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Abstract—High Level Synthesis (HLS) allows custom hardware
generation using developer-friendly programming languages. Of-
ten, however, the HLS compiler is unable to output high quality
results. One approach is to pre-process the source code, e.g., to
restructure the computational flow, or to insert compiler hints
using annotations or pragmas. But while the latter approach
appears to enhance programmability, it also requires developer
expertise, both regarding hardware design patterns and even
compiler internals: an incorrect annotation strategy can worsen
performance or result in compilation deadlocks.

To address these challenges, this work presents AutoAnnotate,
an automatic code annotation framework for HLS. It demon-
strates the efficacy, novelty, and benefit of applying ML methods
to code annotation. AutoAnnotate replaces the need for developer
expertise by using Reinforcement Learning (RL) to determine the
best set of annotations for a given input code. To demonstrate the
effectiveness of this approach, we ran AutoAnnotate on a number
of common FPGA benchmarks derived, e.g., from Rodinia and
OpenDwarfs, with state-of-art HLS tools (AMD Vitis and Intel
HLS). We obtained a geometric mean of 42× performance
improvement for Vitis HLS and 3.42× for Intel HLS. We then
hand optimized these codes using standard best practices and
again applied AutoAnnotate, this time still achieving 32.3×
performance improvement for Vitis HLS and 3.1× for Intel
HLS. Interestingly, the best overall performance obtained by
AutoAnnotate was generally with unoptimized codes.

I. INTRODUCTION

A fundamental challenge in Electronic Design Automation
(EDA) is the creation of code that is not only programmable
with reasonable effort, but that is also performant. Basic to
creating high performance FPGA applications is that they
are usually programmed by developers experienced in that
domain; moreover, programs for spatial accelerators such as
FPGAs often do not follow the optimization principles of a
traditional software design. High Level Synthesis (HLS) tools
that enable transformation of High-Level Language (HLL)
code into an FPGA specific design have the potential to
offer a considerable advantage by enabling complex hardware
designs using procedural languages. Among the vast number
of academic and commercial products in this and related
spaces are Electronic System Level (ESL) design tools [1]–
[4], runtime libraries [5], autotuners [6], [7], and other program
development infrastructure [8].

It is often the case, however, that the HLS compiler is
unable to output high quality results. Many studies have
tackled this problem using pre-processing of the source-code,
e.g., [9]–[11]. For example, FPGA vendors suggest source
code reconstruction focusing on optimization for pipelined
registers, predictions, and memory coalescing, among others.
However, improving source code by using manual code rewrit-

ing also requires significant expertise in FPGA architecture,
including programming for distributed memory resources,
deep pipelines, and data-flow routing. Also, this approach is
compiler agnostic; while this seems a positive, it turns out to
be the opposite: we find that some practices that yield benefits
with Intel HLS can result in the opposite with AMD Vitis.

An alternative, source code annotation with pragmas (or
directives), aims to make apparent to the compiler certain
opportunities in the code, such as potential for parallelism or
reducing memory latency. Most existing HLS tools employ
user directives to transform code. However, these require that
a naive code be properly annotated with specific combinations
of pragmas in order to improve performance [12]. There are
several limitations: Which pragmas should be used to exploit
inter- and intra-module parallelism and memory abstractions?
And, Which combinations of these pragmas work well together
and guarantee maximum performance? In particular, specify-
ing HLS directives and pragmas presents several challenges:
1. Transforming source code requires not only knowledge
of hardware micro-architecture, but also familiarity with the
proper use of tool-specific optimization directives and prag-
mas. It also requires facility with the overall coding style,
e.g., applying appropriate memory partitioning, which itself is
dauntingly dependent on code complexity. In fact attempting
to use pragmas may actually exacerbate the programmability
problem as the designer now needs expertise with the HLS
tool as well as with hardware design. Moreover, the effect of
inserting a pragma depends not only on the HLS tool, but also
its version and the target FPGA type.
2. Pragmas may need to be added at tool-dependent locations
in the code. For example, the loop unrolling pragma for Vitis
HLS must be inserted after the for loop; this is in contrast to
other compilers such as Intel HLS, GCC, Clang, and OpenMP
where loop unrolling must be declared before the loop.
3. Even if the pragmas are inserted correctly, good perfor-
mance is still not guaranteed. We have observed that incorrect
(yet legal) insertion of certain pragmas can result in multiple
factors worse performance. Infeasible configurations may in-
crease latency costs, cause deadlock or result in runtime errors.
For example, for an array used in a for loop: if the array
partitioning factor is less than the loop unrolling factor, then
the loop may not be unrolled successfully because the visits to
the array are limited by the partitioning factor [3]. If the array
partitioning factor is greater than the loop unrolling factor,
more memory resources are consumed without increasing the
parallelism. Compatible directives and factors are needed [13].

