
Final Report:
Intelligent Data Synchronization for

Hybrid Clouds

David Starobinski
Professor of Electrical and Computer Engineering.

Systems Engineering, and Computer Science
Boston University
Boston MA 02215

Red Hat Collaboratory

January 2023

1 Results

Project objectives. Data synchronization is a core functionality for distributed systems to ensure
(weak) consistency among different, possibly geographically distant components. This technology
plays a key role in computing environments that must keep data synchronized across distributed
and heterogeneous components. The current state-of-the-art in this field consists of a multitude
of protocols leveraging various data structures and coding-theoretic constructions (IBLTs, cuckoo
filters, characteristic polynomials, Bloom filters, etc.). The respective strengths and weaknesses of
these methods are currently not well understood. This makes it hard to determine which among
these methods is the best fit in any given network configuration.

To address the current gap, the PI and his collaborators have developed an open-source software
package, dubbed GenSync [1], that unifies and enhances several state-of-the-art data synchronization
protocols on a common programming platform. The GitHub repository of GenSync is available
at [2].

The purpose of this project was to demonstrate the ability of GenSync to support configurable
synchronization solutions on a common platform for a wide range of edge computing scenarios. A
key goal was to deploy GenSync on the Colosseum testbed [3], located at Northeastern University,
to demonstrate such benefits.

Main outcomes. This project resulted in several concrete outcomes:

• Outcome 1: Survey of current data synchronization solutions. We conducted a
survey of the state-of-art of the literature and technical solutions for data synchronization in
mobile and edge computing environments (e.g., IoT, fog computing, and 5G environments).
We also explored how work from the literature made use of the Colosseum testbed. Our
literature survey can be found in the Appendix.

• Outcome 2: Implementation of GenSync into Colosseum. We deployed GenSync on
the Colosseum testbed. Since all user experiments in Colosseum are run in LXC containers,
we installed the GenSync package within a container provided by the Colosseum team and
updated it as needed to make adjustments.

We used Colosseum’s Boston cellular network scenario to emulate a cellular network in the
vicinity of Boston Common in Boston, Massachusetts. The scenario has two regimes: (1) Sta-
tionary: user devices are stationary with respect to their base stations; and (2) Pedestrian:
user devices are moving at 5 m/s relative to their base stations).

• Outcome 3: Experimental results. The resulting network traces (available bandwidth
and latency) are plotted in Fig. 1, with their extremes annotated. These traces show that
user movement results in wide oscillations of available bandwidth and latency. Using the
average values of bandwidth and latency during the extreme periods, we define two sets of
network conditions against which to evaluate our sync protocols: (1) bad : 1 Mb/s bandwidth
and 50 ms latency; and (2) good: 7 Mb/s bandwidth and 30 ms latency. The resulting total
sync times for the two sets of network conditions and three genSync protocols are plotted in
Fig. 2.

The main takeaway from our experiments is that the IBLT sync protocol [4, 5] performs the
best in both good and bad network conditions. Hence, this protocol seems to be the best fit
for typical edge computing environments.

1

0 200 400 600 800 1000 1200 1400 1600 1800
Time(s)

0

2

4

6

B
an

dw
id

ht
 (M

bp
s) Low bandwidth periodsLow bandwidth periodsLow bandwidth periods

Nodes stationary
Nodes moving at 5 m/s

0 200 400 600 800 1000 1200 1400 1600 1800
Time(s)

30

40

50

La
te

nc
y

(m
s)

High latency area
Nodes stationary
Nodes moving at 5 m/s

Figure 1: Bandwidth and latency traces for Colosseum’s Boston scenario.

0 100 200 300 400 500 600
Differences

0.5

1.0

1.5

2.0

2.5

3.0

Sy
nc

 ti
m

e
(s

)

CPI
IBLT
Cuckoo

Figure 2: Sync time for three GenSync protocols (CPI, IBLT, and Cuckoo) under good network
conditions (solid line) and under bad network conditions (dashed line).

• Outcome 4: Paper writing and submission. We have synthesized the results of this
project into a paper that was submitted to a journal magazine [6]. This paper describes the
APIs of GenSync, and includes the results of our Colosseum’s experiments that showcase the
benefits of GenSync.

