
CoDesign in Action:
Dynamic Infrastructure Services Layer (DISL)

1

Ahmed Sanaullah
Senior Data Scientist
Red Hat Research

Jason Schlessman
Principal Software Engineer
Red Hat Research

Ulrich Drepper
Distinguished Engineer
Red Hat Research

Overview

● The value of co-design

● The value of open source hardware tooling

● CoDes lab @ Red Hat - BU Collaboratory

● The value of FPGAs in particular

● Why are FPGAs so difficult to use?

● Dynamic Infrastructure Services Layer (DISL)

● Demo: Building a custom wireless security system

using off-the-shelf components

2

General Purpose Software
Stack

General Purpose Hardware
Stack

Optimized Application

Optimized Software Stack

Application

General Purpose Hardware
Stack

Optimized Application

Optimized Software Stack

Optimized Hardware Stack

Software optimizations Co-designUnoptimized workload

The value of co-design

3

Lower cost and greater
accessibility

Greater flexibility /
customizability for IP

blocks and tooling

Increased innovation and
community collaboration

No lock-ins Better security and
transparency

More applications and
use cases

The value of open source hardware tooling

4

An on-premise research lab at Boston University as part of the Red Hat - BU collaboratory
Provides the infrastructure and engineering foundation needed to support co-design research

Shared/Remote Specialized
Hardware Infrastructure

The shared infrastructure
deadlock

CoDes as an on-premise
incubation step

CoDes

System Support for
Specialized Hardware

Shared/Remote Specialized
Hardware Infrastructure

System Support for
Specialized Hardware

CoDes Lab @ Red Hat - BU Collaboratory

5

 vs. ASICs
● Faster time to market
● Lower risk of over-specialization
● Prevents vendor lock-in of the

software stack
● Can emulate/test software for

ASICs
● Cheaper for smaller numbers

vs. Microcontrollers
● Greater flexibility in how

applications are deployed
● More connectivity options for

external I/O
● Higher energy efficiency
● Better performance
● Prevents vendor lock-in of the

software stack
● Do not have to compete with

tools like FreeRTOS

Microcontrollers FPGAs
Application Specific
Integrated Circuits

Programmability Performance

The value of Field Programmable Gate Arrays (FPGAs)

6

Application
requirements

HW Component
Library

Inefficient development flow between software
developer and hardware developer

Custom FPGA system stack

Why are FPGAs so difficult to use?

7

Dynamic Infrastructure
Services Layer (DISL)

8

R
ED

 H
AT R

ESE
A

R
C

H

Hardware (Verilog, parameters,...) Software (scripts, softcore files,...)

D
I
S
L

import DISL
sys = DISL.new(name='test')
sys.add_softcore(type='riscv')
sys.add_memory(size='32kB')
sys.add_debug(baud=115200)
sys.add_timer(resolution='us')
sys.build(board=’xyz’)

Domain-specific
language

A system for offloading
network packet
filtering

Generate

Generative AI

System Builder

Domain-specific
abstractions

Generate

System Configuration IP Configuration + DISL
Component Library

Parser / Compiler

S
W

System Builder

Definitions

Component Library

Board-specific IP
block

H
W

Board-specific IP
blockBoard-specific IP

blockBoard-specific IP
block

The DISL abstraction layer

9

import DISL
sys = DISL.new(name='test')
sys.add_softcore(type='riscv')
sys.add_memory(size='32kB')
sys.add_debug(baud=115200)
sys.add_timer(resolution='us')
sys.build(board=’xyz’)

Domain-specific
language

A system for offloading
network packet
filtering

Generate

Generative AI

System Builder

Domain-specific
abstractions

Generate

Parser / Compiler

System Configuration

Supported
boards

Module
declaration and

parameter
customizationExternal I/O

Custom signals
(Intrinsics)