These challenges indicate that code rewriting with HLS
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directives is a hard problem and that there is a need for
an intelligent automated toolflow to productively annotate
code in a reasonable amount of time. While the objective is
still to leverage parallelism and optimize resource usage, our
approach is to extract maximum performance benefit without
any additional programming effort, while using state-of-the-
art tools to guarantee universal availability.

This paper presents AutoAnnotate, an automatic code an-
notation framework for HLS. AutoAnnotate reduces the need
for developer expertise and effort by using Reinforcement
Learning (RL), a ML approach that has proven valuable and
superior to human experts in many fields [14]–[18]. We find
that an RL agent can efficiently capture code characteristics
and the HLS tool annotations that work well together, and
thus to enable learning a model that predicts improved code
insertions for a given application. AutoAnnotate adds value
for both less and more experienced developers: the former in
developing performant FPGA codes; the latter for generating
design alternatives without having to go through hundreds of
pages of reference manuals for each target tool.

This paper makes the following contributions:

• An end-to-end RL-based source code annotation frame-
work that takes C code as input and outputs a performant,
pragma-injected C code. Automating insertion of com-
piler directives/pragmas improves not only usability and
portability but also the quality of customized programs
on FPGA platforms.

• An extensible method for design space identification in-
volving source code profiling. This outputs code-specific
pragmas and their insertion points. The RL agent then
learns to annotate the C code with the minimum number
of pragmas from the design space, minimizing the overall
execution cycles within a set number of iterations.

• We demonstrate the framework on common FPGA work-
loads that have been analyzed in prior work [10] and on
state-of-the-art HLS tools. Our results show that using
AutoAnnotate on these baseline codes gives an average
of 42× performance improvement for AMD Vitis HLS
and 3.42× for Intel HLS.

• We recognize that performance improvements over base-
line HLL code can be difficult to interpret. We have
therefore hand-optimized these codes using a procedure
based on best practices [10] and again applied AutoAn-
notate, this time still achieving a 32.3× performance
improvement for AMD Vitis HLS and 3.1× for Intel
HLS.

• We obtain the unexpected result that, of all of the com-
binations, the best performance was generally from run-
ning AutoAnnotate on the original baseline, rather than
either code that has only been hand-optimized or hand-
optimized code further optimized with AutoAnnotate.

The rest of this paper is organized as follows. Section II
discusses some of the closely related work. Section III gives
the motivation and background for using RL to annotate codes
for HLS. Section IV presents the proposed framework, Au-
toAnnotate. Section V lists the evaluation methods. Section VI
evaluates the effectiveness of the approach using mainstream

FPGA benchmarks. Section VII gives the conclusion.

II. RELEVANT WORK

Pragmas are inserted into source codes to give appropriate
hints to the compiler and guide its process of performance op-
timization. Source code annotation for performance enhance-
ment has been done several times; however, only a handful
of publications have actually looked at the pragma insertion
problem for HLS tools. To the best of our knowledge, no one
has yet used Reinforcement Learning to annotate generic C
codes with pragmas for HLS workflows on any state-of-art
HLS tool. Our work is also the first in this category to verify
that all transformed C codes indeed generate functionally
correct codes.

