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What is an Operating System 
(OS)? And does it matter 
anymore?
Life, the universe, and everything — one OS Researcher/Geek’s 
perspective.
Confessions/Ramblings of an unrepentant kernel hacker



What is an Operating System 
(OS)?



Textbook Answers
Anderson & 
Dahlin 2014

Silberschatz & 
Perterson 1988

1. “…make the computer 
system convenient to use.”


2. “…use the computer 
hardware in an efficient 
manner.”

Goal oriented

Functionality oriented
“Manages a computer’s resources”

ChatGPT 3.5 2024

The Modern textbook 
(marketing;-) Answer?



And does it matter anymore?



After all:

• Application development and deployment are 

stable and no longer depend on the OS interface.


• e.g., JAVA, Python, JavaScript, WASM, etc 


• AI Apps don’t need or want OS management. 
They want the GPUs all to themselves—direct 
hardware access. The NO OS might be the best 
OS.


• There is so much hardware in the cloud that 
maybe we should just run the apps on dedicated 
bare-metal nodes

Matter: verb  
1. be of importance; have significance. 

            “it doesn't matter what the guests wear” 
(oxford dictionary)

So, maybe there is no real point in doing OS 
research. We need to recognize that the OS 
is a technology in maintenance mode or 
even in the process of becoming obsolete.  



As you might have guessed, I think the OS 
matters, and there is room for innovation, but 
we need to unwind to a simpler, more 
progressive view of it.

A collection of “software” that 
makes it “easier” to “use” a 

“computer.” 
Ultimately 
Hardware

Get stuff done with 
less effort, in less time, 
and fewer resources 



Two questions to focus on
Linux, both the kernel and its massive collection of user software, does its job 
well!   A familiar, well-understood environment that makes it easy to use a 
computer. But what a computer is has changed and continues to. 

1. How can we preserve Linux and ensure that we don’t erode it by 
unnecessarily burdening it? 


2. And yet, can we evolve the OS in light of foundational changes in hardware 
and usage?

Is that Penguin 
eating itself to 

death?

Is the Penguin 
collapsing under its 

weight?



Evolving the OS by  
studying Hardware 
Scale and Elasticity 
1. Hurricane, Tornado and K42 
2. Libra 
3. Kittyhawk 
4. EbbRT*

“computer.” 



Hurricane, 
Tornado, and K42 
1991 - 2005
Scalable 64-bit SMMPs are 
coming; what should the 
OS look like?  
(Pay attention to the dates. Notice when 
the research was started and 
conducted)

“The Free Lunch Is Over A Fundamental Turn 
Toward Concurrency in Software”, Dr. Dobb's 
Journal, 30(3), March 2005.

“Applications will increasingly need to be concurrent if 
they want to fully exploit continuing exponential CPU 

throughput gains 
Efficiency and performance optimization will get more, not 

less, important”

1 Ghz

10 Ghz

The original data was to Dec 2004 with forecasts to 2007 (updated in 
2009 with forecasts to 2010 )

2005 mainstream article states,

2003



Hurricane, Tornado, and K42
The seeds towards understanding Elasticity and its value.

• Premises (there were others, but this is what we will focus on):


• We know how to build modular, scalable hardware systems out of general-
purpose processors:


•  NUMAchine: Shared Memory Multi-Processor incrementally scalable to 
100’s of  processors 


• OS kernels should be designed and implemented  to adapt and reflect the 
structure of the hardware and application demand (Eg. standard locking is 
insufficient)


• One kernel binary should automatically adapt to the size of the system and 
the number of threads in the running application. 



Start with the right primitives.
• Build correct primitives first, then 

write the OS (per-core ipc, memory 
allocator, RCU — Elastic Object 
Model)


• Decomposed kernel into objects


• Made it easy to exploit per-core 
memory consistently 


• Reflected and programmed for 
Elasticity 

• Enabled and programmed with 
Specialization 

K42: from scratch, OS can be 
worth it.
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Abstract

We introduce the concept of Hierarchical Clustering as a way to structure shared memory multipro-
cessor operating systems for scalability. As the name implies, the concept is based on clustering and
hierarchical system design. Hierarchical Clustering leads to a modular system, composed of easy-to-
design and efficient building blocks. The resulting structure is scalable because it ) maximizes locality,
which is key to good performance in NUMA systems, and ) provides for concurrency that increases
linearly with the number of processors. At the same time, there is tight coupling within a cluster, so
the system performs well for local interactions which are expected to constitute the common case. A
clustered system can easily be adapted to different hardware configurations and architectures by changing
the size of the clusters.

We show how this structuring technique is applied to the design of a microkernel-based operating
system called HURRICANE. This prototype system is the first complete and running implementation of
its kind, and demonstrates the feasibility of a hierarchically clustered system. We present performance
results based on the prototype, demonstrating the characteristics and behavior of a clustered system.
In particular, we show how clustering trades off the efficiencies of tight coupling for the advantages
of replication, increased locality, and decreased lock contention. We describe some of the lessons we
learned from our implementation efforts and close with a discussion of our future work.

1 Introduction

Considerable attention has been directed towards designing “scalable” shared-memory multiprocessor hard-
ware, capable of accommodating a large number of processors. These efforts have been successful to the
extent that an increasing number of such systems exist [1, 8, 19, 28, 30, 32]. However, scalable hardware
can only be fully exploited and cost effective for general purpose use if there exists an operating system that
is as scalable as the hardware.

