e, RedHat
Enterprise Linux

Writing a K8s Operator for

Knative Functions
DevConf.CZ 2023

Luis Tomas Bolivar ~/?\
Jose Castillo Lema

Red Hat

2

Red Hat

Agenda

1. Introduction
a. PHYSICS project
2. Serverless / Function as a Service (FaaS)
a. Knative
3. Operator pattern
4. Handson
a. Lab description
b. Prizes

c. Useful links

LUIS
TOMAS BOLIVAR

RED HAT TECH READY 2020
CONFIDENTIAL - INTERNAL AND PARTNER
UNDER NDA USE ONLY

whoami

Egals'] ‘S

https://[tomasbo.wordpress.com/

https:/www.linkedin.com/in/luis-tomas-bolivar-al022

260/

https://github.com/Iuis5tb

[tomasbo@redhat.com

‘ Red Hat

JOSE
CASTILLO LEMA

RED HAT TECH READY 2020
CONFIDENTIAL - INTERNAL AND PARTNER
UNDER NDA USE ONLY

whoami

Egals'] ‘S

https://josecastillolema.github.io/

https://www.linkedin.com/in/jose-castillo-lema

https.//github.com/josecastillolema

jlema@redhat.com

‘ Red Hat

Introduction

Red Hat

@ P H YS I CS oPTiMIZED HYBRID SPACE-TIME SERVICE CONTINUUM IN FAAS

‘ ‘ Red Hat
Research

Research Interest Groups (RIGs)

. EMEA
- Israel

THE FRAMEWORK PROGRAMME FOR RESEARCH AND INNOVATION

Horizon 2020
EuroPe_an_ ‘ European Union funding
Commission for Research & Innovation

This project has received funding from the European Union’s horizon 2020 A
research and innovation programme under grant agreement no 101017047 6

P H YS | { S oPTiMIZED HYBRID SPACE-TIME SERVICE CONTINUUM IN FAAS
Capabilities &

Functionalities

WP3 Design
Framgwork WP4 Platform Services

Project Goals =] am o

Applications | .

. 4 Application
Design
= Q > |©

Model -
Semantics

Visual programming environment to o ol s = ———

create serverless workflows with Hoce! Ps

reusable patterns and increased
semantics

Annotations
Controllers & Directives

d:f §
|

Capabilities &
Functionalities

Platform-level functionalities to orchestrate and deploy FaaS workflows and optimize
cloud/edge interplay

Provider-local resource management mechanisms to offer competitive and optimized
services execution

14/11/2022 research and innovation programme under grant agreement no 101017047

This project has received funding from the European Union’s horizon 2020 @ ;

@ P H YS I CS oPTiMizep HYBRID SPACE-TIME SERVICE CONTINUUM IN FAAS
Challenges targeted by PHYSICS

(?) Abstract usage of service offerings and clusters across the Continuum

@ Adaptation of code to new serverless computing paradigms

~ Investigation of space (location of execution)-time (duration of execution) in the
' continuum

Hell Optimization of resource selection and operation (global and local level)

am Multiple Exploitation Channels and Reusable Artefacts

14/11/2022 research and innovation programme under grant agreement no 101017047

This project has received funding from the European Union’s horizon 2020 @ 8

@ P H YS I CS oPTiMIZED HYBRID SPACE-TIME SERVICE CONTINUUM IN FAAS

Architecture / Baseline technologies
[WP3]

(pods, sve,

serviceexports, ...)

Open Cluster Management]
Sl P 0 \

14/11/2022

This project has received funding from the European Union’s horizon 2020
research and innovation programme under grant agreement no 101017047 ?

@ P H YS | CS oPTiMIZED HYBRID SPACE-TIME SERVICE CONTINUUM IN FAAS

Sunday, June 18 « 2:45pm - 3:20pm

Click here to remove from My Schedule.

The talk will focus on a design and development environment coming from the H2020 PHYSICS project, that aims to ease application evolution to the new
FaaS model. It uses the Node-RED open source tool as the main function and workflow runtime. The goal of the environment is to enable a more user friendly
and abstract function and workflow creation process for complex FaaS applications. To this end, it provides an extendable, pattern-enriched palette of ready-
made, reusable functionalities such as workload parallelization, data collection at the edge, function orchestration creation among others. The environment
embeds seamless DevOps processes for generating the deployable artefacts of the FaaS platform (Openwhisk). Annotation mechanisms are also available
for the developer to dictate diverse execution options towards the deployment stacks, including sizing and locality considerations, as well as abilities for
dynamic FaaS applications to continuously leverage the edge-cloud continuum.