In other work, Amiri et al. [19] explored code annotations
with regards to data-flow programming in streaming applica-
tions that have multiple kernels within a single code. Sim-
ilarly, the source-to-source compiler, SpecHLS [20] focuses
on HLS kernels that can benefit from speculative pipelining.
Design Space Exploration for HLS [13], [21]–[23] focuses
on heuristics-based approaches to sample the design space.
Other work identifies regions of interest, or predicts optimal
factors, but for limited directives such as loop unrolling or
loop pipelining. Moreover, most of the work in this domain
uses performance estimation instead of actual synthesis with
an HLS tool. Since these quality-of-results (QoR) estimators
are not the actual HLS tool, their performance values might
differ significantly from the correct results. Also, they may not
have proper verification of generated codes through regression
testing. Some work that does invoke downstream HLS tools
has run-times of days. And, to the best of our knowledge,
few of these use state-of-art tools for performance estimation.
[24] presents an HLS optimizer for design space exploration
within Merlin compiler. Others, such as ScaleHLS [25], use
their own QoR estimator to provide performance estimates.

III. BACKGROUND

In this section we look at the programmability model for
traditional HLS tools and the available “knobs” for users to
pre-process their codes using directives/pragmas. We find that
the complexity motivates the RL assisted framework. We then
discuss an alternate pre-processing approach, namely, source
code rewriting, and show that it can be combined with RL.
Our overall framework is presented in Section IV.

A. Programmability model for HLS tools

While HLS tools have raised the abstraction level for pro-
gramming FPGAs, extracting performance from the input code
is still a challenge. HLL codes are traditionally sequential,
and typically written by developers with little knowledge of
FPGAs’ essential characteristics. Most HLS tools improve
performance at their back-end by leveraging data-level paral-
lelism using dependency analysis. However, much parallelism
is still hard to predict. For this, tools such as AMD Vitis, Intel
HLS, and Microchip’s SmartHLS [3], [4], [26] allow users to
insert annotations to highlight explicit parallelism, pipelining
opportunities, or optimal memory interfacing.

The task of pragma insertion is notoriously demanding.
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Tables I and II list some available pragmas for HLS tools
that have been explored in this work. Since applications
investigated are single kernels, the scope of this study does
not include task level pipelining and structure packing using
pragmas such as pragma HLS dataflow (along the lines of
work presented in [19] for multiple kernels).

In HLS the constructs that have the highest impact on
the final RTL micro-architecture are functions, loops, and
arrays. Typically, an HLS tool first converts each function
into a specific hardware component. For a given code, its
ports and functions can be either be inlined or not. Inlining
is especially useful for functions that are small and rarely
called. These can be inlined into a larger caller function,
allowing operations within the inlined function to be shared
and optimized effectively. However, inlining can also worsen
performance, specifically when the inlined function needs to
be called multiple times within the parent function [3].

Next, Loops can be unrolled completely or only partially.
Unrolling introduces hardware duplication. The amount of
unrolling, however, is constrained by the memory bandwidth.
Loops can also be pipelined with different initiation intervals.
But an inter-iteration loop carried dependency will cause loop
pipelining to fail.

Finally, Arrays can be mapped to registers or memories of
different types. This is critical since interface contention—
i.e., a RAM that allows fewer reads/writes than accesses in
the same iteration—will cause a bottleneck. Deciding on the
optimal number of concurrent ports for memory accesses is
important so that if multiple arrays are feeding data to a
compute task, these arrays can be mapped to different interface
ports so as to access the data in parallel. Also, the data must

TABLE I
AMD VITIS HLS PRAGMAS EXPLORED IN THIS WORK [3]

Type Attribute Additional options
Function Inlining pragma HLS inline off, on
Interface Synthesis HLS interface mode= ap_fifo ,s_axilite,

m_axi; port; bundle;
offset; depth

Pipeline HLS Pipeline rewind; enable_flush; II
Loop Unrolling HLS unroll factor
Array Optimization HLS array_partition variable; dim; factor

type=cyclic,complete,block;

TABLE II
INTEL HLS PRAGMAS EXPLORED IN THIS WORK [26]

