CONFIDENTIAL designato

Ask Project Nexodus Docs/Project Aspen

Intern Final Presentation

Christina Xu

CONFIDENTIAL designato

Ask Project Nexodus Docs: Leveraging LLMs for Documentation Q&A

Main strategies for QA tasks

Extractive "Extracts" answer directly from docs based on its similarity to the question

Generative Generates answer not explicitly found in docs eg) ChatGPT

Abstractive Generates answer based on question and

context - context being extracted directly from docs

What is Fine-tuning

• LLMs are pre-trained on specific domains and tasks such as text generation, question answering, etc. We might want to train the LLM to adapt to our data and task

https://dataman-ai.medium.com/fine-tune-a-gpt-lora-e9b72ad4ad3

Δ

What is Fine-tuning?

Traditional approaches are not practical

• LLMs are trained on specific domains and tasks such as text generation, question answering, etc. We might want to train the LLM to adapt to our data and task

Fine-tuning with LoRA (Low Rank Approximation)

Jpdate pretrained weights in the mode

https://dataman-ai.medium.com/fine-tune-a-gpt-lora-e9b72ad4ad3

During training...

Decompose ΔW into A and B

Consider a 100 x 100 matrix ΔW . That would mean we would have to train 10,000 parameters. If we decompose it into matrices A and B, which are 100 x 1 and 1 x 100, respectively, we only have 100 parameters to train in each or 200 in total

After training...

Merge W with ΔW

LLM Strategy Evaluation

Key Idea: human language is difficult to quantitatively evaluate

CONFIDENTIAL designator

11

Project Aspen: Bus Factor

🛛 vooooooo 🛛 🥌 Red Hat

What is Project Aspen?

Analyzes data from open source projects to empower contributors and participants to make data driven decisions about open source communities and projects.

Bus Factor

How high the risk is to a project should the most active people leave?

 Quantifies the amount of contributors a project can afford to lose before it stalls by hypothetically having these people get run over by a bus

• Typically, it is the smallest number of people that make up 50% of contributions

How do we define "contributions"?

We can analyze bus factors from different perspectives

Key Insights

- There appears to be a trend in the top 10 contributors across all perspectives
 eg) 01012f1b, 01000c4d, 01000cc2
- The proportion between the top 10 and 'other' contributors for each perspective matches our intuition

010014b6 01001c87J 010000ed

> 010005ec^J 010006cf

> > 01000ac2

Bus factor as a function of time

Thank you

Special thanks to Sanjay Arora, James Kunstle, Heidi Dempsey, Jen Stacy, and my fellow research interns

For questions or concerns regarding my projects, feel free to reach out to me via: <u>chrxu@redhat.com</u>

Let's connect!

https://github.com/oss-aspen/Rappel

https://github.com/christinaexyou/ask_project_nex odus_docs_(WIP)

https://www.linkedin.com/in/christinaexyou/

<u>https://medium.com/@christinaexyou</u>

