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Quick Facts about Karlstad University

19,000 students

e 260 doctoral students

1,500 staff

e Established 1999

* Teacher education since 1843

* Excellent research groups
— Computer Science (CS)

— Service Research Centre (CTF)




Computer Science

e 800 students
e ~60 staff

— 20+ doctoral students

* Research profiles

— Distributed systems and
communications (DISCO)

— Privacy and security (PriSec)

- SOftwa re q ua | |ty d nd d |g|ta | Our employees come from eighteen countries around the
mOd e rnizatio N (SQU 3 D) world and represent four continents.
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CONNECTED CYBER-PHYSICAL SYSTEMS -
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* Collecting and Making use of billions of sensor data =
* Analyzing data and acting upon it in Real-time =
e Autonomous Decisions guided by algorithms =
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* |n software, virtualized, programmable, upgradable,
commodity infrastructure, open, interoperable, customizable
Increase flexibility, reduce deployment time and cost




3 MAIN PILLARS FOR TRUSTWORTHY I-IOT APPLICATIONS

Industrial 10T applications
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3 MAIN PILLARS FOR TRUSTWORTHY I-IOT APPLICATIONS

Industrial 10T applications

Real-time
Networks
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AIDA Architecture

Control Plane
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AIDA Architecture
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AIDA Architecture
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AIDA Architecture

Controller (ENC)

Centralized User
Configuration (CUC)

(T e I
Software
e e ®
(LomaT] | (Laoe 1 |[L 200 [J{[L a0 [] |
Ops uCn ucz uct [y
Y
cos G
Kubelet | Kubeproxy | Plugins | \:\\
Container Networking [ Container Runtime & ‘1‘
0s
e
KRR
Data Coll

- e e e e s e e es e e es e s e e e e e e SN e G S e G SR e S G G e e e e e e

-I_ Industrial Internet of Things (lloT) -

ion, P ing & Real-time Analyti

Northbound Interface

Centralized Network
Configuration (CNC)

Southbound Interface

NETCONF / YANG

Edge Network & Nodes | |

-

:v' y
ey
S

’ |

L )
! |
! \

D 0 G

Optimizer

Core Cloud

®

Real-time data
processing & analytics

Action |

Delivery & collection services

:
services

: Edge N’oﬂo"
i
& s NSs Fy
—e o
| { UL 2ee 1| {La0e []f ([ 400 []| [[oma]]
’," uc1 uc2 ucn Ops
el cos
[ Pugins | Kubeproxy |  Kubelet

Container Runtime [ Container Networking

0os

g

BEQO DREe:s

Data Collection, Processing & Real-time Analytics

ABojouya) uopewoju|

jouysa) suopesado

ABo,



AIDA Architecture
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App: Application
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Highlights — TSN Control Plane

 SDN based Control Plane for Time Sensitive Networks (TSN):

— Microservice based Centralized Network Controller 2 OpenCNC = Open Source

* Nortbound: 802.1 Qdj, Southbound: NetConf/Yang for pushing configuration, verified through
plugfest

* Kafka-based Monitoring Backend for Telemetry

— Endhost support for configuration of i.225/i.226 TSN cards through detd (intel)
— Joint orchestration of TSN/Talker placement and Network Configuration
* Robust Network (Re-) Configuration

— Synthesizing TSN configurations using external optimizer
* Deep reinforcement Learning algorithm design ongoing
* Digital-Twin based validation approach using simulator in the loop

* Genetic Algorithm for finding tradeoff between optimality and cost for reconfiguration




Highlights — Real-time Performance Monitoring

e Design of AIDA Distributed Observability Framework (DESK)
— Based on literature review on observability of distributed edge and containerized microservices
— Complete implementation based on selected open source tools and metrics
* Experimentation and Analysis of DESK
— Initial DESK overhead and usability analysis
— Fault detection and recovery using monitored data at edge nodes
e Latency Monitoring with eBPF
— Design of ePPing tool for passive RTT measurements
— Filtering and aggregation for increased efficiency
— Validation and performance evaluation (PAM 2023)
— Integration in LibreQoS