Type Attribute Additional options
Pointer Interface var_type* restrict, volatile
Host Interfaces ihc::mm_host< var >&var Data Width,

Alignment, Address Width,
Burst Width, Latency
Stable=1,0

Agent Memories registers,memories configurations= numbanks
writeonly, singlepump,
doublepump, bankwidth,
volatile

Constant Interfaces stable_argument avalon_agent_
register_argument

Loop Unrolling unroll factor
Max Concurrency max_concurrency 1,0
Max Interleaving max_interleaving 1,0
Other Loop #pragma ivdep
Optimizations loop_coalesce, ii

disable_loop_pipelining factor
Global Optimizations clang fp contract fast,on,off
Other Global component_pipelining
Optimizations max_concurrency

use_stall_enable_clusters

be stored in different memory banks or the accesses will
become serialized. Declaring appropriate interface pragmas
allows users to resolve such hardware contentions.

For designs with large numbers of loops, arrays, and
functions, it is impossible to systematically explore all of
the different design-space combinations. To come close to
an optimal solution, an expert who can adapt rapidly is
required. In this work, we have leveraged the particular
capabilities of AI so that the expertise and adaptability
come from reinforcement learning (RL).

B. Best Practices Optimizations of Baseline Codes

In prior work using source code transformation [9]–[11],
researchers benchmarked common FPGA workflows by ex-
ploiting best practices of manual source code reconstruction.
These best practices come mainly from (i) vendor-specific best
practices HLS tool reference manuals, (ii) universally applied
code optimization strategies such as use of loop unrolling
and loop fusion; and (iii) FPGA-specific good practices,
such as allowing concurrent memory accesses, using memory
bandwidth effectively, and efficient resource binding. While
applying best practices is compiler-agnostic, it does benefit
from programmer understanding of typical HLS compiler
behavior and of FPGA architecture.

An observation of note to this study is that, in some cases,
source code reconstruction offers benefits not possible with
annotations alone. This observation illustrates limitations of
current HLS compilers: not all performance can be extracted
using just compiler hints; in some cases programmer involve-
ment is still required. Some examples include:

• reordering of loops for spatiality and for exploiting input
caching;

• loop tiling to remove loop carried dependencies;
• rewriting code to remove overlapping array accesses;
• fusing multiple loops to achieve runtime reduction;
• extracting task level parallelism by implementing inde-

pendent tasks, such as kernels, and connecting them using
channels;

• restructuring code to remove conditional accesses and if-
else conditions that can create bottlenecks for parallel
execution; and

• since some HLS compilers cannot estimate latency if a
while loop is present, converting them into for loops.

Accordingly, evaluations of HLS enhancements, such as
those proposed in this study, should have multiple baselines:
the original code, but also code to which best practices
have been applied. The latter is essential since it represents
versions of the code that are in states that are (apparently) not
accessible to these HLS compilers. As a result our evaluations
are with respect to both baseline code (version 1) and code
that has undergone programmer-based reconstruction as in
Table III. As we see in Section VI, however, it turns out that
AutoAnnotate on unoptimized code most often gives the best
results.

Figure 1 shows code optimizations performed by AutoAn-
notate on matrix multiply. When the baseline code is run
through AutoAnnotate, it outputs annotated code that improves
the latency by 7.3×. The baseline code is also hand optimized
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TABLE III
SUMMARY OF CODE VERSIONS AND OPTIMIZATIONS APPLIED

Version Optimization
1 CPU-like single kernel C code

2

Implement task parallel computations
in separate kernels connected using channels
Apply optimizations such as loop unrolling,
minimizing variable declaration using temps
Using constants for problem sizes and
data values to reduce off-chip memory access
Coalesce memory operations

3 Implement all optimizations proposed for
version 2 within a single kernel instead

4 Reduce array sizes to infer pipeline
registers as registers, instead of BRAMs

5 Perform computations in detail,using
temporary variables to store intermediate results

6 Use predication instead of conditional branch statements

(as outlined in [10]); these results are summarized in Table III.
We find the version (#5) that gives the best performance; it is
the same for both AMD HLS and Intel HLS. Results are given
in Figures 3; to summarize, there is a latency improvement of
2.7× versus the baseline code. We then run the best hand
optimized code through AutoAnnotate and the annotated code
improves the hand optimized code by 1.98×. In this case, the
combined benefit of hand-optimization plus AutoAnnotate is
a speedup of 5.34× over the original baseline.