An operating system targeting large-scale multiprocessors must consider both concurrency and locality.
However, existing multiprocessor operating systems have been scaled to accommodate many processors
only in an ad hocmanner, by repeatedly identifying and then removing the most contended bottlenecks, thus
addressing concurrency issues but not locality issues. Bottlenecks are removed either by splitting existing
locks, or by replacing existing data structures with more elaborate, but concurrent ones. The process can be
long and tedious, and results in systems that 1) have a large number of locks that need to be held for common
operations, with correspondingly large overhead, 2) exhibit little locality, and 3) are not scalable in a generic
sense, but only until the next bottleneck is encountered [4, 5, 11, 12, 23]. Porting an existing system designed
for networked distributed systems is also unsatisfactory, because of the large communication requirements
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ABSTRACT

K42 is one of the few recent research projects that is examin-
ing operating system design structure issues in the context
of new whole-system design. K42 is open source and was
designed from the ground up to perform well and to be scal-
able, customizable, and maintainable. The project was be-
gun in 1996 by a team at IBM Research. Over the last nine
years there has been a development e↵ort on K42 from be-
tween six to twenty researchers and developers across IBM,
collaborating universities, and national laboratories. K42
supports the Linux API and ABI, and is able to run un-
modified Linux applications and libraries. The approach we
took in K42 to achieve scalability and customizability has
been successful.

The project has produced positive research results, has re-
sulted in contributions to Linux and the Xen hypervisor on
Power, and continues to be a rich platform for exploring sys-
tem software technology. Today, K42, is one of the key ex-
ploratory platforms in the DOE’s FAST-OS program, is be-
ing used as a prototyping vehicle in IBM’s PERCS project,
and is being used by universities and national labs for ex-
ploratory research . In this paper, we provide insight into
building an entire system by discussing the motivation and
history of K42, describing its fundamental technologies, and
presenting an overview of the research directions we have
been pursuing.

Categories and Subject Descriptors

D.4.0 [Operating Systems]: General; D.4.1 [Operating

Systems]: Process Managment; D.4.1 [Operating Sys-

tems]: Process Managment—Multiprocessing ; D.4.2 [Operating

Systems]: Storage Management; D.4.3 [Operating Sys-

tems]: File Systems Management; D.4.4 [Operating Sys-

tems]: Communications Management; D.4.7 [Operating
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Systems]: Oragnization and Design; D.4.8 [Operating

Systems]: Performance

General Terms

Algorithms,Performance,Design

Keywords

operating system design,scalable operating systems, customiz-
able operating systems

1. BACKGROUND

In 1996 we began K42 to explore a new operating system
design structure for scalability, customizability, and main-
tainability in the context of large-scope or whole-system re-
search issues. K42’s design was based on current software
and hardware technology and on predictions of where those
technologies were headed. In this section we describe those
predictions and discuss the resulting technology decisions.
At the end of the paper, we review how the predictions
changed over the life of the project and the resulting changes
in the technical directions of the project.

1.1 Technology predictions

Key predictions we made in 1996 were:

1. Microsoft Windows would dominate the client space,
and would increasingly dominate server systems. By
the mid 1990s, predictions made by leading consult-
ing firms indicated Unix would disappear from all but
high-end servers and Windows would dominate most
markets.

2. Multiprocessors would become increasingly important
at both the high and low end. For the high end, projects
in academia [24, 1, 20] demonstrated that large scale
NUMA multiprocessors are feasible and can be devel-
oped to be price/performance competitive with dis-
tributed systems. For the low end, the increasing num-
ber of transistors were yielding smaller improvements
to single cores, and it seemed that the ever increasing
density of transistors would instead be used for more
cores and threads on a chip.

3. The cost of maintaining and enhancing current oper-
ating systems would grow increasingly prohibitive over
time. Existing operating systems were designed as
monolithic systems, with data structures and policy
implementations spread across the system. Such global
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Designing and implementing system software so that it scales well on shared-memory multipro-
cessors (SMMPs) has proven to be surprisingly challenging. To improve scalability, most designers
to date have focused on concurrency by iteratively eliminating the need for locks and reducing lock
contention. However, our experience indicates that locality is just as, if not more, important and
that focusing on locality ultimately leads to a more scalable system.

In this paper, we describe a methodology and a framework for constructing system software
structured for locality, exploiting techniques similar to those used in distributed systems. Specifi-
cally, we found two techniques to be effective in improving scalability of SMMP operating systems:
(i) an object-oriented structure that minimizes sharing by providing a natural mapping from inde-
pendent requests to independent code paths and data structures, and (ii) the selective partitioning,
distribution, and replication of object implementations in order to improve locality. We describe con-
crete examples of distributed objects and our experience implementing them. We demonstrate that
the distributed implementations improve the scalability of operating-system-intensive parallel
workloads.
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Libra: A Library Operating 
System (UniKernel) for a 
JVM in a Virtualized 
Execution Environment  
 (2005-2006 One year effort)

A key insight —  
A hybrid OS relationship is compelling when 
leveraging an elastic pool of hardware. 

General Purpose + Special Purpose 
 =  

Something Cool - An Accelerator Model! 

Neither has to be perfect, and they can get 
help from each other.

Operating System

Inferno (9p Server)

Storage

Network
File SystemConsoleUser

Environment

Authority

Private
Name Space

Application

Java Virtual Machine

Name Space
9p Client

MuxThreads

File Ops Sockets Sys Svc
POSIX API

Libra

Shared Memory
in channel

out channel

Figure 2. Resource organization and sharing.

a portability layer, called the port library, and ensuring that the
JVM, JIT, and core class library native code only access platform-
dependent APIs through this abstraction layer.
The port library proper consists of approximately 175 functions

that provide APIs to the filesystem, network, memory management,
and miscellaneous system services such as timing and hardware
cache management. In addition, J9 depends on a thread library that
defines approximately 100 thread and synchronization related func-
tions that serve to encapsulate platform-specific APIs. In addition to
these two formal porting abstractions, the J9 code base also makes
direct use of some fundamental libc functions such as memcpy,
isdigit, and qsort that are generally available with consistent
semantics across a wide range of platforms.
The fact that J9 had already been ported to such a diverse set of

environments significantly simplified our task of porting it to Libra.
Although we eventually ended up running configurations of J9 that
included well over half a million lines of C, C++, and assembly
code, we had to modify less than 20 files outside of the portability
layer.