14/11/2022 * * '.' This project has received funding from the European Union’s horizon 2020
1 et research and innovation programme under grant agreement no 101017047 10

@ P H YS I CS oPTiMIZED HYBRID SPACE-TIME SERVICE CONTINUUM IN FAAS

Saturday, June 17 « 5:00pm - 5:35pm

Q Towards Container-layer-aware Scheduling Policies

Click here to remove from My Schedule.

Serverless has been gaining popularity as a new way to program and deploy applications on clouds. Function as a service (FaaS) is an approach
encompassed by serverless, extending the FaaS concept by avoiding server infrastructure management.

In this context, functions rely on containers, and deploying new containers can cause several overheads to the platforms and the function's execution (cold
start delays).

Kubernetes-based platforms are used for serverless proposes, and K8S provides an ImagelLocality mechanism to address it, but it relies on entire warm
containers and not on layers.

Therefore, we propose and implement on K8S two new scheduling policies.The first is a ContainerLayer-Aware policy that optimizes function’s placements by
selecting machines with the biggest rate of container layers that can be shared. The second is a Multi-Objective policy for heterogeneous platforms that
reduces at the same time the makespan and the data transferred by functions I/O and container layers.

14/11/2022 :* * *:' This project has received funding from the European Union’s horizon 2020
1 et research and innovation programme under grant agreement no 101017047 1

Knative

Red Hat

OpenShift Serverless

Serverless architectures

Removes the need for....

Provisioning
and Utilization

Operations
and Management

Scaling

& &
& &

Availability and
Fault Tolerance

V0000000

& RedHat

Red Hat Serverless

The Core

Serverless Traits

y 4

Event Driven

Distributed
and Elastic

Easy to get
started

A N

Stateless

Scale on
demand

OpenShift Serverless

FaaS in the cloud

A &

Amazon Lambda

Google Cloud
IBM Cloud Functions Functions
V0000000 ‘ Red Hat

OpenShift Serverless

FaaS in the K8s

(Omm) s .. .
4.+ fission

OPENFARS

® Kubeless “

Apache OpenWhisk

OOOOOOOO

OpenShift Serverless

Knative

Bringing Serverless Applications to Kubernetes

|||=:| SERVING

A request-driven model that serves the container with your application and can "scale to

gro "EVENTING

Common infrastructure for consuming and producing events that will stimulate applications.

s
Xe) FUNCTIONS

&

A programming model that lets you focus on just your code for faster iterations.

[<I>] CLIENT (kn)

Allows you to create resources interactively from the command line or from within scripts

V0000000 ‘ Red Hat

OPENSHIFT SERVERLESS

The "Serverless Pattern”

Event trigger Your produce Results
Application
g
E . ©
HTTP Requests
Kafka Messages
Image Uploaded 18

New Order

Login from user

OPENSHIFT SERVERLESS

The "Serverless Pattern”

A serverless web application

| I HTTP Request

Browser myapp .example.com
Container

Browser

I HTTP Requests

Container

S

Database

OPENSHIFT SERVERLESS

The "Serverless Pattern”

Processing a Kafka message

Kafka Message

& katka
External System .
Container

R @ .
= 26

External System Container
&3 katka

S

Storage

OPENSHIFT SERVERLESS

The "Serverless Pattern”

A serverless web application

| I - Benefits of this model:
HTTP Request '

e No need to setup auto-scaling and load balancers

Browser myapp .example.com
o Scale down and save resources when needed.

o Scale up to meet the demand.
e No tickets to configure SSL for applications
e Enable Event Driven Architectures (EDA) patterns
e Enable teams to associate cgst with IT

e Modernize existing applications to run as serverless

I HTTP Requests containers

Browser

Red Hat Serverless

Where Serverless?

Application with unpredictable or bursty number of requests.
Maximum resource utilization to reduce the carbon footprint
Building event-driven, loosely coupled systems

Low barrier for Developers (Kubernetes is hard)

A/B testing or canary deployments

Seasonal or periodic workload.

microservices or containers and want to leverage serverless

23

Cashless payment systems

Transaction processing auditing

Fraud Detection

Credit checks

Check signature validation through OCR

Image results validation (X-rays, MRIs)
Fast Healthcare Interoperability Resources
Queries

Result notifications

Scheduling services

Test result requests (PDFs, Reports)

Product thumbnail generation
Chatbots and CRM functions
Marketing Campaign notifications
Sales Audit

Content Push

Network Anomaly detection (VNF)
Victim Identification

Network Feature enablement
Traffic Manipulation

Media processing (5G and VNFs)

RedHat

OPENSHIFT SERVERLESS

Serverless Operational Benefits

. More applications
Under provisioning Direct line between IT
Over provisioning Lost business revenue costs & business revenue
Time in capacity planning Poor quality of service .
IT cost of idle resources L U
* -
[. ¢ * L] -
*
90, - =] 7 T — 30 : . e . .
. [0 containers [Requests . . [l Containers . Requests * .
- -
-
-
-

1:02

1:04

1:06

1:08 1:10
Time

1:02
NOT Serverless

1:06

1:08 1:10
Time

with Serverless

Y Y Y Y Y

OPENSHIFT SERVERLESS

Installation experience
"Easy day 1and even better for day 2"

Click Install experience

Developer & admin experience in Console
Built-in event sources

No external dependencies.