2 Other highlights

• Şevval Şimşek attended the Young Gladiators workshop organized by the Colosseum team on
June 6-8, 2022. Through this workshop, she learned the basics and use cases of the Colosseum
testbed and had the opportunity to work along with the team. The workshop was very useful
in helping Şevval gain a deeper insight into the working mechanism of the testbed.

• Our team met with the Colosseum team to introduce our project and discuss challenges that
we faced while using the testbed, including unexpected failures of radio nodes and limitations

2

of the reservation system. The Colosseum team suggested workarounds to overcome some of
these problems.

3 Participants

Funded participants under this project included:

• Prof. David Starobinski (PI).

• Şevval Şimşek (Graduate research assistant).

Collaborators included Prof. Ari Trachtenberg and Novak Boskov.

4 Input on Research Incubation Experience

1. We gratefully acknowledge the support of the Red Hat Collaboratory throughout the project.

2. The mid-term review was helpful in connecting us with the Colosseum research team.

3. We consider this project to be completed.

4. We are actively exploring other applications of GenSync, especially in the areas of blockchains
and smart contracts. Prof. David Starobinski and Prof. Ari Trachtenberg recently received
a $300K grant from NSF to conduct investigations in this area.

3

Appendix A Literature Survey

A.1 Data Synchronization at the Edge

The most primitive approach to data synchronization is executing a complete file transfer when
a small change happens. Foreseeably, this method is extremely slow when working with large
data sizes and causes a lot of redundant data transferred between the parties. To overcome this
redundancy, Tridgell and Mackerras introduced the RSYNC [7] algorithm. The RSYNC algorithm
includes a method to calculate the differences between two (or more) files by splitting the file into
chunks and calculating the checksum values for these chunks. This way, first the checksums are sent
to the other party in order to determine the modified chunks, and in the second step the modified
chunks are sent over the network instead of the whole file.

Subsequently, Wang et al. [8] proposed an architecture for data synchronization based on fog
computing, building on top of the RSYNC algorithm. They introduce fog computing as a middle
computing layer between edge/IoT devices and cloud, which is similar to a cache server and called
it Fog-Sync (FSYNC). By offloading part of the computing and storage work to the fog server,
and with use of the differential synchronization algorithm, they reduce the communication cost
and delay significantly. The FSYNC algorithm leverages the fog layer to minimize the number
of synchronization requests using a threshold system, where the published changes are stored and
distributed only when the threshold is reached. The authors further come up with an enhanced
algorithm, which builds on top of the FSYNC algorithm and adds Reed-Solomon code to ensure
security.

Ramsey and Csirmaz [9] analyze a scenario where multiple replicas of a file system are located on
different devices. When a change is made on one of the replicas, the others do not have the current
state of the document, so a file synchronizer makes them consistent again and preserves the changes.
The authors propose an“algebra” of file system operations, designed to compute the sequence of
operations needed in each replica to reach the common state, making the replicas consistent. This
method is efficient, but a single round of communication creates a higher bandwidth need. Other
works focus on lowering the bandwidth requirements by implementing multiple rounds, unlike
RSYNC’s single round synchronization method.

Yan et al. [10] claim that there are additional savings in bandwidth when multiple rounds are
used and propose a new algorithm for file synchronization using set reconciliation methods for slow
networks. For large collections and low bandwidth networks such as IoT and mobile devices, it is
shown that multiple rounds further reduce communication costs, whereas a single round is more
preferable for synchronizing small collections and in high bandwidth networks.

Suel et al. [11] propose a framework for synchronizing large, replicated collections over slow
networks. Their method includes two phases, map construction and delta compression. During
map construction, the two parties use a multi-round protocol to determine the common parts of the
modified file(s). Then during delta compression, the remaining parts are encoded in relation to the
common parts and transmitted to the other side. For efficient map construction, several techniques
are used, such as recursive splitting, optimized match verification, local and continuation hashes,
and decomposable hash functions. The prototype implementation achieves significant improvements
over RSYNC, achieving 1.9 to 2.8 times faster reconciliation.