3.2 Porting Methodology
The port of J9 to Libra was an iterative process: we began with
the simplest and smallest possible configuration of J9 we could
define for Linux/PowerPC64 and got it to run “HelloWorld” on
the simplest possible incarnation of Libra. In this initial stage we
were using a custom configuration of J9 that used the CLDC J2ME
class libraries [40], had no JIT compiler, and disabled all optional
VM features such as RAS and trace tooling. We then iteratively
enabled the disabled J9 functionality and worked on running larger
workloads with more extensive class libraries. As the workloads
got more complex, we extended Libra and its interactions with the
controller partition to support the necessary functionality. We are
currently running with full JIT compilation and using the largest
set of IBM authored class libraries available for our version of J9.2
We began the porting process by defining dummy implementa-

tions of all the functions in the port and thread libraries. The imple-
mentation of these functions simply printed the name of the func-
tion and invoked the debugger. We provided a similar stub imple-
mentation of all libc functions that were statically referenced by

2These are a subset of the Java 1.4 J2SE libraries.

J9. Discovering these functions was straightforward, as our build
process builds all of J9 into a single .o that is statically linked
against Libra without the standard C library to produce an exe-
cutable. Trivial functions were implemented immediately, but in
most cases we implemented them on-demand as the tripping of an
assertion indicated that the function was dynamically needed.
Although we are now able to execute Java workloads, including

SPECjbb2000, SPECjvm98, and Nutch, we still have not fully
implemented all of the stubbed out port library functions. Of the
functions that remain unimplemented, 50% support socket and
network operations. Most of the rest support JVM functionality
that we have not yet re-enabled, such as signal handling and shared
memory regions.

3.3 Debugging J9 on Libra
Throughout this process we attempted to maintain J9/Libra and
J9/Linux configurations that were as similar as possible. These
dual configurations enabled a debugging approach in which we
could run a program that failed or crashed on J9/Libra on J9/Linux
and see where the failing and successful executions diverged. In
the early stages of the process, we relied heavily on logging J9’s
interactions with the port and thread libraries to discover where
executions diverged. As the system became more robust, and the
bugs became subtler, we relied more on gdb-remote debugging to
investigate J9 crashes. Libra implements gdb stub functions whose
inputs and outputs are redirected by the gateway server to a TCP
port. By using this mechanism, J9 and Libra can be debugged using
gdb’s remote debugging functions [37].

3.4 Libra Subsystems
The services that J9 requires from the underlying system fall into
four main categories: memory management, filesystem access,
thread support, and socket support. A few miscellaneous support
routines that fall outside these categories (e.g. for access to envi-
ronment variables and to the system clock) are also needed.
Libra is given a memory partition when it starts, and currently

that partition neither grows nor shrinks. Part of the partition is oc-
cupied by the program text and data of the J9/Libra image. The rest
is free and must be managed to satisfy the dynamic memory re-
quirements of J9 and of Libra itself. We’re currently using a simple
two-level management hierarchy. Page-granularity free memory is

java 
my.jar

XEN

sshd bash

ls

Front End Linux Back End J9LibraOS

my.jar

Proxy

Takes the pressure off Linux and eases UniKernel Functionality



More than just a UniKernel : A Platform for 

• Architecture 
Heterogeneity 


• Optimization via 
Specialization


• Seamless 
integration 


• Hardware 
Elasticity
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Abstract
If the operating system could be specialized for every application,
many applications would run faster. For example, Java virtual ma-
chines (JVMs) provide their own threading model and memory
protection, so general-purpose operating system implementations
of these abstractions are redundant. However, traditional means of
transforming existing systems into specialized systems are difficult
to adopt because they require replacing the entire operating system.

This paper describes Libra, an execution environment special-
ized for IBM’s J9 JVM. Libra does not replace the entire operating
system. Instead, Libra and J9 form a single statically-linked im-
age that runs in a hypervisor partition. Libra provides the services
necessary to achieve good performance for the Java workloads of
interest but relies on an instance of Linux in another hypervisor
partition to provide a networking stack, a filesystem, and other ser-
vices. The expense of remote calls is offset by the fact that Libra’s
services can be customized for a particular workload; for example,
on the Nutch search engine, we show that two simple customiza-
tions improve application throughput by a factor of 2.7.

Categories and Subject Descriptors D.3.4 [Processors]: Run-
time Environments; D.4.7 [Operating Systems]: Organization and
Design; D.4.8 [Operating Systems]: Performance

General Terms Design, Experimentation, Performance

Keywords Virtualization, exokernels, Xen, JVM
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1. Introduction
This paper describes a new way to transform existing software
systems into high-performance, specialized systems. Our method
relies on hypervisors [12, 14], which are becoming efficient and
widely available, and on the 9P distributed filesystem protocol [30,
32].

Our approach is similar to the exokernel approach [25]. An ex-
okernel system divides the general-purpose operating system into
two parts: a small, trusted kernel (called the exokernel) that se-
curely multiplexes hardware resources such as processors and disk
blocks, and a collection of unprivileged libraries (called “library
operating systems” or “libOSes”) that provide operating system ab-
stractions such as filesystems and processes. Ideally, each applica-
tion tailors the abstractions to its needs and pays only for what it
uses. For example, the distributed search application Nutch [8, 9]
needs a Java virtual machine, access to a read-only store, and a
simple networking stack; Section 5.3 shows that simple implemen-
tations of these abstractions achieve good performance.

Unfortunately, exokernels are difficult to adopt, because migrat-
ing an existing application to an exokernel system requires porting
the operating system on which it relies. For example, to run un-
modified UNIX programs on their exokernel, Kaashoek and others
wrote ExOS, a library that implements many of the BSD 4.4 ab-
stractions [25]. Writing such a library is a significant effort. Also,
because the library is a reimplementation of the operating system,
the only way to take advantage of improvements to the operating
system is to port them to the library.