IV. THE AUTOANNOTATE FRAMEWORK

A. AutoAnnotate Design

The proposed framework for automated source code annota-
tion for HLS is illustrated in Figure 2. The C code is fed
into the framework together with HLS tool specific pool of
pragmas. Tables I and II list the pragmas used in AutoAn-
notate and their various configuration options. Most of these
pragmas feature placeholders that must be correctly labeled
with variable names, port designations, bundle names, and off-
sets. Pragma-Generator addresses this by accurately labeling
placeholders based on variables extracted by the Code-Profiler.
The labeled-pool-of-pragmas is passed as action space to
the RL framework. The RL agent selects pragmas and the
Code-Annotator places them at designated line numbers. The
annotated code undergoes latency evaluation, enabling the RL
agent to learn which pragmas yield the best rewards over time.
Pragmas resulting in minimal latency after RL training are
integrated back into the original C code to output the best-
annotated version, subject to validation through co-simulation.

B. Code Profiler

Input code is first fed into a code profiler that outputs code
characteristics that are required for HLS annotation. These
include information about (i) various functions in the code and
their declaration points; (ii) variables in each function and their
names and attributes (e.g., pointer, read-only); and (iii) loops
in each function, their declaration points and nesting levels.

C. Pragma Generator

The HLS tool-specific configurations are fed separately into
the toolflow. Each configuration contains a directory of HLS
tool-specific information such as (i) type/version of HLS tool,

Fig. 1. Example output from AutoAnnotate for Intel HLS: MatrixMultiply
baseline code can be hand optimized using version 5 in Table III to increase
performance by 2.7x. AutoAnnotate inserts pragmas into each of the baseline
and hand optimized versions to increase performance by 7.3x and 5.34x with
respect to the baseline code.

(ii) built-ins that are supported after function declaration,
and (iii) pragma optimizing loops. Pragmas supported in this
work are given in Tables I and II. Each of these pragmas is
categorised into a pool of function and loop pragmas. Function
pragmas are inserted either after function declaration (AMD
HLS) or within the function arguments (Intel HLS). Similarly,
loop pragmas are inserted either after for loop (AMD HLS)
or before it (Intel HLS). This information, together with the
code profiler output, is fed into a Pragma Generator.

The HLS Tool Configuration Database (see Figure 2) is
the same regardless of the source code and depends on the
HLS tool and its version. This is like a registry of possible
pragmas supported by the tool. Most of these pragmas have
placeholders that need to be annotated with appropriate vari-
ables from the function and other configuration values. The
Pragma Generator labels the placeholders within each pragma
with all possible variable names and configuration options and
outputs a list of labelled pragmas and their insertion points for
the specific source code. This list of (pragma, insertion point)
is fed as an action space to the RL framework.

D. RL based Environment

Reinforcement learning (RL) is an ML approach where an
agent learns by continually interacting with its environment.
We propose that an RL agent can learn code characteristics and
HLS tool annotations that work well together and so predict
the best code insertions for a given application. In contrast to
supervised ML, the RL agent can be tuned to optimize multiple
objectives with large search spaces and does not need pre-
labelled data for training. An RL framework has two major
components: i) the environment, or the problem to be solved,
and ii) the agent, which is used to perturb the environment and
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Fig. 2. AutoAnnotate: Proposed framework for automatic HLS annotations using RL

learn based on feedback. The smallest unit of environment-
agent interaction is typically a step. At each step, the agent
predicts an action that the environment should take. After
taking the action, the environment returns a reward, indicating
the impact of the action, and an updated state, which represents
the change in the environment resulting from taking the action.
The next step then begins and a new action is predicted.