— Measurement study at an ISP in the US is ongoing




Highlights — ML pipeline

. Trustworthy ML in Production:
—  New method for using data augmentation for ML testing
—  New methods for ML Testing in production
. Concept Drift and ML Model Degradation:
— Improving scalability of industrial processes using drift handling techniques
—  Proposing an adaptive drift detection mechanism
. ML pipeline and QA
—  DQwithin MLOps
—  Model versioning and performance degradation
—  Formalizing a holistic robust MLOps framework
. Data-Centric ML Approach
—  Data quality scoring approach
—  Evaluation in real-time industrial use cases
— Improve the overall ML performance is on going
. System anomaly detection using historical data.
—  Performing literature study on algorithms and challenged in anomaly detection.

— Anomaly detection of customers energy consumption using historical consumption data.




Further information — selected pointers

)

H. Chahed, et. al., “AIDA—A holistic Al-driven networking and processing framework for industrial loT applications”,
Internet of Things, Volume 22, 2023.

H. Chahed, S. Oechsle “Closing the configuration loop with OpenCNC and Control TSN Frameworks”, TSN/A
conference, September 2023.

H. Chahed, A. Kassler, “Software-Defined Time Sensitive Networks Configuration and Management”, IEEE NFV SDN
2021, 9-11 Nov. 2021.

M. Usman, et. al., "DESK: Distributed Observability Framework for Edge-Based Containerized Microservices,"
EuCNC/6G Summit, June 2023.

S. Sundberg, et. al., “Efficient Continuous Latency Monitoring with eBPF”. Passive and Active Measurement (PAM),
March 2023.

F. Bayram, et. al., “A Drift Handling Approach for Self-Adaptive ML Software in Scalable Industrial Processes”,
IEEE/ACM International Conference on Automated Software Engineering (ASE), Oct. 2022.

A. Chatterjee, et. al., “Testing of Machine Learning Models with Limited Samples: An Industrial Vacuum Pumping
Application”, ACM Joint European Software Engineering Conference and Symposium on the Foundations of Software
Engineering (ESEC/FSE), November 2022.

Github: https://github.com/AIDA-KAU

Web page: https://sola.kau.se/aida/
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AIDA Overall Architecture
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Container-based Edge Computing Platform
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Challenges in Monitoring of Distributed Systems

(+ Modular \ ( . Several
* Distributed alternatives
* Dynamic * Interconnected

components
* Lack of

\ customization

-

* Several

* Diverse Microservices
* Varying * Multiple
requirements Interconnections

\_ J * Dynamic




o . . . i survey
Observability in Distributed Systems A Survy on bsenabilty of Distrbted
ge & Container-Based Microservices

MUHAMMAD USMAN ", (Member, IEEE), SIMONE FERLIN 12,
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Real-time Performance Observability & Optimization Framework

AIDA Overall Architecture
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DistributEd obServability frameworK (DESK)

Conferences > 2023 Joint European Conferenc... @

DESK: Distributed Observability Framework for
Edge-Based Containerized Microservices

Publisher: IEEE

Muhammad Usman ; Simone Ferlin ; Anna Brunstrom ; Javid Taheri  All Authors

|
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DESK Implementation

CNCF hosts around 103 projects
for observability and analysis
(44 projects are open source)

10

https://github.com/AIDA-KAU/Distributed-

Observability-Framework.git

Observability Namespace

5 Visualization &
Notification Service
* Grafana | Prometheus Alert Manager

P&O Service
. *Ansible | Kubectl

Fusion Service

-+ Apache Spark Storage Service

* Prometheus (Metrics)

Delivery Service * Loki (Logs)

2 .Kafka | ZooKeeper
* Opentelemetry collector

» Jaeger (Traces)