Our system, Libra,1 avoids these problems by casting a hyper-
visor (specifically, Xen [5]) in the role of the exokernel. Figure 1
depicts the overall architecture of Libra. Unlike traditional exoker-

1 We chose the name “Libra” because our goal of providing well-balanced
services aligns with the imagery associated with the constellation of the
same name.
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Kittyhawk 
Monsterous Scale 
and Elasticity are 
coming 
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When something gets so big, 
you have to change your 
thinking. 
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Towards a Global-Scale Public 
Computer 

Project Kittyhawk at IBM Research
Presented by Jonathan Appavoo representing the Project Kittyhawk Team 
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Old but cool demo videos: https://www.cs.bu.edu/~jappavoo/Resources/kittyhawk/kittyhawk/Demos.html
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Machine truly designed for the data center! 
Not cobbled together with duck tape.

• Massively integrated architecture 
potentially MILLIONS of bootable 
nodes


• SOC integrates general-purpose 
cores, accelerators, and interconnect 
routers


• Supports incremental growth


• Interconnects are more like Buses 
than a commodity Network of the time  
(physical addressing and RDMA)

Hardware like we had 
never seen before 

Today’s BlueGene/P has an architectural maximum size of: 
256 x 256 x 256 =   16.7M fully connected nodes 
  =   67.1M fully connected cores 
= 262,144 terabytes RAM,   
   10,486 terabits/s aggregate external I/O bandwidth, 
   342,255 terabits/s aggregate internal I/O bandwidth.

“As of July 1, 2006, the population of the City of New York was 8,250,567” 
http://www.nyc.gov/html/dcp/html/census/popcur.shtml  

Nodes per capita: ~ 2      Cores per capita: ~ 8 

2005 Total US Volume Servers (<$25,000 per unit) = 9,897,000 
Jonathan G. Koomey, “ESTIMATING TOTAL POWER CONSUMPTION BY SERVERS IN THE U.S. AND THE WORLD”,Staff 

Scientist, Lawrence Berkeley National Laboratory and Consulting professor, Stanford University,Final report February 15, 2007 
Nodes per server: ~ 1.6

Massive Parallel Processor

Operating systems should evolve to reflect the HW capabilities.

It turned out it was not esoteric just 
needed some SW to expose that fact.

2007



“disposable” HW

• OS: expose the machine's Elasticity and 
Scale in a way that makes it easy to use.


• SW? when “computers” can be “malloced” 
and “freed” almost as quickly as threads.


• The first OS “layer”: Fast, Scalable and 
Programmable “utility” interface for 
metered units of raw HW


• Second Layer: bootloaders, virtualization, 
OSes, and apps, are add-ons.


• Start with existing software is critical - 
incremental development of new “elastic” 
stacks

Decomposing the OS

Utility Layer: Express and Control Dynamic Configurations of Hardware Resources

HW NODE

HW NODEHW NODEHW NODE

HW NODEHW NODEHW NODE

HW NODE
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Communication Domain (CD)

Utility Management : User and Resource APIs 

Users
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Create CD

Manage & 
Program CD

Create CD nodes

HW NODE
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HW NODE

Node
Consoles

Load
Nodes

Reset
Nodes

Debug
Nodes

Flexible User+Program Control of 
Individual and Groups of allocated nodes

Node
Monitering

Utility/Global Layer

If you squint, you can almost see ESI.

Our conjecture: supercomputer-like systems would 
become the dominant utility (cloud) computer. 
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Abstract
This paper describes Project Kittyhawk, an undertaking
at IBM Research to explore the construction of a next-
generation platform capable of hosting many simultaneous
web-scale workloads. We hypothesize that for a large class of
web-scale workloads the Blue Gene/P platform is an order
of magnitude more efficient to purchase and operate than
the commodity clusters in use today. Driven by scientific
computing demands the Blue Gene designers pursued an ag-
gressive system-on-a-chip methodology that led to a scalable
platform composed of air-cooled racks. Each rack contains
more than a thousand independent computers with high-
speed interconnects inside and between racks.

We postulate that the same demands of efficiency and
density apply to web-scale platforms. This project aims
to develop the system software to enable Blue Gene/P as
a generic platform capable of being used by heterogeneous
workloads. We describe our firmware and operating system
work to provide Blue Gene/P with generic system software,
one of the results of which is the ability to run thousands of
heterogeneous Linux instances connected by TCP/IP net-
works over the high-speed internal interconnects.

Categories and Subject Descriptors
D.4.7 [Operating Systems]: Organization and Design—
Distributed systems; C.5.1 [Computer System Imple-
mentation]: Large and Medium (”Mainframe”)—Super (very
large) computers

General Terms
Design, Reliability, Performance, Management

1. INTRODUCTION
Project Kittyhawk’s goal is to explore the construction

and implications of a global-scale shared computer capable
of hosting the entire Internet as an application. This re-
search effort is in an early stage, so this paper describes our
conjectures and our ongoing work rather than a completed
set of results.

The explosive growth of the Internet is creating a demand
for inexpensive online computing capacity. This demand is
currently fulfilled by a variety of solutions ranging from off-
the-shelf personal computers connected to the Internet via
broadband to large clusters of servers distributed across mul-
tiple data centers. The general trend however is to consoli-
date many machines in centralized data centers to minimize
cost by leveraging economies of scale. This consolidation

trend includes building of data centers near hydroelectric
power plants [8], colocating physical machines in large data
centers, over-committing physical hardware using virtual-
ization, and software-as-a-service.

