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Quick Facts about Karlstad University
• 19,000 students
• 260 doctoral students
• 1,500 staff 
• Established 1999
• Teacher education since 1843
• Excellent research groups

– Computer Science (CS)
– Service Research Centre (CTF)
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Computer Science
• 800 students
• ~60 staff 

– 20+ doctoral students
• Research profiles

– Distributed  systems and 
communications (DISCO)

– Privacy and security (PriSec)
– Software quality and digital 

modernization (SQuaD)
Our employees come from eighteen countries around the 
world and represent four continents.
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CONNECTED CYBER-PHYSICAL SYSTEMS à NOW

• Needs/Trends:
• Collecting and Making use of billions of sensor data à IoT
• Analyzing data and acting upon it in Real-time à Analytics
• Autonomous Decisions guided by algorithms à ML

Sensors
Actuators
Intelligence

TODAY $$$
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CONNECTED CYBER-PHYSICAL SYSTEMS à IN FUTURE

• Characteristics and Benefits
• In software, virtualized, programmable, upgradable, 

commodity infrastructure, open, interoperable, customizable
• Increase flexibility, reduce deployment time and cost

Analyse/Decide/Control
Edge cloud

Sensors
Actuators

IN FUTURE $

Intelligence
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3 MAIN PILLARS FOR TRUSTWORTHY I-IOT APPLICATIONS

Data-Driven, Trustworthy
Industrial IoT applications

Getting
The 
Data 
Fast,

Under 
Guarantees

Processing
the 

Data 
Fast, 

under 
guarantees

Making
Sure, Data 

and 
Decisions

are Correct
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3 MAIN PILLARS FOR TRUSTWORTHY I-IOT APPLICATIONS

Data-Driven, Trustworthy
Industrial IoT applications

Real-time
Networks
à WP1

Real-time
Edge

Processing
à WP2

Real-time
ML-Testing

And
Validation
à WP3
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3 MAIN PILLARS FOR TRUSTWORTHY I-IOT APPLICATIONS

Data-Driven, Trustworthy
Industrial IoT applications

How to 
Configure
Networks
To provide
Required

Guarantees?

How to
Monitor
Big data

Processin
g

Edge
Infrastruct

-ure?

How to 
Verify
That
ML 

Processin
g
Is 

correct?
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AIDA Architecture

Edge Node Edge Node

Control Plane

Real-time Network

Sensors & Actuators
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AIDA Architecture

Edge Node Edge Node
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AIDA Architecture

Edge Node
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AIDA Architecture
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AIDA Architecture
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Highlights – TSN Control Plane
• SDN based Control Plane for Time Sensitive Networks (TSN):

– Microservice based Centralized Network Controller à OpenCNC à Open Source
• Nortbound: 802.1 Qdj, Southbound: NetConf/Yang for pushing configuration, verified through

plugfest
• Kafka-based Monitoring Backend for Telemetry

– Endhost support for configuration of  i.225/i.226 TSN cards through detd (intel)
– Joint orchestration of TSN/Talker placement and Network Configuration 

• Robust Network (Re-) Configuration
– Synthesizing TSN configurations using external optimizer

• Deep reinforcement Learning algorithm design ongoing
• Digital-Twin based validation approach using simulator in the loop
• Genetic Algorithm for finding tradeoff between optimality and cost for reconfiguration 
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Highlights – Real-time Performance Monitoring
• Design of AIDA Distributed Observability Framework (DESK)

– Based on literature review on observability of distributed edge and containerized microservices
– Complete implementation based on selected open source tools and metrics

• Experimentation and Analysis of DESK
– Initial DESK overhead and usability analysis
– Fault detection and recovery using monitored data at edge nodes

• Latency Monitoring with eBPF 
– Design of ePPing tool for passive RTT measurements
– Filtering and aggregation for increased efficiency
– Validation and performance evaluation (PAM 2023)
– Integration in LibreQoS
– Measurement study at an ISP in the US is ongoing
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Highlights – ML pipeline
• Trustworthy ML in Production:

– New method for using data augmentation for ML testing
– New methods for ML Testing in production

• Concept Drift and ML Model Degradation:
– Improving scalability of industrial processes using drift handling techniques
– Proposing an adaptive drift detection mechanism

• ML pipeline and QA 
– DQ within MLOps 
– Model versioning and performance degradation
– Formalizing a holistic robust MLOps framework