The above process continues until the environment indicates
that a conclusion has been reached. This collection of steps,
from the first predicted action to the action that causes the
environment to reach a conclusion, is referred to as an episode.
At the end of an episode, the environment is reset and a new
episode starts. A collection of such episodes is referred to as
an iteration. The agent is updated once per iteration. At the
end of each iteration, the learning portion of the RL framework
updates a policy (a deterministic or stochastic strategy) about
which actions cause agents to maximize their long-term, cumu-
lative rewards. RL assumes that the environment is Markovian,
i.e., that the updated state depends only on the previous state
and the action taken. It also assumes that the action taken is
only dependent on the current state.

The RL framework for AutoAnnotate is set up as follows:

• Environment: The environment is composed of the HLS
tool and the specific application. It outputs the number
of clock cycles needed to execute the target application.

• Agent: Proximal Policy Optimization (PPO) is used as
the reinforcement learning agent [27]. It is stable, easy-
to-use, and gives good optimization decisions for source
code annotations. Based on its good performance, it is
also the default policy at OpenAI [28].

• Action: Each action represents a single annotation deci-
sion. This could be either one of the annotations gener-
ated by the pragma generator or a null action specifying
that the agent do nothing. These decisions are appended
to an ordered list of actions for the episode.

• Code Annotator: The list of actions suggested by the
PPO agent is passed to a code annotator after every
episode. This includes the pragma and its insertion point
in the C code. The code annotator inserts all the actions

recommended by the RL agent into appropriate locations
in the source code and outputs an annotated code.

• State: In RL, a state represents the current environment
that the agent is in. In this case, a memory-based state that
stores information about previous actions taken within
an episode is configured as the state. This is important
since it allows the agent to plan its next actions based
on the current situation and goals. This is referred to
as an action history and is a list equal to the length of
the action space (output by the pragma generator). Each
element of the list is incremented and updated when a
pragma corresponding to that list element is applied. PPO
learns to map the distribution of applied pragmas to the
next pragma that should be applied while maximizing
the cumulative rewards across time-steps in an episode.
Since the possible action can also be a null pragma, the
agent is simultaneously forced to learn both the optimal
combination and the optimal number of pragmas to insert.

• Reward: The reward is defined as the difference in
latency between the unoptimized, unannotated code and
the current step; lower latency thus results in a higher
reward value. The reward is set to a default value of 0
for each step, except for the last step in the episode in
which the actual latency is obtained by running through
the HLS tool. Maximum Reward is defined as the highest
reward value obtained by any episode during training.

E. HLS Tool

In the current study we use both AMD Vitis HLS and Intel
HLS. Moreover, adding support for any HLS compiler is
straightforward. The annotated code after each episode is fed
into the HLS tool and the post-synthesis reports generated are
parsed by the toolflow to output the latency values. HLS tools
typically try to generate scheduling algorithms based on the
operating frequency. The frequency target and FPGA type can
also be altered according to user preferences. While the goal in
this work is reduction in latency, the system can also be set to
optimize for area, or other measure of resource utilization, or
for both latency and resource utilization. These are specified
by reading the appropriate performance value from the tool
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and setting it as the reward function for the RL agent.

V. EVALUATION METHODS

A. Benchmarks

The seven benchmark codes in [10] are used for evaluation in
this work: Needleman Wunsch (NW), Fast Fourier Transform
(FFT), Range Limited Molecular Dynamics (RL), Particle
Mesh Ewald (PME), Matrix Multiplication (MMM), Sparse
Matrix Dense Vector Multiplication (SpMV), and Cyclic Re-
dundancy Check (CRC). These were derived from mainstream
FPGA benchmarks including Rhodinia [29] and OpenDwarfs
[30], [31], including an optimization in [32]. In the present
work, we have first validated their approach by porting their
C code to Vitis HLS and Intel HLS. Here, and at all stages of
the evaluation, we have verified correct program execution.