At present, almost all of the companies operating at web-
scale are using clusters of commodity computers, an ap-
proach that we postulate is akin to building a power plant
from a collection of portable generators. That is, commod-
ity computers were never designed to be efficient at scale,
so while each server seems like a low-price part in isolation,
the cluster in aggregate is expensive to purchase, power and
cool in addition to being failure-prone. Despite the inex-
pensive network interface cards in commodity computers,
the cost to network them does not scale linearly with the
number of computers. The switching infrastructure required
to support large clusters of computers is not a commodity
component, and the cost of high-end switches does not scale
linearly with the number of ports. Because of the power and
cooling properties of commodity computers many datacen-
ter operators must leave significant floor space unused to fit
within the datacenter power budget, which then requires the
significant investment of building additional datacenters.

Many web-scale companies start in a graduate lab or a
garage [18], which limits their options to the incremental
purchase of commodity computers even though they can rec-
ognize the drawbacks listed above and the value of investing
in the construction of an integrated, efficient platform de-
signed for the scale that they hope to reach. Once these
companies reach a certain scale they find themselves in a
double bind. They can recognize that their commodity clus-
ters are inefficient, but they have a significant investment in
their existing infrastructure and do not have the in-house
expertise for the large research and development investment
required to design a more efficient platform.

Companies such as IBM have invested years in gaining
experience in the design and implementation of large-scale
integrated computer systems built for organizations such
as national laboratories and the aerospace industry. As
the demands of these customers for scale increased, IBM
was forced to find a design point in our Blue Gene super-
computer technology that allowed dense packaging of com-
modity processors with highly specialized interconnects and
cooling components. Our aim is to determine whether IBM’s
deep institutional knowledge, experience and capability in
super-computing—specifically Blue Gene—coupled with this
design point can be leveraged to address the problems facing
web-scale computing. The system software work described
in this paper is aimed at making the incremental purchasing
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Media and “users”
Kittyhawk: Enabling
cooperation and
competition in a global,
shared computational
system

J. Appavoo
V. Uhlig
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D. Da Silva
J. E. Moreira

Kittyhawk represents our vision for a Web-scale computational
resource that can accommodate a significant fraction of the world’s
computation needs and enable various parties to compete and
cooperate in the provisioning of services on a consolidated
platform. In this paper, we explain both the vision and the system
architecture that supports it. We demonstrate these ideas by way of
a prototype implementation that uses the IBM Blue Genet/P
platform. In the Kittyhawk prototype, we define a set of basic
services that enable the allocation and interconnection of
computing resources. By using examples, we show how higher
layers of services can be built by using our basic services and
standard open-source software.

Introduction
Our aim is to develop a sustainable, reliable, and

profitable computational infrastructure that can be easily
used to create and trade goods and services. The

globalization of computation and acceleration of

commerce are inevitable, given the trends in digitalization

of information and enablement of communications. In a

sense, computation and commerce are indistinguishable.
In the future, it is likely that virtually all information will

be digital and will be manipulated, communicated, and

managed in a digital fashion. In the future, the line

between computation, global commerce, and humanity’s

information will become indistinct.

Kittyhawk is our vision of efficient, pervasive,

worldwide computational capacity and commerce. We

view worldwide computational capacity as requiring a

significant fraction of the capacity of all available servers
currently installed. At the time of this writing, the

worldwide installed base of volume servers is reaching

about 40 million units with an annual growth of about

4 million units [1]. The theoretical limit of an IBM

Blue Gene*/P [2] installation is 16 million connected
nodes; thus, a small double-digit number of geographically

dispersed data centers would theoretically be sufficient

to host the worldwide capacity of all currently installed

volume servers.

Toward the fulfillment of the Kittyhawk vision, we

explore and establish a practical path to realizing the

promise of utility computing. The idea of utility
computing is not new [3, 4], and the idea of using large-

scale computers to support utility computing is not new

[5]. However, practical realization has yet to be achieved.

In a prior publication [2], we briefly described the

exploration of a global computational system on which

the Internet could be viewed as an application. In this
paper, we present a commerce-centric vision of utility

computing, a corresponding system model, and a

prototype. The model comprises four components: 1)

resource principals, 2) nodes, 3) control channels, and 4)

communication domains. We are developing a prototype

based on the Blue Gene/P system that lets us explore
the feasibility of the model for providing the building

blocks for utility computing, and we present three

Internet-style usage scenarios built on the prototype.

Key aspects and related goals associated with our

approach include the following. First, we must

acknowledge the Internet as the current model of global
computing. A practical, global-scale computational

system must provide a migration path for the Internet

and be able to support its salient features. Second, we

must enable commerce by supplying the system with

primitives for distributed ownership as well as for
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ABSTRACT
Supercomputers and clouds both strive to make a large number of
computing cores available for computation. More recently, simi-
lar objectives such as low-power, manageability at scale, and low
cost of ownership are driving a more converged hardware and soft-
ware. Challenges remain, however, of which one is that current
cloud infrastructure does not yield the performance sought by many
scientific applications. A source of the performance loss comes
from virtualization and virtualization of the network in particular.
This paper provides an introduction and analysis of a hybrid su-
percomputer software infrastructure, which allows direct hardware
access to the communication hardware for the necessary compo-
nents while providing the standard elastic cloud infrastructure for
other components.

Categories and Subject Descriptors
C.2.4 [Distributed Systems]: Network operating systems

General Terms
Management, Design, Measurement, Performance

Keywords
Supercomputing infrastructure as a service, supercomputer network
models, user-level networking, high performance cloud computing,
high performance computing

1. INTRODUCTION
Huge numbers of processors and massive communication infras-

tructure are characteristics common to both supercomputers and
cloud computing [9] systems. Cost and scale considerations are

.

driving cloud system hardware to be more highly integrated, that
is, to more closely resemble today’s supercomputer hardware. This
trend motivates the effort described in this paper to demonstrate
the feasibility of using of supercomputers as cloud infrastructure.
Our goal is to support the dynamic usage model associated with
cloud computing and at the same time preserve the supercomputer
aspects that support high performance applications.