Interconnect
specification

Module port
overrides

SW interface: System Configuration

10

Board-specific
IP block

Template for
interfacing

generic HDL

IP
Configuration

Board-specific
parameters and

default values

Board-specific
HDL

Generic HDL +
interfaces for
board/system

HDL

Parameter
mapping
functionGeneric

parameters and
default values

Abstracted
parameters and
default values

DISL
Component

Library

Component
library

HW interface: IP Configuration and DISL Component Library

11

IP block for a
different board

Template for
interfacing

generic HDL

IP
Configuration

Board-specific
parameters and

default values

Board-specific
HDL

Parameter
mapping
function

Abstracted
parameters and
default values

DISL
Component

Library

HW interface: IP Configuration and DISL Component Library

12

FPGA

PCIe IP

Hardened
Logic User logic

Config.
space
regs Virtqueues

Building the DISL component library: PCIe subsystem

13

Building the DISL component library: Ethernet subsystem

14

Address
Decode

Bank Machine

Bank Machine

Bank Machine

Bank Machine

Arbiter

PHY

User
Interface

RefreshArbiter

Command
Loader

Read
Address

FIFO

Refresh

System
Interface DDR

System
Interface

DDR
Controller

DDR

Typical IP usage Potential for compile-time and run-time configurability

Read
Data

Building the DISL component library: DDR subsystem

15

Hardware (Verilog, parameters,...) Software (scripts, softcore files,...)

System Builder

Module
Instantiation

System Configuration

IP Configuration +
DISL Component

Library

Parameter
Evaluation

Interconnect
Generation

Compile-time
Dependencies

Runtime
Support

Definitions

Namespaces

Protocols

Intrinsics

DISL System Builder

16

Demo:
Building a custom wireless
security system using
off-the-shelf components

17

R
ED

 H
AT R

ESE
A

R
C

H

● No vendor cloud lock-in

● Low cost, off-the-shelf components

● Open source hardware IP and software tooling

● Highly flexible design that can be customized to meet performance/energy constraints

● Ability to wirelessly: i) reconfigure the FPGA, ii) reprogram any running softcores, and iii)
communicate with the application.

● Provide a secure design for managing devices in the field

Requirements

18

Major open source tooling and IP blocks

RISC-V toolchain https://github.com/riscv-collab/riscv-gnu-toolchain

OpenOCD (ported) https://github.com/openocd-org/openocd

ArduCam Arduino library https://github.com/ArduCAM/Arduino

Espressif ESP-IDF https://github.com/espressif/esp-idf

Mosquitto https://github.com/eclipse/mosquitto

Tensorflow https://github.com/tensorflow/tensorflow

PicoRV32 RISC-V Softcore https://github.com/YosysHQ/picorv32

JPEG decoder IP block https://github.com/ultraembedded/core_jpeg

UART controller https://nandland.com/uart-serial-port-module/

Major proprietary tooling and IP blocks

Vivado For synthesis + Place & Route - open source tooling currently does not support certain PHYs

FPGA PHYs Vivado MIG PHY for DDR3, BSCANE2 PHY for JTAG support, PLLs for clock generation

What you’ll see in this demo: open tooling and IP blocks
(to the greatest extent possible)

19

100MHz oscillator
Block RAM + 256MB DDR3 Memory

Arduino/chipKIT connectors
4x PMOD connectors

Ethernet PHY

Arty A7-35TCmod A7-35T

12MHz oscillator
Block RAM only

44 GPIOs
1x PMOD connector

What you’ll see in this demo: multiple FPGA boards

20

Microcontroller
(ESP32-S3)

FPGA
(Cmod A7, Arty A7)

ASIC
(ArduCam)

What you’ll see in this demo: multiple hardware types

21

Part B: Secure wireless managementPart A: Application co-design

Host CPU

ArduCam
Mini 2MP

BME280
Temperature

Sensor

FPGA

SPI/I2C I2C

USB

Host CPU

ArduCam
Mini 2MP

BME280
Temperature

Sensor

FPGA

SPI/I2C I2C

USB

WiFi

Microcontroller

Demo overview

22

Part A:
Generating and optimizing
the hardware design

23

R
ED

 H
AT R

ESE
A

R
C

H

Host CPU

Power Meter

ArduCam
Mini 2MP

BME280
Temperature

Sensor

Cmod A7-35T
FPGA

Arty A7-35T
FPGA

ArduCam
Mini 2MP

SPI/I2C
I2C

SPI/I2C

USB

USB

USB

Hardware setup

24

Web application

25

Host CPU

Power Meter

BME280
Temperature

Sensor
Channel B

ArduCam
Mini 2MP

Chip
Manager

FT2232H

Debug
(UART)

I2C Bus

Programmer

PicoRV32
Softcore

CacheChannel A

JTAG TAP
GPIO FPGA Chip

Timer

Generating and testing a simple System on Chip (SoC)