"Just works."

Red Hat OpenShift Serverless
S 1

ded by Red Hat

Install

@ Basic Install

& Seamless Upgrades
@ Full Lifecycle

O Deep Insi

Source

Red Hat

Provider

Red Hat

Infrastructure features

Disconnected
FIPS Mode
Proxy-aware

Valid Subscriptions

OpenShift Container
Platform
OpenShift Platform Plus

Prerequisites

Knative Serving (and Knative Eventing respectively) can only be installed into the knative-serving
(knative-eventing) namespace. These namespaces will be automatically created when installing the
operator.

The components provided with the OpenShift Serverless operator require minimum cluster sizes on
OpenShift Container Platform. For more information, see the documentation on Getting started with
OpenShift Serverless.

Supported Features

Easy to get started: Provides a simplified developer experience to deploy and run cloud native
applications on Kubernetes, providing powerful abstractions.

Immutable Revisions: Deploy new features performing canary, A/B or blue-green testing with
gradual traffic rollout following best practices.

Use any programming language or runtime of choice: From Java, Python, Go and JavaScript to
Quarkus, SpringBoot or Nodejs.

Automatic scaling: Removes the requirement to configure numbers of replicas or idling behavior.
Applications automatically scale to zero when not in use, or scale up to meet demand, with built in
reliability and fault tolerance.

Event Driven Applications: You can build loosely coupled, distributed applications that can be
connected to a variety of either built in or third party event sources, powered by operators.

Raadv far tha huhrid cland: Pravidac trila nartahla carvarlace functinnalitv that can rin

‘ Red Hat

Simplify application development/deployment on K8

‘ OPENSHIFT SERVERLESS

Reduce developer toil and cognitive overhead with Knative tools

< (Knative)
& Service
Service \Q

Ingress

26

Kubernetes :

piVersion: extensions/vlbetal
ind: HorizontalPodAutoscaler

metadata:

apiVersion: apps/vl S
kind: Deployment
metadata:
name: frontend
labels:
app: guestbook
spec:
selector:
matchlLabels:
app: guestbook
tier: frontend

name: guestbook
namespace: default
pec:
scaleRef:
kind: ReplicationController
name: guestbook
namespace: default
subresource: scale
minReplicas: 1
maxReplicas: 10
cpuUtilization:
targetPercentage: 50

replicas: 1
template:
metadata:
labels:
app: guestbook
tier: frontend
spec:
containers:
- image: markusthoemmes/guestbook
name: guestbook

resources:
requests:
cpu: 100m
memory: 100Mi
env:

- name: GET_HOSTS_FROM
value: dns

ports:

- containerPort: 80

27

apiVersion: vl
kind: Service
metadata:
name: frontend-service
labels:
app: guestbook
tier: frontend
spec:
ports:
- port: 80
selector:
app: guestbook
tier: frontend

apiVersion: route.openshift.io/vl

kind: Route
metadata:

name: frontend-route
spec:

to:

~70 lines

kind: Service
name: frontend-service

Knative

apiVersion: serving.knative.dev/vl
kind: Service
metadata:
name: frontend
spec:
template:
metadata:
labels:
app: guestbook
tier: frontend

spec:
containers:
— 1image: markusthoemmes/guestbook
resources:
requests:
cpu: 100m
memory: 100Mi
env:

- name: GET_HOSTS_FROM
value: dns

ports:

- containerPort: 80

22 lines

V0000000

Knative Functions

. (N]
Powerful Developer experience
Local Developer Experience $ kn func help
. Usage:
IDE Developer Experience func [command]

Offers multiple build strategies

Available Commands:
build Build a Function project as a container image
completion Generate completion scripts for bash, fish and zsh

Deploy as Knative Service

. config Configure the Function
Project templates : o
create Create a Function project
delete Undeploy a Function
Support for Cloud Events/HTTP - Senllay & Funekien

help Help about any command
info Show details of a Function

Runtimes' invoke Invoke a Function
list List Functions

On cluster build using Tekton/Pipelines

repository Manage installed template repositories
run Run the Function locally
version Show the version

Operator pattern

Red Hat

Example: Kafka operator

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
labels:
app: my-cluster
name: my-cluster
namespace: myproject
spec:
..
kafka:
replicas: 3
.