In many ways datacenters are the “computers” behind cloud com-
puting [31, 11]. The typical approach to datacenter infrastructure
for cloud computing is to build a collection of general purpose com-
mercial servers connected by standard local-area network (LAN)
switching technologies. On top of this an Infrastructure as a Ser-
vice (IaaS) [36] model is constructed where users are given access
to the system’s capacity in the form of virtual servers and networks.
Platform virtualization software such as Xen is thereby widely re-
garded as the key enabler for IaaS, as it provides users with a stan-
dard software environment they know and control, and administra-
tors with a multi-tenancy usage model that achieves high utilization
of the datacenter’s resources.

Both Cloud computing environments and supercomputers are
designed to support multiple independent users who are not the
owners of the machine but use some fraction of it for their jobs.
While comparable in size, however, the infrastructure for scientific
computing is quite different from cloud computing infrastructures.
Supercomputers often rely on customized processing elements and
integrated interconnects to deliver high performance in computa-
tion and communication. Moreover, the supercomputer approach
has been to use hardware-enforced coarse-grain partitioning rather
than virtualization in order to help user applications achieve more
predictable high performance through isolated and dedicated use of
resources. Historically, also supercomputing software was highly
customized to exploit specific hardware features only present on
supercomputer hardware in order to obtain the best possible appli-
cation performance. More recently, however, the trend has been to
adopt standard general-purpose systems software environments in
order to ease application development and facilitate portability.

It might be natural to assume that this trend would imply that
using a typical IaaS such as Amazon’s EC2 for HPC computing
would give scientific users the advantages of elasticity while main-
taining performance. Unfortunately, although underlying software
models have converged, there is evidence that the lack of dedicated
access to the hardware and fine-grained sharing of resources as-
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ABSTRACT
In this paper, we present a light-weight, micro–kernel-based
virtual machine monitor (VMM) for the Blue Gene/P Su-
percomputer. Our VMM comprises a small µ-kernel with
virtualization capabilities and, atop, a user-level VMM com-
ponent that manages virtual BG/P cores, memory, and in-
terconnects; we also support running native applications
directly atop the µ-kernel. Our design goal is to enable
compatibility to standard OSes such as Linux on BG/P via
virtualization, but to also keep the amount of kernel func-
tionality small enough to facilitate shortening the path to
applications and lowering OS noise.

Our prototype implementation successfully virtualizes a
BG/P version of Linux with support for Ethernet-based
communication mapped onto BG/P’s collective and torus
network devices. First experiences and experiments show
that our VMM still shows a substantial performance hit;
nevertheless, our approach poses an interesting OS alter-
native for Supercomputers, providing the convenience of a
fully-featured commodity software stack, while also promis-
ing to deliver the scalability and low latency of an HPC OS.

1. INTRODUCTION
A substantial fraction of supercomputer programmers to-

day write software using a parallel programming run-time
such as MPI on top of a customized light-weight kernel. For
Blue Gene/P (BG/P) machines in production, IBM pro-
vides such a light-weight kernel called Compute Node Ker-
nel (CNK) [9]. CNK runs tasks massively parallel, in a
single-thread-per-core fashion. Like other light-weight ker-
nels, CNK supports a subset of a standardized application
interface (POSIX), facilitating the development of dedicated
(POSIX-like) applications for a supercomputer. However,
CNK is not fully POSIX-compatible: it lacks, for instance,
comprehensive scheduling or memory management as well
as standards-compatible networking or support for standard

1This research was mostly conducted by the authors while
at IBM Watson Research Center, Yorktown Heights, NY.
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debugging tools. CNK also supports I/O only via function-
shipping to I/O nodes.
CNK’s lightweight kernel model is a good choice for the

current set of BG/P HPC applications, providing low oper-
ating system (OS) noise and focusing on performance, scal-
ability, and extensibility. However, today’s HPC application
space is beginning to scale out towards Exascale systems of
truly global dimensions, spanning companies, institutions,
and even countries. The restricted support for standardized
application interfaces of light-weight kernels in general and
CNK in particular renders porting the sprawling diversity
of scalable applications to supercomputers more and more a
bottleneck in the development path of HPC applications.
In this paper, we explore an alternative, hybrid OS de-

sign for BG/P: a µ-kernel–based virtual machine monitor
(VMM). At the lowest layer, in kernel mode, we run a µ-
kernel that provides a small set of basic OS primitives for
constructing customized HPC applications and services at
user level. We then construct a user-level VMM that fully
virtualizes the BG/P platform and allows arbitrary Blue
Gene OSes to run in virtualized compartments. In this pa-
per, we focus on the virtualization layer of our OS architec-
ture; the field of research on native application frameworks
for µ-kernels has been rich [10, 17], and has even been ex-
plored for HPC systems [21]
The benefits of a µ-kernel–based VMM architecture are

twofold: on the one hand, it provides compatibility to BG/P
hardware, allowing programmers to ship the OS they re-
quire for their particular applications along, like a library.
For instance, our VMM successfully virtualizes a Blue Gene
version of Linux with support for Ethernet-based communi-
cation, allowing virtually any general-purpose Linux appli-
cation or service to run on BG/P. On the other hand, our
µ-kernel also resembles the light-weight kernel approach in
that it reduces the amount of kernel functionality to basic
resource management and communication. Those mecha-
nisms are available to native applications running directly
on top of the µ-kernel, and programmers can use them to
customize their HPC applications for better e�ciency and
scalability, and to directly exploit the features of the tightly-
interconnected BG/P hardware. However, µ-kernel and VMM
architectures also imply potential penalty to e�ciency, as
they increase kernel-user interaction and add another layer
of indirection to the system software stack. Nevertheless,
the need for standardized application interfaces is becoming
more prevalent, and we expect our work to be an insightful
step towards supporting such standardization on supercom-
puter platforms.