• Data-Centric ML Approach
– Data quality scoring approach 
– Evaluation in real-time industrial use cases
– Improve the overall ML performance is on going

• System anomaly detection using historical data.
– Performing literature study on algorithms and challenged in anomaly detection.
– Anomaly detection of customers energy consumption using historical consumption data.
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Further information – selected pointers
• H. Chahed, et. al., “AIDA—A holistic AI-driven networking and processing framework for industrial IoT applications”, 

Internet of Things, Volume 22, 2023.
• H. Chahed, S. Oechsle “Closing the configuration loop with OpenCNC and Control TSN Frameworks”, TSN/A 

conference, September 2023.
• H. Chahed, A. Kassler, “Software-Defined Time Sensitive Networks Configuration and Management”, IEEE NFV SDN 

2021, 9-11 Nov. 2021.
• M. Usman, et. al., "DESK: Distributed Observability Framework for Edge-Based Containerized Microservices," 

EuCNC/6G Summit, June 2023.
• S. Sundberg, et. al., ”Efficient Continuous Latency Monitoring with eBPF”. Passive and Active Measurement (PAM), 

March 2023.
• F. Bayram, et. al., “A Drift Handling Approach for Self-Adaptive ML Software in Scalable Industrial Processes“, 

IEEE/ACM International Conference on Automated Software Engineering (ASE), Oct. 2022. 
• A. Chatterjee, et. al., “Testing of Machine Learning Models with Limited Samples: An Industrial Vacuum Pumping

Application“, ACM Joint European Software Engineering Conference and Symposium on the Foundations of Software 
Engineering (ESEC/FSE), November 2022.

• Github: https://github.com/AIDA-KAU 
• Web page: https://sola.kau.se/aida/ 

https://github.com/AIDA-KAU
https://sola.kau.se/aida/
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DISTRIBUTED OBSERVABILITY 
FRAMEWORK
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AIDA Overall Architecture



22

KAU.SE/CS

Container-based Edge Computing Platform
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Challenges in Monitoring of Distributed Systems

• Several 
Microservices

• Multiple 
Interconnections

• Dynamic

• Diverse
• Varying 

requirements

• Several 
alternatives

• Interconnected 
components

• Lack of 
customization

• Modular
• Distributed
• Dynamic

IT Systems Platforms

ApplicationsUse Case
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Observability in Distributed Systems

Latency 
(Request service time)

Traffic 
(User demand)

Errors 
(Rate of failed requests)

Saturation 
(Overall system capacity)

= 
Observability

Metrics

LogsTraces
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Real-time Performance Observability & Optimization Framework

AIDA Overall Architecture
DistributEd obServability 

frameworK (DESK)

Server-side 
Components/Services

Measurement Agent(s)



26

KAU.SE/CS

DistributEd obServability frameworK (DESK)

Measurement service instruments 
and gathers end-to-end runtime 
performance metrics/logs/traces 
from a diverse set of sources.

Delivery service transfers 
and routes data among 
multiple services.

Fusion service integrates the 
collected data and analyzes it 
e.g., SLA validations.

Storage service provides 
short-term and long-term 
data storage capabilities .

Visualization service accesses 
processed data and transforms it to 
graphical outputs. Notification 
service is the reactive component 
of the architecture that initiates
actions when data values changes. 

P&O service takes care of 
deployment and re-
(configuration) of deployed 
microservices in the edge 
cluster.
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Measurement NamespaceMeasurement Namespace

Observability NamespaceObservability Namespace

DESK Implementation

CNCF hosts around 103 projects 
for observability and analysis 
(44 projects are open source)

Metrics

Logging

Tracing

31

3

10
Measurement Service

• Telegraf | Promtail | OpenTelemetry SDKs
1

Delivery Service
• Kafka | ZooKeeper
• Opentelemetry collector

2

Fusion Service
• Apache Spark

3 Storage Service

• Prometheus (Metrics)

• Loki (Logs)

• Jaeger (Traces)

4

Visualization & 
Notification Service

• Grafana | Prometheus Alert Manager

5 P&O Service
•Ansible | Kubectl

6

https://github.com/AIDA-KAU/Distributed-
Observability-Framework.git 

https://github.com/AIDA-KAU/Distributed-Observability-Framework.git
https://github.com/AIDA-KAU/Distributed-Observability-Framework.git
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Experimental Setup

