CoDesign in Action: Dynamic Infrastructure Services Layer (DISL)

Ahmed Sanaullah Senior Data Scientist Red Hat Research Jason Schlessman Principal Software Engineer Red Hat Research Ulrich Drepper Distinguished Engineer Red Hat Research

- The value of co-design
- The value of open source hardware tooling
- CoDes lab @ Red Hat BU Collaboratory
- The value of FPGAs in particular
- Why are FPGAs so difficult to use?
- Dynamic Infrastructure Services Layer (DISL)
- Demo: Building a custom wireless security system using off-the-shelf components

The value of co-design

Unoptimized workload	 Software optimizations	 Co-design
Application	Optimized Application	Optimized Application
General Purpose Software Stack	Optimized Software Stack	Optimized Software Stack
		 Optimized Hardware Stack
General Purpose Hardware Stack	General Purpose Hardware Stack	

The value of open source hardware tooling

CoDes Lab @ Red Hat - BU Collaboratory

An on-premise research lab at Boston University as part of the Red Hat - BU collaboratory Provides the infrastructure and engineering foundation needed to support co-design research

Shared/Remote Specialized Hardware Infrastructure

CoDes as an on-premise

incubation step

The shared infrastructure deadlock

The value of Field Programmable Gate Arrays (FPGAs)

FPGAs

vs. Microcontrollers

- Greater flexibility in how applications are deployed
- More connectivity options for external I/O
- Higher energy efficiency
- Better performance
- Prevents vendor lock-in of the software stack
- Do not have to compete with
 - tools like FreeRTOS

vs. ASICs

- Faster time to market
- Lower risk of over-specialization
- Prevents vendor lock-in of the software stack
- Can emulate/test software for ASICs
- Cheaper for smaller numbers

Application Specific Integrated Circuits

Performance

....

.....

Microcontrollers

Why are FPGAs so difficult to use?

Inefficient development flow between software developer and hardware developer

Dynamic Infrastructure Services Layer (DISL)

The DISL abstraction layer

SW interface: System Configuration

HW interface: IP Configuration and DISL Component Library

HW interface: IP Configuration and DISL Component Library

Building the DISL component library: PCIe subsystem

Building the DISL component library: Ethernet subsystem

Building the DISL component library: DDR subsystem

Red Hat **Research**

DISL System Builder

Demo: Building a custom wireless security system using off-the-shelf components

Requirements

- No vendor cloud lock-in
- Low cost, off-the-shelf components
- Open source hardware IP and software tooling
- Highly flexible design that can be customized to meet performance/energy constraints
- Ability to wirelessly: i) reconfigure the FPGA, ii) reprogram any running softcores, and iii) communicate with the application.
- Provide a secure design for managing devices in the field

What you'll see in this demo: open tooling and IP blocks

(to the greatest extent possible)

Major open source tooling and IP blocks					
RISC-V toolchain	https://github.com/riscv-collab/riscv-gnu-toolchain				
OpenOCD (ported)	https://github.com/openocd-org/openocd				
ArduCam Arduino library	https://github.com/ArduCAM/Arduino				
Espressif ESP-IDF	https://github.com/espressif/esp-idf				
Mosquitto	https://github.com/eclipse/mosquitto				
Tensorflow	https://github.com/tensorflow/tensorflow				
PicoRV32 RISC-V Softcore	https://github.com/YosysHQ/picorv32				
JPEG decoder IP block	https://github.com/ultraembedded/core_jpeg				
UART controller	https://nandland.com/uart-serial-port-module/				
Major proprietary tooling and IP blocks					
Vivado	For synthesis + Place & Route - open source tooling currently does not support certain PHYs				
FPGA PHYs	Vivado MIG PHY for DDR3, BSCANE2 PHY for JTAG support, PLLs for clock generation				

What you'll see in this demo: multiple FPGA boards

Cmod A7-35T

12MHz oscillator Block RAM only 44 GPIOs 1x PMOD connector

Arty A7-35T

100MHz oscillator Block RAM + 256MB DDR3 Memory Arduino/chipKIT connectors 4x PMOD connectors Ethernet PHY

What you'll see in this demo: multiple hardware types

FPGA (Cmod A7, Arty A7)

ASIC (ArduCam)

Demo overview

Part B: Secure wireless management

Part A: Generating and optimizing the hardware design

Hardware setup

Web application

	+			
\leftrightarrow \rightarrow C (i) localhost:8088		<	☆ 3	* 7
DISL - Dynan	nic Infrastructure Services Layer (Demo)			
System Info 📀				
Modules ?	Create New / Open Existing			
Softcores ?	SoC Builder			
Custom Signals 🤋	Soc Builder			
Interconnect ?				
Overrides 🤋				
Build ?				
Softcore Code @				
Demo 1 😗				
Demo 2 🔮				
Demo 3 📀				
Demo 4 ?				
Demo 5 🔮				
Demo 6				

