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What is Fine-tuning

e | L Ms are pre-trained on specific domains and tasks such as text generation, question answering,
etc. We might want to train the LLM to adapt to our data and task

Red Hat

https://dataman-ai.medium.com/fine-tune-a-gpt-lora-e9b72ad4ad3



What is Fine-tuning?

e LI Msare trained on specific domains and tasks such as text generation, question answering, etc.
We might want to train the LLM to adapt to our data and task

___________________________________________________________________________________

Drawbacks

e Inference latency - the more layers, the longer it
takes for the model to generate an answer
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Fine-tuning with LORA (Low Rank Approximation)
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During training...
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Consider a 100 x 100 matrix AW. That would mean we would have to train 10,000 parameters. If we
decompose it into matrices A and B, which are 100 x 1and 1x 100, respectively, we only have 100
parameters to train in each or 200 in total

Red Hat



After training...
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LLM Strategy Evaluation

WER vs QA Method ROUGE vs QA Method Precision vs QA Method Recall vs QA Method
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WER (Word Error Rate)
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Extractive Abstractive Pretrained Finetuned Extractive Abstractive Pretrained Finetuned

QA Method QA Method

Extractive Abstractive Pretrained Finetuned
QA Method

Extractive Abstractive Pretrained Finetuned
QA Method

https://huggingface.co/spaces/evaluate-metric/wer Red Hat
https://huggingface.co/spaces/evaluate-metric/rouge

https://huggingface.co/spaces/evaluate-metric/bertscore
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https://docs.google.com/file/d/15sxEhQo5jEHTcq6kzf0AdZmd97z6Chka/preview

AN Project Aspen:
ASPEN Bus Factor
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Introduction

What is
Project
Aspen?

Analyzes data from open source projects to empower
contributors and participants to make data driven decisions

about open source communities and projects.

Red Hat



https://chaoss.community/kb/metric-bus-factor/

Bus Factor

e Quantifies the amount of contributors a
project can afford to lose before it stalls by
hypothetically having these people get run

over by a bus

e Typically, itis the smallest number of people

that make up 50% of contributions

Red Hat



How do we define “contributions”?

Commits —> —> Pull Requests

Red Hat



Top 10 Contributors to the Ansible Repository
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Key Insights

There appears to be a trend in the top 10

contributors across all perspectives
eg) 01012f1b, 01000c4d, 01000cc2

The proportion between the top 10 and
‘other’ contributors for each perspective

matches our intuition

Red Hat
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Bus factor as a function of time

Bus Factor of Commits in 6 Month Perioagl
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Conclusion

Thank you

Special thanks to Sanjay Arora, James Kunstle,

Heidi Dempsey, Jen Stacy, and my fellow research
interns

For questions or concerns regarding my projects,
feel free to reach out to me via:

Let's connect!

Red Hat


https://github.com/oss-aspen/Rappel
https://github.com/rh-aiservices-bu/sensor-failure-predication
https://github.com/rh-aiservices-bu/sensor-failure-predication
https://www.linkedin.com/in/christinaexyou/
https://medium.com/@christinaexyou
mailto:chrxu@redahat.com