26

https://docs.google.com/file/d/1FgXY6jHZBQGiGIZj0k4gmLkxKirTOz1M/preview

Host CPU

Power Meter

BME280
Temperature

Sensor
Channel B

ArduCam
Mini 2MP

Chip
Manager

FT2232H

Debug
(UART)

I2C Bus

Programmer

CacheChannel A

JTAG TAP

PicoRV32
Softcore

SPI Bus

GPIO FPGA Chip

Adding support for the camera module using software libraries

28

JPEG captureRuntime: 1s

Result: Capturing JPEG

29

JPEG capture

RGB565 capture

modify softcore code

Runtime: 1s

Runtime: 7s
7x slower

Result: Capturing RGB565

30

JPEG capture

RGB565 capture

Edge detection in
software

modify softcore code

modify softcore code

Runtime: 1s

Runtime: 7s
7x slower

Runtime: 24s
24x slower

Result: Running edge detection

31

Host CPU

Power Meter

BME280
Temperature

Sensor
Channel B

ArduCam
Mini 2MP

FT2232H I2C Bus

CacheChannel A

JTAG TAP

Custom Hardware

Rd Instruction, Rs, Rt

PicoRV32
Softcore

Systolic
Array

SPI Bus

GPIO FPGA Chip

Chip
Manager

Debug
(UART)

Programmer

Timer

Reducing the processing overhead using custom hardware offload

32

Edge detection in
softwareRuntime: 24s

Result: Edge detection in SW

33

Edge detection in
software

Edge detection in
hardware

offload processing to
custom hardware

Runtime: 24s

Runtime: 7.5s
3.2x faster

Result: Edge detection in HW

34

Edge detection in
software

Edge detection in
hardware

Transmit binary image

modify softcore code

offload processing to
custom hardware

Runtime: 7.5s
3.2x faster

Runtime: 24s

Runtime: 7s
3.4x faster

Result: Binary image transmission

35

Host CPU

Power Meter

BME280
Temperature

Sensor
Channel B

ArduCam
Mini 2MP

FT2232H I2C Bus

CacheChannel A

JTAG TAP

PicoRV32
Softcore

FSM

SPI Bus

SPI Burst
Read

JPEG
Decoder

UART TX
Controller

Reorder
Buffer

Systolic
Array

Frame
Buffer

GPIO

Custom Hardware

FPGA Chip

Chip
Manager

Debug
(UART)

Programmer

Timer

Reducing the image capture overhead through more complex offloads

36

Capture +Transmit in
SWRuntime: 7s

Result: Offload processing only

37

Capture +Transmit in
SW

Capture + Process +
Transmit in hardware

offload capture +
transmit to custom
hardware as well

Runtime: 0.3s
23x faster

Runtime: 7s

Result: Offloading all three parts

38

Capture +Transmit in
SW

Capture + Process +
Transmit in hardware

Capture JPEG instead
of RGB565

Add JPEG decoding
to custom hardware

offload capture +
transmit to custom
hardware as well

Runtime: 0.3s
23x faster

Runtime: 7s

Runtime: 0.13s
54x faster

Result: Capturing JPEG

39

Custom Hardware

Host CPU

Power Meter

BME280
Temperature

Sensor
Channel B

ArduCam
Mini 2MP

FT2232H I2C Bus

CacheChannel A

JTAG TAP

PicoRV32
Softcore

FPGA Chip

FSM

SPI Bus

JPEG
Decoder

Reorder
Buffer

Systolic
ArrayFrame

Buffer
SPI Burst

Read

GPIO

Chip
Manager

Debug
(UART)

Programmer

Timer

Adding person detection using a Convolutional Neural Network

40

Total trainable params
4534 (17.71 KB)

Model size
7.59 KB

Training (Tensorflow)

Inference (FPGA)

Train int8
quantization

Camera Edge
detection

Frame
buffer Softcore Debug

320x240 binary image -> 240 x 40 bytes
where 1 byte = 8 consecutive pixels in a row

Training and deploying the Convolutional Neural Network

41

PersonNot a person

Result: CNN running on the RISC-V softcore

42

Custom Hardware

Host CPU

Power Meter

BME280
Temperature

Sensor
Channel B

ArduCam
Mini 2MP

FTD2232H I2C Bus

Cache
Channel A

JTAG TAP

PicoRV32
Softcore

FPGA Chip

FSM

SPI Bus

SPI

JPEG
Decoder

Reorder
Buffer

Systolic
ArrayFrame

Buffer

DDR3

Cache Line
Builder

GPIOChip
Manager

Debug
(UART)