4

A.2 Colosseum Use Cases

The Colosseum testbed has been used in several projects focusing on Radio Access Networks
(RANs). OrchestRAN [12] is an orchestration framework for next generation systems that builds
upon the Open radio access network paradigm to serve a practical solution to these challenges.
In this project, the authors use Colosseum testbed to test their prototype using NearRT RAN
Intelligent Controller (RIC) containers and software-defined radios (SDRs). They use SCOPE [13],
a softwarized prototyping platform, to generate datasets on Colosseum and train ML models.

The same team of authors create OpenRAN Gym [14], an open toolbox for data collection and
experimentation with AI in Open Radio Access Network (O-RAN). This practical experimental
toolbox provides end-to-end design, data collection, and testing workflows for intelligent control
in next generation O-RAN systems. The authors demonstrate how the AI/ML solutions designed
with OpenRAN Gym can be used to control a large-scale RAN simulated using SCOPE framework
on the Colosseum wireless network emulator. The said RANs are managed by Open RAN near-RT
intelligent controllers provided by the ColO-RAN [15] framework. The ColO-RAN framework is a
large-scale O-RAN testing framework that builds on computational capabilities of the Colosseum
wireless network emulator. This framework specifically leverages Colosseum as a wireless data
factory to generate large-scale datasets for ML training in a variety of RF environments, benefiting
from the realistic propagation and fading characteristics implemented in the Colosseum testbed.

ChARM [16] (Channel-Aware Reactive Mechanism) is a data-driven O-RAN compliant frame-
work that senses the spectrum to infer the presence of interferences and reacts in real time. The
authors use the Colosseum channel emulator to collect a large-scale waveform dataset to train their
neural networks, and on top of that, to generate and collect Wi-Fi data, they extend the Colosseum
testbed using system-on-chip (SoC) boards running a variant of OpenWiFi architecture. Similarly,
another project by Camelo et. al [17] uses the Colosseum to generate a sample dataset of unknown
radio technologies and measure their semi-supervised learning (SSL) algorithm accuracy.

QCell [18] is a model-free framework for cellular network self-optimization that determines
the optimal scheduling policy for network slices and allocates resources. QCell is prototyped on
Colosseum and trained and tested in a variety of network conditions and scenarios, using the base
stations and radio nodes inside an urban scenario. The authors generate traffic for base stations
and user equipment through iPerf3 to measure network performance and use Colosseum to recreate
virtually indoor/outdoor environments and channel effects such as path loss, fading and mobility.
Another Deep Q-Learning project [19] experimenting on Colosseum applies deep Q-Learning for
dynamic spectrum sharing (DSS). They use one of Colosseum’s ready scenarios, Alleys of Austin,
mimicking mobile operations in an urban environment by five teams. The scenario is used to
evaluate the deep Q-Learning algorithm to show that it can discover and take advantage of spatial
distribution opportunities.

5

References

[1] N. Boškov, A. Trachtenberg, and D. Starobinski, “Gensync: A new framework for bench-
marking and optimizing reconciliation of data,” IEEE Transactions on Network and Service
Management, pp. 1–1, 2022.

[2] N. Boskov, A. Trachtenberg, D. Starobinski, and contributors. GenSync Framework. [Online].
Available: https://www.github.com/nislab/gensync

[3] Colosseum. [Online]. Available: https://www.colosseum.net

[4] M. T. Goodrich and M. Mitzenmacher, “Invertible bloom lookup tables,” in 2011 49th Annual
Allerton Conference on Communication, Control, and Computing (Allerton). IEEE, 2011,
pp. 792–799.

[5] D. Eppstein, M. T. Goodrich, F. Uyeda, and G. Varghese, “What’s the difference? efficient set
reconciliation without prior context,” ACM SIGCOMM Computer Communication Review,
vol. 41, no. 4, pp. 218–229, 2011.

[6] N. Boškov, A. Trachtenberg, and D. Starobinski, “Synchronization: From files to data sets,”
IT Professional, under revision.

[7] A. Tridgell and P. Mackerras, “The rsync algorithm,” 1996. [Online]. Available:
https://openresearch-repository.anu.edu.au/bitstream/1885/40765/3/TR-CS-96-05.pdf

[8] T. Wang, J. Zhou, A. Liu, M. Z. A. Bhuiyan, G. Wang, and W. Jia, “Fog-based computing and
storage offloading for data synchronization in iot,” IEEE Internet of Things Journal, vol. 6,
no. 3, pp. 4272–4282, 2019.

