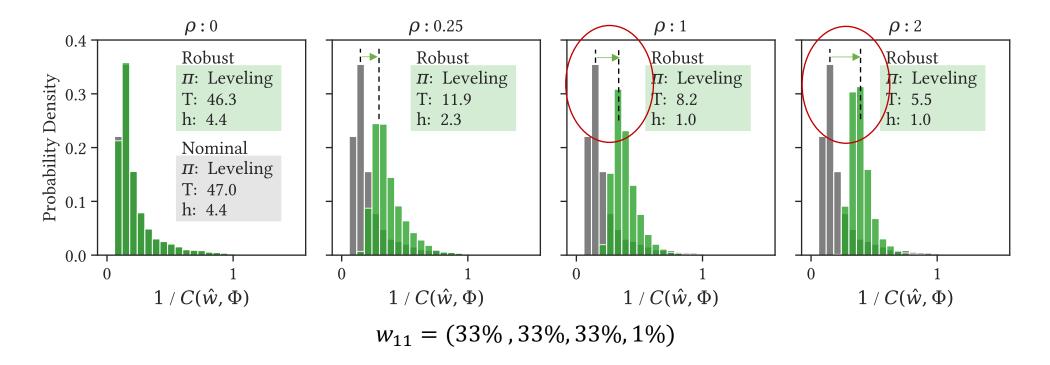
ρ and Performance Gain Distribution

Bab DisC



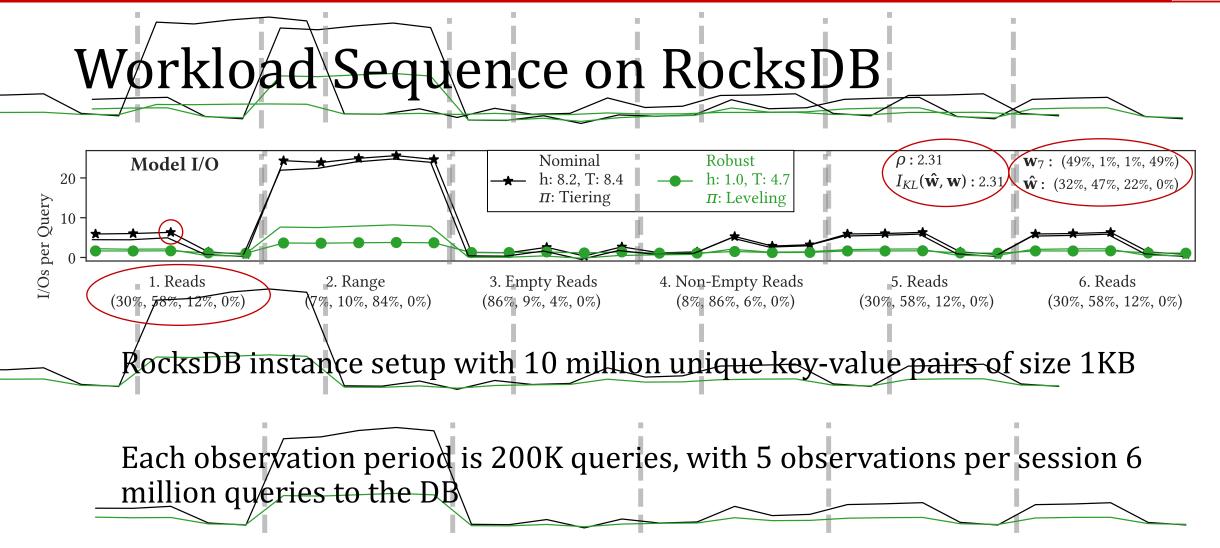
ρ and Performance Gain Distribution

망요 이정 Disc



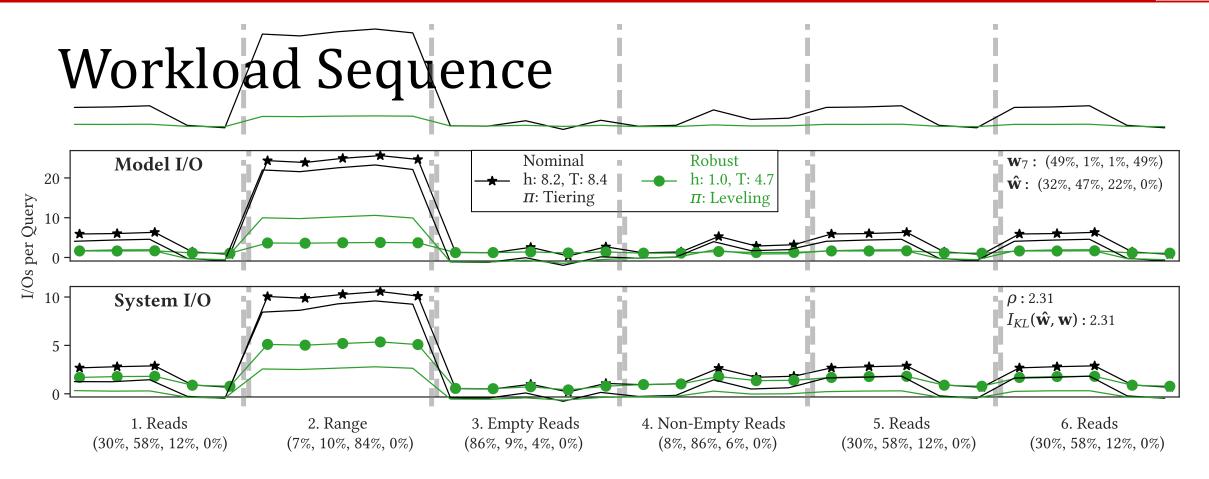
Peak of the distribution moves towards higher throughput as we consider higher uncertainty

26



Writes are unique, range queries average 1-2 pages per level

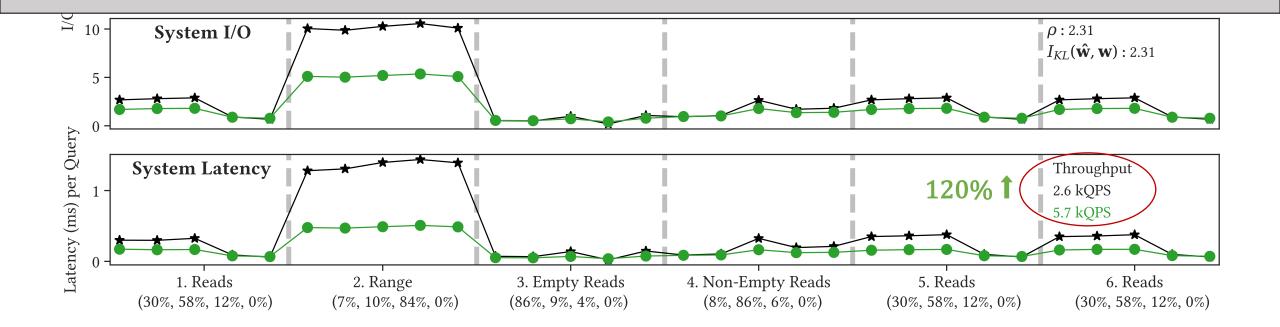
명 역 DiSC



Workload Sequence

망요 이정 Disc

Small subset of results! Take a look at the paper for a more detailed analysis



Thanks!

BS de DiSC

Workload uncertainty creates suboptimal tunings

ENDURE: robust tuning using neighborhood of workloads

Deployed ENDURE on RocksDB