Measurement Service

* Telegraf | Promtail | OpenTelemetry SDKs

Measurement Namespace



https://github.com/AIDA-KAU/Distributed-Observability-Framework.git
https://github.com/AIDA-KAU/Distributed-Observability-Framework.git

Experimental Setup

 Hardware: Desktop-based

e 0OS: Ubuntu 22.04.2 LTS
 Kernel: 5.15.0-72-generic

* Kubernetes version: v1.26.0

Industrial Internet of Things (IloT)

* Containerd version: 1.6.21 Kubermetes Clustr
. ‘ Master Node ‘
* ThingsBoard edge loT Platform AR

* Custom-developed Simulated -

_ . L
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Measurements Overhead Experimentation (Metrics)

— Agents are created as Daemonset
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Fault Detection based on Measured Data (1/2)
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Fault Detection based on Monitored Data (2/2)
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Fault Detection/Recovery Using Metrics at Edge Nodes

Pod memory usage (w/o recovery).

—e— app-1-pod —e— app-2-pod —e— app-3-pod —e— app-4-pod
1600
AIDA Edge Compute Cluster Setup — 1400
j
Edge Nodes Controller (ENC) g 1200 A
(_Controller manager ] API ] ([ Scheduler ] & 1000 1
/\N 5 800
>
g 600
Edge Node (3) g 200
3
Edge Node (1) Orchestration Edge Node (2) & 2004 Fault
Notification 0 ¥
-K let Visualization -K ot T T T T T T
@@ @@ = il Storage < Ub-ee 7 @ @@ &1° PE o2t o1 1> q,ﬂf)
' Fusion ' i O o »n° o n® »n°
App-1 App-2 ! Delivery App-1 App-2 Timestamp
uct uc2 - CMS uct uc2
—e— app-1l-pod-5¢ —e— app-3-pod-75 —e— app-4-pod-68 —e— app-2-pod-6f
—— -1-pod-77
od[[od]|Le= oa[oe)
App-3 App-4 Ops App-3 App-4 :';7 1500
ucs uc4 ucs uc4 S 1250
2 1000 |
5
> 750
o
£ 500
=
. . . ° o . °
Detect crashed applications inside a container that is 3 0
0
reported as operational by Kubernetes & o : 5 -
70> 2> 2> 2> ke ke 0
Timestamp

Pod memory usage (with recovery).




33

ML PIPELINE

RED HAT RESEARCH DAYS 2023-09-21

B KAU.SE/CS



Towards Robust ML Systems in Production

Robust performance is essential for trustworthy Al systems (according to EU
guidelines)

DataOps: end-to-end data processing operations in production
ModelOps: the set of operations that are performed on the learning task of the ML

model
Automation: the engine that drives and coordinates the overall operations
MLOps
DataOps ModelOps
r N R
Data Cleaning AutoML
Drift Detection Concept Drift
Anomaly Detection Generalizability
\ : » y
T— Automation —T




Modern ML Systems in Production

Continuous

Integration (CI)

\ 4

Modern ML
Systems

Continuous Delivery

\ 4

Testing and validating code, components, data, and
models

(CD)

\ 4

Continuous Training

\ 4

Not only deploy a single service, but automatically
deploy another service.

(€1

Monitoring (CM)

Continuous

\ 4

Automatically retrain models, when automatically detect
changes and performance degradation

\ 4

Catching errors in production systems, and monitoring
production data.

Experimentatio
Development

Data Scientist/M
Engineering

n/ Continuous
Training

L ML Engineering/Data
Scientist

Continuous

Model Deployment Menfier
ML Engineering/DevOps ML Engineering/DevOps
Engineer Engineer



Deploying Al at Scale

« Continuity and automation .. Towards continuous everything

« Several Challenges:

- Data Quality and Quantity: Large-scale deployment requires a huge
amount of high-quality, labeled data

* Model Performance: Al model degradation

* Integration with existing systems: compatibility and technical
difficulties.