Virtualization as an addon
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1. Introduction
Elasticity should be treated as a first class system parameter. Partic-
ularly in large cloud environments, elastic applications would bene-
fit if the underlying infrastructure provided primitives for elasticity
and were themselves elastic. If you want to provide an elastic ser-
vice and the cloud does not provide good primitives for the degree
of elasticity you require, then you are forced to over-provision –
acquire more resources than you instantaneously need and subse-
quently hoard them. Doing so hinders the cloud’s ability to opti-
mize global system utilization. Free or idle resources become hid-
den. If however, each cloud layer provides appropriate primitives
that permit resources to be acquired and released at a scale that is
equal to or better than what is required, then hoarding is less likely
to occur. This permits the cloud infrastructure to collectively mi-
grate resources to the real demand. To achieve this in a multi-layer
system, demand must be transparently reflected from top to bot-
tom. We must focus on the design and evaluation of primitives for
expressing and managing elasticity at all levels, across nodes, and
potentially across data centers.

If research focuses on pushing the boundaries of elasticity, new
classes of applications can be developed. For example, if a cloud
would permit an application to grow and shrink the use of thou-
sands of processors between mouse clicks, then High Performance
Interactive Applications would be viable. Consider a medical imag-
ing and analysis application. Using a raw megapixel image with an
algorithm requiring quadratic memory in the size of the input, this
requires roughly 14 terabytes of memory, putting it well outside
the reach of the ram capacities of desktop computers. However,
a “small” supercomputer today (1/10 of the largest current IBM
BlueGene P System), capable of approximately 1014 operations per
second, can not only contain the data, but can perform an operation
on each data value in under a second. All of a sudden, operating
on the image not only becomes viable, but we can even do it at
interactive speeds.

While an interactive version of this application has large value,
it is not feasible today. Suppose a doctor’s office had the necessary

[Copyright notice will appear here once ’preprint’ option is removed.]

software and wanted to use Amazon’s EC2 HPC offering for an 8
hour work day. To operate on the image would require 623 compute
instances[1]. Given pricing at the time of writing, this translates
to approximately $8000.00 per day. Due to the interactive nature
of the application, the actual utilization of the instances will be a
small fraction of the time that is being paid for. This is likely a cost
prohibitive proposition. If, however, it was possible to acquire and
release the resources at interactive time scales, then the instances
could be reallocated to other EC2 users and the doctor’s cost would
more closely reflect the usage. Researching dramatically higher
degrees of elasticity with respect to the scale of the resources
and duration they are held would enable such high performance
interactive applications.

If we develop effective ways of exporting the elasticity via de-
signed and usable primitives, then we can not only ease the bur-
den of developing elastic applications and services, but also we can
foster and encourage them. We can reduce the application develop-
ment burden by providing suptport for representing and reflecting
dynamic demand and translating it into dynamic requests for re-
sources. Similar to how a traditional operating system transparently
manages memory via mappings and pages faults, one can explore
how systems can enable primitives for elasticity.

In summary we argue that elasticity is an important area of re-
search and hypothesize that research in this area will lead to more
efficient systems with less hoarding, new applications that exploit
massive cloud resources elastically, and system software and li-
braries that will simplify the task of developing elastic applications.

In this talk we will present our goals for a system that supports
extreme elasticity. Motivated by these goals, we will present our
Scalable Elastic Systems Architecture (SESA).

2. Goals
Based on our observations, we posit the following goals for a
systems architecture for elasticity:

Top-Down Demand The system should enable demand on ser-
vices to flow from high level layers as transparently as possible
to the lowest layers of the system. Hoarding should be discour-
aged or at least made transparent. Event driven interfaces and
services should be supported and encouraged by the system.

Bottom-Up Support We advocate that elasticity should be an
explicit characteristic that should be supported in the lowest
layers of a system and, if possible, all the way into the hardware.
The construction of layers that are explicit about the elasticity
they provide with respect to the base elasticity of the system
should be encouraged via systems support.

1 2011/2/24
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1 Introduction

Cloud computing has not resulted in a fundamental
change to the underlying operating systems. Rather,
distributed applications are built over middleware
that provides high-level abstractions to exploit the
cloud’s scale and elasticity. This middleware con-
joins many general purpose OS instances.

Others have demonstrated that a new operating
system built specifically for the cloud can achieve
increased efficiency, scale and functionality [11,
14]. However, this work does not take into account
the way applications are being deployed in cloud
environments. In particular, entire physical or vir-
tual machines are being dedicated to run a single ap-
plication, rather than concurrently supporting many
users and multiple applications.

In this paper we introduce a new model for dis-
tributed applications that embraces a reduced role
of the OS in the cloud. It allows for the construction
of application-driven compositions of OS function-
ality wherein each application can employ its own
customized operating system.

2 Role of the OS

For security and auditability, Infrastructure as a Ser-
vice (IaaS) providers isolate their tenants at a very
low level as physical or virtual compute nodes. In-
dividual tenants own and manage their compute
nodes, software stack, networks and disks within an
IaaS cloud.

Typically, scale-out cloud applications run across
a set of compute nodes solely dedicated to that ap-

plication. In such an environment, three of the ma-
jor objectives that general purpose operating sys-
tems were designed to meet are relaxed or elimi-
nated entirely.

First, the burden to support multiple users is re-
moved from the operating system. In this environ-
ment, the isolation enforced by the IaaS provider
eliminates the need for many system level security
checks and accounting, and reduces the requirement
for internal barriers between trusted and untrusted
code.

Second, it becomes the responsibility of the
IaaS provider to arbitrate and balance competi-
tive resource usage. In a deployment where entire
nodes are assigned to a single application, much of
the complexity of existing operating systems (e.g.,
scheduling, memory management, etc.) is redun-
dant.