Programmer

Timer

Deploying the hardware on a different FPGA board

43

Person detection on
Cmod A735T

Result: Softcore @ 12 MHz

44

Person detection on
Cmod A735T

Person detection on
Arty A735T

optional modification
to the SoC

*Can also do this on the Cmod board with a PLL

Result: Softcore @ 83 MHz*

45

Person detection on
Cmod A735T

Person detection on
Arty A735T

Transmit 10 frames on
detection without

processing during this time

modify softcore code

optional modification
to the SoC

Result: Transmit on detection

46

Part B:
Remote management of the
FPGA

47

R
ED

 H
AT R

ESE
A

R
C

H

Adding Remote Capabilities

48

Motivations:

Scaling up devices

Scaling down resources

Goals:

Remote FPGA reconfiguration

Remote softcore flashing

Data communication

FPGA

RISC-V

Comms
Processor

PhysicalRadioRemote
Users

802.11,
Lora,
BLE,
etc.

Device

USB,
UART,
CAN,
etc.

Device Architecture with Comms Processor

49

Comms currently ESP32-S3 MCU
Comms intended to be swappable (e.g. Pico W)

Status
UI

Backend
Application

Database

File
Server

Admin
UI

File
ServerBroker

Devices

TCP

TCP https

https

https

httpsUsers

Admins

VPN Secured Infrastructure
Network

Outward Facing
Network

Outward Facing
Network

Envisaged Enterprise Architecture

50

Tkinter
Control

UI

File
Server

Mosquitto
MQTT
Broker

Devices

MQTT

MQTT http

Devs

PC

MQTT
Explorer

DB
Adapter

Postgresql
Database

Demo/PoC Architecture

51

Comms Processor Provisions

52

MQTT topics

/<DEVICE_NAME>/heartbeat - uptime message

/<DEVICE_NAME>/in-command - commands to device

/<DEVICE_NAME>/out-command - responses from device

FPGA data communication via UART

Given data of format {“topic”:”<TOPIC_NAME>”,”message”:”<MESSAGE>”}\r

Comms Processor sends <MESSAGE> to /<DEVICE_NAME>/<TOPIC_NAME>

Controller GUI

53

ArduCam

CMOD A7

ESP32-S3

OLED
Display

𝜇SD
Card

Demo Board

54

Remote FPGA Programming Demo

55

Given single and double LED blink bitstreams

Use controller UI to reconfigure the CMOD A7 FPGA with each bitstream

We expect to see single or double LED blinks on the CMOD A7 board

56

https://docs.google.com/file/d/1MIH-fHrxAvAlhHwH4TYFKxtXw0TNOZ2W/preview

Remote Pico RV32 Programming with Temperature Sensor Demo

57

FPGA bitstream supporting BME280 on I2C per Part A

Remote Pico RV32 programming to report sensor readings and FW version

We expect to see temperature readings and version 0.13 or 0.14

58

https://docs.google.com/file/d/1mWeEJYmhNYHUCfhcBVxDFGMycvCC8jIG/preview

Remote Person Detection Demo

59

FPGA bitstream supporting Arducam on SPI/I2C per Part A

We expect to see detection status from the device: Detected or Not Detected

60

https://docs.google.com/file/d/15vrreSNfBOYYcXpy2iN5fDQ0x9KHD_pA/preview

Innovations

61

DISL makes it possible to codesign hardware and software for an FPGA

DISL lets you focus on your application development without using low level hardware
description language

This demo showed an example of how to manage devices in the field with wireless
access

This demo showed example UIs for simplified system generation, device access and
management

The demonstration code is available. Contact us.

Keep up with Red Hat Research!

62

Come to an upcoming RHR event

Visit research.redhat.com/events

Join a Research Interest Group
Learn more at research.redhat.com/rigs

Sign up for Red Hat Research Quarterly
Scan the QR code or visit: research.redhat.com/quarterly/

For more information, contact us at
 Ahmed Sanaullah (sanaullah@redhat.com) and

Jason Schlessman (jschless@redhat.com)

http://research.redhat.com/events
http://research.redhat.com/rigs
mailto:sanaullah@redhat.com
mailto:jschless@redhat.com