• Hardware: Desktop-based
• OS: Ubuntu 22.04.2 LTS
• Kernel: 5.15.0-72-generic
• Kubernetes version: v1.26.0
• Containerd version: 1.6.21
• ThingsBoard edge IoT Platform
• Custom-developed Simulated 

Sensor Data Pipeline
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Plugins Metrics
Input Plugins
temp temp

powerstat powerstat_package_current_power_consumption_watts

system load1, load5, load15

cpu usage_idle, usage_iowait, usage_system, usage_user, …

mem total, used, available, available_percent, used_percent

diskio reads, writes, read_bytes, write_bytes, read_time, write_time, … 

net bytes_recv, bytes_sent, interface, packets_recv, packets_sent, …

docker n_containers, n_containers_running, n_containers_stopped, …

kubernetes pod_name, cpu_usage, memory_usage_bytes, …

Output Plugins
kafka Send all these metrics to the Kafka Broker

prometheus Send all these metrics to the Prometheus server

Measurements Overhead Experimentation (Metrics)
– Agents are created as Daemonset
– Measurement interval: 1s, 5s, 10s
– Number of metrics: 90

M
et
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fig
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Fault Detection based on Measured Data (1/2)

• Develop an end-to-end system:
§ Generate a continuous stream of simulated sensor data

Sensor Data Transmission
Normal Valid Regular

Abnormal Valid Irregular

Mixed Valid + Invalid Irregular
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Fault Detection based on Monitored Data (2/2)

Error Logs Connected traces
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Fault Detection/Recovery Using Metrics at Edge Nodes
Pod memory usage (w/o recovery).

Pod memory usage (with recovery).

Detect crashed applications inside a container that is 
reported as operational by Kubernetes
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ML PIPELINE



34

KAU.SE/CS

Towards Robust ML Systems in Production
• Robust performance is essential for trustworthy AI systems (according to EU 

guidelines)
• DataOps: end-to-end data processing operations in production
• ModelOps: the set of operations that are performed on the learning task of the ML 

model
• Automation: the engine that drives and coordinates the overall operationsAI Application

MLOps

Sensor

Historical data Visualisation

Actuator

Data Collection Action

Generalizability

DataOps ModelOps

Data Cleaning

Drift Detection

Anomaly Detection
.
.
.
.
.


AutoML

Concept Drift

.
.
.
.
.


Automation
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Modern ML Systems in Production
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Deploying AI at Scale
• Continuity and automation .. Towards continuous everything
• Several Challenges:

• Data Quality and Quantity: Large-scale deployment requires a huge 
amount of high-quality, labeled data

• Model Performance: AI model degradation
• Integration with existing systems: compatibility and technical 

difficulties.
• Maintenance and Updating: AI models need to be maintained and 

updated regularly.
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WP3 Architecture

Not many details with the 
current architectures in the 
literature, e.g., Google 
reference Architecture. 

Several Software Engineering 
concepts are missing in the 
current architectures
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MLOps Lifecycle

• ML Lifecycle in MLOps:
• Design: Project conceptualization and goal-setting.
• Development: Model building, training, and evaluation.
• Deployment: Model goes live in production.
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Development to Deployment
• Development Environment: Used for model development and testing.
• Production Environment: Where the ML model operates in real-time,

making predictions based on incoming data.
• Once the ML model is developed, we need to move the ML model

into the production environment.
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CI/CD
• The use of continuous integration and continuous deployment
• Automating Deployment: of code, including MLmodels.
• Series of Steps: developing, testing, and deploying code, enabling

incremental changes and efficient production deployment.
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Data-centric problems in Production
• Data verification and training data evolvability
• ML decision making correctness and algorithm testing
• Testing for ML model degradation.
• Training Data Evolvability - test the training data against the used model
• Quality of the data: Insufficient data, irrelevant features, non-representative 

training data, overfitting, under-fitting, outliers.
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Data Drift and Model Degradation
• Problem Context: reduce operational costs
• Task: prevent costly breakdowns
• Initial Predictive Models: trained on historical data
• Machinery degradation -> Drift -> ML model degradation
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Dealing With the Problems in MLOps and DataOps

• Building customisable micro services to deal with the custom data and ML problems
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End to End Approach
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Self-Adaptive Drift Handling
• ML software to predict the minimum 

pressure value of a pumping event
• The minimum pressure value is predicted every 