Third, a symmetric structure is unnecessary in
a large-scale distributed application. Many cloud
applications are already composed of multiple ser-
vices run across a set of compute nodes; As a result,
OS functionality can be provided asymmetrically,
where only some nodes need full OS functionality,
while other nodes can be much simpler.

Given these observations, it is apparent that dis-
tributed cloud applications built on top of general
purpose systems are comprised of unnecessary soft-
ware functionality with the risk of reduced perfor-
mance and added complexity.

1
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Are from scratch library OS the 
only way?

While today’s IaaS may not have the speed of elasticity as Kittyhawk


Today’s Clouds have enough HW, VMs, and Containers dedication to a 
single component of a web service (key-value store, DB, FaaS 
executor,…) is standard.   This has led to a renewed interest in library 
OSs/Unikernels.


Is there an a “easier” way to run a dedicated task?
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Can we find ways of integrating uni-kernel techniques 
within Linux (and thus leverage its code base)

UKL: Is the LibraryOS important or are the 
optimizations? 
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Dynamic Privilege
There may be an even more 
fundamental OS change we can 
make. 

Let’s question the very ground we 
have stood on. 
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Privilege as a runtime switch
Enables a new kind of “application”

• Bracketing privilege access in time


• Accessing a privileged register


• x86_64 Control Register 3


• Executing privileged instructions


• mov cr3, %rax User

Supervisor

App.
Kernel The entire kElevate patch for 

Linux (x86_64) is 173 lines of 
new kernel code
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Dynamic Privilege from Anywhere

• We’ve mainly prototyped in C, C++, and Python, but have written prototypes 
to demonstrate kElevate can be used in others


• Java


• Node


• Rust


• Go


• Assembly

Who says you can’t 
hack the kernel from a 

Jupyter Notebook

Tommy Unger’s PhD



• Refer to dissertation


• Redis:


• Shallow shortcuts: 9-11% xput 
improvement


• Deep shortcuts: 20-22% xput 
improvement


• Memcached


• Shallow shortcuts: 9-11% xput 
improvement

Shortcutting: Macrobenchmarks
Short Cuts are now a 

user tool!

Tommy Unger’s PhD



With Dynamic Privilege, an app can 
remake the world (kernel) in its own 
image at both compile and runtime!

Tommy Unger’s PhD



Can specialization help with 
energy consumption?

Using a computer efficiently should be easy!

“easier” to “use”



Can specialization 
help us use our 
resources more 
efficiently?

Two views of specialization 
1. Special purpose OS 
2. An ML-Tuning OS for 
the OS

Han Dong’s PhD

Packets

Energy

Performance

OS

Application

A Data-Driven Study of Operating System Energy-Performance Trade-offs 
Towards System Self Optimization 



1. Special purpose OS

• Wrote a 10Ge NIC driver for 
EbbRT


• First bare-metal head-to-head 
comparison — performance 
win is even more dramatic 
than we thought!


• All workloads tested at all loads 
show a clear separation between 
specialized OS versus Linux

YES IT DOES!

Han Dong’s PhD



2. An ML-Tuning OS for the OS

• Specialization can be a dynamic problem 
that sometimes we can out source 


• A new view of the OS


• expose controls and defer tuning to an 
external agent.  When appropriate

Another view of Specialization

Han Dong’s PhD
Packets

OS

Application

ML

BayOp



Openned the door
Projects currently being pursued

• Energy Efficient Stream Computing with Flink 

• Can we extend these results to a multi-node scenario?


• Can we extend these results to a more complex software stack?


• Container Energy Efficiency (joint work with PEAKS)  

• What impact does containerization have on consumption


• What impact does containerization have on control


• The Shepherd OS Framework 

• Generalize BayOp into a distributed OS with pluggable ML modules


• Specializing Linux for Energy Efficiency 

• Can we use Dynamic Privilege or UKL to obtain the same efficiency demonstrated by EbbRT?



One more Thing 
2004 - Now

We have been exploring a radically different 
approach to scalability — a globally 
distributed “Computational Cache” that can 
exploit future sub-threshold (neuromorphic) 
devices without sacrificing programmability. 

PSML, ASC, DANA, SUESS*, OM and ForkU*

2008 PSML 
DARPA Talk



• The evolution of hardware has not stopped yet — remember, we are both consumers and 
influencers (Stone and Dennings).


• The value of an Open foundation of Linux software is hard to deny


• Perhaps the best way to preserve it is not to over-burden it


• But this does not mean there is only one way to think about the OS  


• The cloud finally lets us redefine the OS, and as further elasticity and resources become 
available, there will be additional opportunities.  


• Efficient use of resources matters — help people be frugal


• There are novel hybrid OS approaches — it need not be an all-or-nothing proposition


• OS Researchers must be willing to look into the future and take risks even if the 
mainstream does not see the value — be willing to redefine, conjecture, and experiment

OS: A collection of “software” that makes it 
“easier” to “use” a “computer.” Ultimately Hardware

Get stuff done with 
less effort, in less time, 
and fewer resources 

Even if systems programming gets outsourced to AI, creativity and science are not dead



Thank you to all our funders who have 
been willing to take leaps of faith and fund 

work that was not “obviously useful.”



We live in interesting times
We must be willing to change and adapt — being a brilliant systems programmers 
is not enough. 

• Physics, Chemistry, and material sciences, if anything we are told are about to explode


• Every year, we are getting closer and closer to understanding the relationship between 
neurobiology, ML, and computation, more broadly.


• We are reaching the limits of what is sustainable, and we need to become more efficient.


• The impact of computer systems is genuinely global— both for good and bad


• Computation is power — this puts us and what we do at the forefront of socio-
economics


• Our creativity, commitment to truth, and integrity matter, not just how much complex 
code we can write. 