[9] N. Ramsey and E. Csirmaz, “An algebraic approach to file synchronization,” in Proceedings
of the 8th European Software Engineering Conference Held Jointly with 9th ACM SIGSOFT
International Symposium on Foundations of Software Engineering, ser. ESEC/FSE-9. New
York, NY, USA: Association for Computing Machinery, 2001, p. 175–185. [Online]. Available:
https://doi.org/10.1145/503209.503233

[10] H. Yan, U. Irmak, and T. Suel, “Algorithms for low-latency remote file synchronization,”
in IEEE INFOCOM 2008 - The 27th Conference on Computer Communications, 2008, pp.
156–160.

[11] T. Suel, P. Noel, and D. Trendafilov, “Improved file synchronization techniques for maintaining
large replicated collections over slow networks,” in Proceedings. 20th International Conference
on Data Engineering, 2004, pp. 153–164.

[12] S. D’Oro, L. Bonati, M. Polese, and T. Melodia, “Orchestran: Network automation through
orchestrated intelligence in the open RAN,” CoRR, vol. abs/2201.05632, 2022. [Online].
Available: https://arxiv.org/abs/2201.05632

[13] L. Bonati, S. D’Oro, S. Basagni, and T. Melodia, “Scope: An open and softwarized
prototyping platform for nextg systems,” in Proceedings of the 19th Annual International
Conference on Mobile Systems, Applications, and Services, ser. MobiSys ’21. New York,
NY, USA: Association for Computing Machinery, 2021, p. 415–426. [Online]. Available:
https://doi.org/10.1145/3458864.3466863

6

https://www.github.com/nislab/gensync
https://www.colosseum.net
https://openresearch-repository.anu.edu.au/bitstream/1885/40765/3/TR-CS-96-05.pdf
https://doi.org/10.1145/503209.503233
https://arxiv.org/abs/2201.05632
https://doi.org/10.1145/3458864.3466863

[14] L. Bonati, M. Polese, S. D’Oro, S. Basagni, and T. Melodia, “Openran gym: An open
toolbox for data collection and experimentation with ai in o-ran,” 2022. [Online]. Available:
https://arxiv.org/abs/2202.10318

[15] M. Polese, L. Bonati, S. D’Oro, S. Basagni, and T. Melodia, “Colo-ran: Developing
machine learning-based xapps for open RAN closed-loop control on programmable
experimental platforms,” CoRR, vol. abs/2112.09559, 2021. [Online]. Available: https:
//arxiv.org/abs/2112.09559

[16] L. Baldesi, F. Restuccia, and T. Melodia, “Charm: Nextg spectrum sharing through data-
driven real-time o-ran dynamic control,” in IEEE INFOCOM 2022 - IEEE Conference on
Computer Communications, 2022, pp. 240–249.

[17] M. Camelo, A. Shahid, J. Fontaine, F. A. P. de Figueiredo, E. De Poorter, I. Moerman,
and S. Latre, “A semi-supervised learning approach towards automatic wireless technology
recognition,” in 2019 IEEE International Symposium on Dynamic Spectrum Access Networks
(DySPAN), 2019, pp. 1–10.

[18] B. Casasole, L. Bonati, S. D’Oro, S. Basagni, A. Capone, and T. Melodia, “Qcell: Self-
optimization of softwarized 5g networks through deep q-learning,” in 2021 IEEE Global Com-
munications Conference (GLOBECOM), 2021, pp. 01–06.

[19] J. M. Shea and T. F. Wong, “A deep q-learning dynamic spectrum sharing experiment,” in
ICC 2021 - IEEE International Conference on Communications, 2021, pp. 1–6.

7

https://arxiv.org/abs/2202.10318
https://arxiv.org/abs/2112.09559
https://arxiv.org/abs/2112.09559

	Results
	Other highlights
	Participants
	Input on Research Incubation Experience
	Literature Survey
	Data Synchronization at the Edge
	Colosseum Use Cases