30 seconds for up to 3 minutes
• Evaluate: Predicted value < pressure 

threshold
• Benefit: Early identification of invalid 

pumping events
• Industrial process scalability: Introducing a 

new furnace to the industry
• Fast integration in the predictive system

Soldified Ingot

Metal Pool

Slag Pool

Stub

Electrode

Ram

Power
Supply
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Drift Handling for Self-Adaptive ML in Scalable Industrial Processes

• Collect —> Adapt —> Deploy —> Monitor —> Decision
• Shift adaptation: importance weighting, Kernel Mean 

Matching (KMM)
• ML model: Random Forests(RF) and XGBoost
• Evaluation metric: mean absolute percentage error (MAPE)

Furnace A

Furnace B

Pressure

Records  Furnace A

Dataset Importance

Weighting
ML Model Results

 Furnace B

Industrial
process

ML software
adaptation

ML software
deployment

Monitoring and
observability

Data
acquisition

Data
storage

Industry-based
action
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Data Quality Scoring
• ML approach
• Score n data points 

using the pipeline 
approach

• Train ML regression on 
the training datasets of 
size n

• Predict the score of the 
testing dataset of size l

• DQSOps: Continuous 
Data Quality Scoring 
Framework for Data-
Driven Applications
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Figure 1: DQSOps framework, the red path represents the initialization phase.

3.1.4 Timeliness Score. Timeliness, or data currency, is a semantic
measure that characterizes whether the data �ts the application
domain [29]. To quantify the timeliness of the data, we used a
goodness-of-�t test. Goodness-of-�t tests measure the likelihood
that current data are sampled from a speci�c cumulative distri-
bution function(cdf) or probability density function (pdf) of the
underlying data-generating distribution [2]. Several goodness-of-
�t test techniques can be applied according to the nature of the
data [17]. The most popular tests are the Kolmogorov-Smirnov,
Anderson-Darling, and Cramér-vonMises statistical tests [21]. Each
test calculates test statics that is interpreted for the �tness of the
data with the compared distribution.

In our experiments, a two-sample Kolmogorov-Smirnov statis-
tical test is used to calculate the goodness-of-�t metric. Kolmogorov-
Smirnov test is a non-parametric statistical tool to determinewhether
two samples are drawn from the same distribution [48]. The main
motivation for adopting the Kolmogorov-Smirnov test is that it
is a powerful method for small subsets [3], as in our use-case
settings. For two empirical cumulative distribution functions �̂1
and �̂2 for two independent random samples - = -1, . . . ,-= and
. = .1, . . . ,.< respectively, the Kolmogorov–Smirnov test statistic

is computed as [32]:

 ( = max
1686#

���̂1 (/8 ) � �̂2 (/8 )�� , (1)

where / is the combined sample of - and . , # = = +<.

3.1.5 Skewness Score. In real-world applications, especially the
Internet of Things (IoT), where data are collected from sensors,
distributional drift (or shift) is one of the most frequent data issues
in the system [23]. Data �ows are validated against distributional
deviations that induce skewness in the data distribution [11]. To
calculate the distributional skewness score, the divergence mag-
nitude can be calculated to measure the dissimilarity between the
distributions of the current data window and the historical data [34].
There are numerous methods to calculate the divergence measure;
Jensen-Shannon (JSD) and Kullback-Leibler (KLD) Divergences are
the most popular ones [44].

For our framework, we have used the JSD metric to calculate the
skewness score. JSD metric is a symmetrization of the KLD metric.
The main property of JSD is that it is bounded in the interval
[0, 1], while the KLD value may be in�nite [37]. According to JSD,
the dissimilarity between two probability distributions % and & is

4
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Data Augmentation for Limited Data
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Detecting and Predicting Faults in Electricity Grid Using Customer 
Data and Topology
• Simulating the Overall Topology
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Tracking Changes
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What is Next?
• Implementing End-to-End Services in Cloud. 
• Continuous testing for model rollback
• Seamless deployment in production and robustness 
• Continuous mutation testing for data augmentation
• Continuous anomaly detection and QA. 

ModelData

ModelData

Model centric 
Improve the model

Data centric 
Improve the data

What to do when the  
performance deteriorate?

- try new model

- try derived features

- typical for competitions 

where data is fixed

- Clean, enrich, extend 
dataset.
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kau.se/cs
Committed to excellence in distributed systems and 
communication, security and privacy, and software 

quality