30

31

Operator pattern

Modifications

User

L 4

Custom Resource

Tracking (éhanfe
vents

O Operator

Reconcile

In case of error

Adjust

Current State

Red Hat Operator Development solution

Kubernetes Operators

Operators simplify management of complex applications
on Kubernetes

e Encode human operational knowledge

e Automatically patch, upgrade, recover, and tune

OPERATOR container-based apps and services
S D K e Kubernetes-native

e Purpose-built for a specific application or service

e Enable “day 2” management

Red Hat Operator Development solution

Encoding and automating Ops knowledge

kubernetes

Prometheus

WITHOUT OPERATORS: REACTIVE WITH OPERATORS: PROACTIVE

Continually checks for anomalies Continually adjusts to optimal state

Alert humans for response Automatically acts in milliseconds

Requires manual change to fix

34

Red Hat Operator Development solution

OPERATOR
FRAMEWORK

The Operator Framework is an open source toolkit to
build and manage Kubernetes Operators, in an
effective, automated, and scalable way.

For Builders and the community

e Easily create application on Kubernetes via a common method

e Provide standardized set of tools to build consistent apps

Operator
For application consumers and Kubernetes users Framework

e Keep installed apps up to date for security reasons and app

lifecycle management Operator
Lifecycle

e Consume of cloud-native / kube-native applications more Management

secure and easier

Operatorhub.i

Red Hat Operator Development solution

Choosing the right tool

HELM ANSIBLE GO

Implementation is declarative Implementation is declarative Implementation is imperative and

and simple and human-readable more complex

Operator functionality is limited Ansible can express almost There is no limit on the

to Helm features any operator functionality functionality you want to
implement

Operator manifest bundle files Operator manifest bundle files

Operator manifest bundle files

(CRD, RBAC, Operator (CRD, RBAC, Operator (CRD, RBAC, Operator
Deployment) are automatically Deployment) are Dep|oyment) are generated from
generated automatically generated the Go source code

35

——

Hands on

Red Hat

37

Red Hat

Lab description

Goal:

e Create a golang operator that deploys an existing knative function

o The Knative function has previously been built and pushed to a private registry

e Extend the operator to build, push and deploy a function located on a github repository

Example CRD:

apiVersion: knf.example.com/vlalphal
kind: KnativeFunction
metadata:
name: knativefunction-sample
spec:
name: test-function
image: localhost:50000/kn-user/test-hw@sha256:79c456
maxscale: "2"
minscale: "1"

concurrency: 1

Example output:

$ kubectl get knativefunction
NAME AGE

knativefunction-sample 5m8s

$ kubectl get ksvc
NAME URL
test-function http://test-function.default.127.0.06.1.sslip.io

$ curl http://test-function.default.127.0.0.1.sslip.io
DevConf.cz 2023!

Prizes

3 Logic | Robotarna boards - github

e Universal programmable toy
designed for teaching programming

® Resembles a game console

e It has 100 RGB LEDs that can serve as a
display, it has numerous buttons and a
buzzer

e Powered by ESP32 microcontroller

e Kids can create custom games and

learn programming while doing so

e Possible to run multiplayer games as
the on-board processor features both,
WiFi and Bluetooth 4

38 Red Hat ‘

https://github.com/RoboticsBrno

39

Red Hat

Useful links

e Knative documentation: https://knative.dev/docs/

e Knative.dev/client Golang API: https://pkg.go.dev/knative.dev/client

® Operator SDK - Go Operator tutorial:
https://sdk.operatorframework.io/docs/building-operators/golang/tutorial/

e Example memcached operator:
https://github.com/operator-framework/operator-sdk/tree/master/testdata/go/v3/memcached-operator

e Intermediate Kubernetes Operators on IBM Developer Skills Network:
https://courses.course-dev.skills.network/courses/course-v1:IBMSkillsNetwork+tCO0201EN+2021T1/course/

Intermediate Kubernetes Operators

Issued by IBM

Intermediate This badge earner has developed skills for building operators with Operator-sdk. They have
Kubernetes Operato s demonstrated an understanding of the ideas and architecture underlying Kubernetes operators,
and successfully constructed and deployed simple Golang, Helm, and Ansible operators.

Learn more

https://knative.dev/docs/
https://pkg.go.dev/knative.dev/client/pkg
https://sdk.operatorframework.io/docs/building-operators/golang/tutorial/
https://github.com/operator-framework/operator-sdk/tree/master/testdata/go/v3/memcached-operator
https://courses.course-dev.skills.network/courses/course-v1:IBMSkillsNetwork+CO0201EN+2021T1/course/

Thank you

Red Hat is the world’s leading provider of
enterprise open source software solutions.
Award-winning support, training, and consulting
services make

Red Hat a trusted adviser to the Fortune 500.

40

linkedin.com/company/red-hat

youtube.com/user/RedHatVideos

facebook.com/redhatinc

twitter.com/RedHat

Red Hat