 Maintenance and Updating: Al models need to be maintained and
updated regularly.

> MLOps level O > Manual process
MLOps Levels > MLOps level | > ML pipeline automation
> MLOps level 2 > Automation CI/CD pipeline
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MLOps Lifecycle

\/\/\/

* Added value « Feature engineering * Runtime environments

* Business Requirements * Experiment tracking * Microservices architecture
* Key metrics * Model training & evaluation  CI/CD pipeline

* Data processing * Monitoring &retraining

« ML Lifecycle in MLOps:
+ Design: Project conceptualization and goal-setting.
+ Development: Model building, training, and evaluation.
+ Deployment: Model goes live in production.




Development to Deployment

 Development Environment: Used for model development and testing.

* Production Environment: Where the ML model operates in real-time,
making predictions based on incoming data.

 Once the ML model is developed, we need to move the ML model
into the production environment.

Development environment Production environment

= >
+ V\ ~ Probability of churning
VN 1 of Customer X is 98%...
Data scientist l Training data ' Rea"“fe\dib
é‘“%

ﬁ% ML model in production
0

Developed ML model N
e



Cl/CD

* The use of continuous integration and continuous deployment
« Automating Deployment: of code, including MLmodels.

« Series of Steps: developing, testing, and deploying code, enabling
incremental changes and efficient production deployment.

Continuous
Integration (ClI)

Continuous
Deployment (CD)

Releas>> Deplo;>> Operate

Test




Data-centric problems in Production

e Data verification and training data evolvability

ML decision making correctness and algorithm testing

e Testing for ML model degradation.

* Training Data Evolvability - test the training data against the used model

* Quality of the data: Insufficient data, irrelevant features, non-representative
training data, overfitting, under-fitting, outliers.
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Data Drift and Model Degradation

* Problem Context: reduce operational costs

 Task: prevent costly breakdowns

 Initial Predictive Models: trained on historical data
 Machinery degradation -> Drift -> ML model degradation

ML system
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Dealing With the Problems in MLOps and DataOps

« Building customisable micro services to deal with the custom data and ML problems
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End to End Approach

Sensor Real-world application Configuration Stakeholder
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Self-Adaptive Drift Handling

ML software to predict the minimum
pressure value of a pumping event

The minimum pressure value is predicted every
30 seconds for up to 3 minutes

Evaluate: Predicted value < pressure
threshold

Benefit: Early identification of invalid
pumping events

Industrial process scalability: Introducing a
new furnace to the industry

Fast integration in the predictive system
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Drift Handling for Self-Adaptive ML in Scalable Industrial Processes

 Collect —> Adapt —> Deploy —> Monitor —> Decision

« Shift adaptation: importance weighting, Kernel Mean
Matching (KMM)

ML model: Random Forests(RF) and XGBoost
« Evaluation metric: mean absolute percentage error (MAPE)
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Data Quality Scoring

ML approach . .
- Score n data points N ="
using the pipeline : ’C & -

Configuration file E - -* rl
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« Train ML regression on
the training datasets of
size n

 Predict the score of the
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Data Augmentation for Limited Data
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Detecting and Predicting Faults in Electricity Grid Using Customer
Data and Topology

« Simulating the Overall Topology
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Tracking Changes

SUBSTATION Load = 67.39 Status

Consumption 12.73

CUSTOMER Status

Timestamp =t

Load = 67.39 Load = 59.39

Timestamp = t1 Timestamp = t2




What is Next?

* Implementing End-to-End Services in Cloud.

* Continuous testing for model rollback

 Seamless deployment in production and robustness
e Continuous mutation testing for data augmentation
 Continuous anomaly detection and QA.

. - try new model
Model centric -ty gerived features

Improve the model - typical for competitions
v where data is fixed

What to do when the
performance deteriorate?

- Clean, enrich, extend

Improve the data dataset

1 Data centric
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