To obtain the baseline, the applications are all transformed
into CPU-like single kernel C code, the standard starting
best practice (Version 1 in Table III). Because of the often
orthogonal capabilities of programmer optimization versus
code annotations (as described in Section III-B) we also
apply AutoAnnotate to codes that were transformed using the
methods in Table III.

B. Experimental Setup

The reinforcement learning framework is set up using Open
AI Gym (0.21.0)’s environment interface, Ray (1.7.0) unified
API, and Ray’s RLlib library to provide the agent interface.
Keras (2.6.0) is used to provide the neural net API for Python
(3.9). Tensorflow (2.6.0) is used for machine learning. Each
test is run using a single worker on a standard multi-core CPU,
the same initial seed value for random number generation, and
a total training time of 300 iterations.

The HLS tools used are AMD Vitis 2021.1 and Intel HLS
23.3 [3], [26]. We set the target frequency to 300MHz. Artix-
7 is used as the default FPGA for AMD Vitis HLS and
Stratix 10 for Intel HLS. We believe that these methods for
learning effective code annotations are general and applicable
to different versions of these tools as well as to other HLS
tools. Moreover, different FPGA types can also be chosen.

C. Applying Code Optimizations

Some details are as follows. First, Version 2 from Table III
is omitted. It involves leveraging task-level parallelism using
multiple kernels; the focus here is on single kernel opti-
mization. Moreover, our premise is that the HLS compiler
is still able to automatically infer task parallel pipelines [10];
also, having a single kernel offers several advantages such as
reduced computation overhead and simple algorithmic flow
[33].

Figure 3 show the results of individual optimizations pro-
posed by [10] performed on top of the baseline code (Version
1) as evaluated using the AMD Vitis HLS and Intel HLS tools.
In [10] the authors observed that each subsequent version of
the source code restructuring typically increases performance.
We find here that source code rewriting does not give much
benefit at all for multiple benchmarks including FFT, Range-
Limited, and CRC. For AMD HLS, the benefit is seen largely
in the systolic-array-based Needleman Wunsch benchmark,

Fig. 3. Systematic optimizations performed in [10] are applied for AMD Vitis
HLS and Intel HLS. ’X’ indicates that either the version was not created since
the corresponding optimizations did not exist for the specific benchmark or
the tool run into a deadlock/compilation error.

where each version gives better performance than the baseline.
Even here, however, Versions 4 and 5 unexpectedly give poor
results when compared to the prior work. For Intel HLS, in
the case of PME, Version 3 optimizations give best results. In
the case of MMM, for both Intel and AMD, Version 5 gives
best performance.

These findings highlights a crucial observation: the benefits
of programmer-applied optimizations, e.g., based on best prac-
tices, are highly compiler dependent. For example, pipeline
stages are inferred differently by both HLS tools. Perform-
ing computations in detail by storing intermediate results in
pipeline registers has little to no impact for AMD HLS, but re-
sults in improvements in some cases for Intel HLS. This result
is also heavily dependent on the application: dissolving branch
statements into conditional assignments gives performance
improvement for MMM; for other applications, however, there
is little benefit.

VI. RESULTS

A. AMD HLS

1) Speedup achieved using AutoAnnotate
Figure 4 demonstrates the effectiveness of AutoAnnotate

when compared to source code restructuring proposed in [10].
We postulate that modern HLS compilers can do a decent
job at optimizing C codes without additional source code
restructuring and using HLS tool specific annotations only.
The results in Figure 4 support this claim for AMD Vitis HLS.
Two versions are compared with the baseline. In the first,
the baseline code for each of the seven FPGA benchmarks
is optimized using source code rewriting; the code version
that gives the maximum speedup is selected. In the second,
AutoAnnotate applied to the baseline code. The results show
that the RL agent does a good job at annotating code to
enhance performance. On average, AutoAnnotate improves
the baseline codes by 42× versus source code restructuring
that improves it by 4.8×. At worst, AutoAnnotate gives
performance comparable to source code rewriting. This also
answers one of the big questions in HLS: Is it possible to
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Fig. 4. The performance of proposed annotation framework, AutoAnnotate on baseline source codes compared to source code restructuring proposed in [10]

perform better than source code restructuring using compiler
annotations? The answer, as backed by the results is Yes. For
some applications such as NW, PME, MMM, SpMV and CRC
this is by a large margin. For the balance, FFT and Range
Limited, it is still possible to give slightly better (by 20%) or,
at least, comparable performance (within 5%).