Generating and testing a simple System on Chip (SoC)

Red Hat **Research**

Adding support for the camera module using software libraries

Red Hat **Research**

Runtime: 0.99 s

Frame Rate: 1.01 frames/s

Reducing the processing overhead using custom hardware offload

Red Hat Research

Result: Edge detection in SW

Runtime: 24s

Edge detection in software

Capture Process

Runtime: 7.46 s Frame Rate: 0.13 frames/s

Reducing the image capture overhead through more complex offloads

Adding person detection using a Convolutional Neural Network

Training and deploying the Convolutional Neural Network

Result: CNN running on the RISC-V softcore

Not a person

Deploying the hardware on a different FPGA board

Result: Softcore @ 12 MHz

Person detection on Cmod A735T

Result: Softcore @ 83 MHz*

Result: Transmit on detection

46

Part B: Remote management of the FPGA

Adding Remote Capabilities

Motivations:

Scaling up devices

Scaling down resources

Goals:

Remote FPGA reconfiguration Remote softcore flashing Data communication

Device Architecture with Comms Processor

Comms currently ESP32-S3 MCU Comms intended to be swappable (e.g. Pico W)

Envisaged Enterprise Architecture

Demo/PoC Architecture

Comms Processor Provisions

MQTT topics

/<DEVICE_NAME>/heartbeat - uptime message

/<DEVICE_NAME>/in-command - commands to device

/<DEVICE_NAME>/out-command - responses from device

FPGA data communication via UART

Given data of format {"topic":"<TOPIC_NAME>","message":"<MESSAGE>"}\r

Comms Processor sends <MESSAGE> to /<DEVICE_NAME>/<TOPIC_NAME>

Controller GUI

		Red Hat F	leet Controller	
/QTT Broker			Device	
abuto	1883	Connect	ESP32-F412FA57B554	-
- Device Status-				
Comms Proc F Softcore FW: FPGA file: 7 Softcore fil Doorbell: No	EW: v1.01 : 0.19 ? Le: ?			
_Available devi	ce commands	1	Device files	
GetVersion			BS.HEX	
ListCommands ListSDCardFi GetFileFromU RemoveFile <	iles JRL <url> <filename></filename></url>	Refresh	R2L.BIN L2R.BIN UART.BIN GPUART.BIN	Refresh
_ Send comma	and to device		Device download file from URL	
		Send		Transfer
Reconfigure FPG	iA with filename		Reprogram softcore with filename	
		Reconfigure		Reprogram

Demo Board

Remote FPGA Programming Demo

Given single and double LED blink bitstreams

Use controller UI to reconfigure the CMOD A7 FPGA with each bitstream

We expect to see single or double LED blinks on the CMOD A7 board

Red Hat Fleet Controller

Device

None Selected

MQTT Broker		
localhost	1883	Connect

evice Stati		

	Refresh

Send command to device	
	Send

Reconfigure FPGA with filename			
	Reconfigure		

Refresh

Device download file from URL	
	Transfer

Reprogram softcore with filename

Reprogram

•

Remote Pico RV32 Programming with Temperature Sensor Demo

FPGA bitstream supporting BME280 on I²C per Part A

Remote Pico RV32 programming to report sensor readings and FW version

We expect to see temperature readings and version 0.13 or 0.14

Red Hat Fleet Controller

Device

None Selected

MQTT Broker				
localhost	1883	Connect		

 efresh
R

Send command to device	
	Send

Reconfigure

Reconfigure	FPGA wit	h filename-
-------------	-----------------	-------------

Refresh

Device download file from URL	
	Transfer

Reprogram softcore with filename

Reprogram

•

Remote Person Detection Demo

FPGA bitstream supporting Arducam on SPI/I²C per Part A

We expect to see detection status from the device: Detected or Not Detected

Double 1	L.L. A.	THE REPORT	1000	ALC: UNK
Ked	Hat	rleet	LON	troller

Device

None Selected

MQTT Broker		
localhost	1883	Connect

Available device commands	
	Refres

Send command to device	
	Send

Reconfigure FPGA with filename	11-
	Reconfigure

Refresh

Device download file from URL	
	Transfer

Reprogram softcore with filename

Reprogram

÷

Innovations

DISL makes it possible to codesign hardware and software for an FPGA

DISL lets you focus on your application development without using low level hardware description language

This demo showed an example of how to manage devices in the field with wireless access

This demo showed example UIs for simplified system generation, device access and management

The demonstration code is available. Contact us.

For more information, contact us at Ahmed Sanaullah (<u>sanaullah@redhat.com</u>) and Jason Schlessman (<u>jschless@redhat.com</u>)

Keep up with Red Hat Research!

Come to an upcoming RHR event

Visit research.redhat.com/events

Sign up for Red Hat Research Quarterly

Scan the QR code or visit: research.redhat.com/quarterly/

Join a Research Interest Group Learn more at <u>research.redhat.com/rigs</u>