2) Do random annotations also improve performance?
As discussed in Section IV AutoAnnotate uses Proximal

Policy Optimization (PPO) as the RL agent. PPO updates
its existing policy at each step in order to minimize the
cost function without deviating too much from the previous
policy. Our goal here is to understand how much of the
performance gain (in Figure 4) is because of RL (PPO in
this case); to do this we compare with a baseline random
strategy. For the random strategy, we replaced the PPO agent
with simple nested loops that ran for an equivalent number of
steps, episodes, and iterations, and each time picked random
actions of length equal to the list of pragmas (as set up for
PPO-RL toolflow as well).

The results are given in Figure 5. For five out of seven
benchmarks, the random strategy could not get even a single
random occurrence of annotations without compilation errors.
This is because for Vitis HLS, only a small subset of prag-
mas/annotations can work well together. And since the random
strategy does not learn over time, for every iteration it ran
into errors. For CRC and PME it was possible to get legal
annotations even with random strategy, perhaps because the
action space of effective pragmas is so small that it is possible
to pick the acceptable ones just by chance. In both cases,
however, the resulting performance was indistinguishable from
the original baseline code.

3) Combining code restructuring with AutoAnnotate
Figure 6 shows the results of combining source code rewrit-

ing (as proposed in [10]) with AutoAnnotate. For the estab-
lished FPGA benchmarks, we choose different code versions
as proposed in Table III as our starting points. Code structures
A-D refer to versions 3-6. Our goal is to understand just how
much performance potential is achievable when AutoAnnotate
is applied to each code structure. The results show:

• Figure 3 gives the best source code version for each
application, e.g., for NW, it is version 4. Applying
annotations on top of version 4 (code structure B) gives a
speedup of 2.67× as can be seen in Figure 6. For SpMV,
we can improve the best-case hand optimized code (code
structure A-version 2 from fig 3) using AutoAnnotate by

Fig. 5. Relative Speedup achieved by using base configuration (with PPO
agent) in AutoAnnotate versus using a random strategy to annotate code for
equivalent number of iterations. X is used to denote the case when not even
a single episode of random annotations output compilable code; the proposed
annotations were outputting compilable errors on Vitis HLS

Fig. 6. Impact of applying AutoAnnotate to each starting code version.
’X’ indicates that code structure was not created since the corresponding
optimizations did not exist for the specific benchmark.The speedup >1 shows
performance was enhanced by applying strategy of AutoAnnotate. Even for
the worst case, performance is equal to the unoptimized code. Baseline is
the same as Version 1. Code structure A refers to version 3, code structure
B refers to version 4, code structure C refers to version 5, code structure D
refers to version 6 from Table III.

120×. On average, AutoAnnotate improves the best hand
optimized source codes by around 32.3× with respect to
the unoptimized baseline.

• Results in Figure 6 show that pre-processing using
AutoAnnotate gives the maximum performance benefit
when applied to baseline code without any source code
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Fig. 7. Speedup achieved by using AutoAnnotate to insert Intel HLS pragmas for both baseline and best source code restructured versions

restructuring. Exceptions include Range Limited where
AutoAnnotate applied to code structures A and D gives
slightly better performance than when it is applied to
baseline codes; and SpMV where AutoAnnotate applied
to code structure A gives 3.16× better performance than
when it is applied to the baseline code. AutoAnnotate
improves baseline codes by 42×, code structure A by
3.54×, code structure B by 1.42×, code structure C by
2.77× and code structure D by 2.65×.

• From the results we can also conclude that the HLS com-
piler in general, does well at inferring pipeline stages and
leveraging parallelism; further benefit can be achieved
by applying tool-specific annotations only (something
that AutoAnnotate does) without requiring to manually
rewrite the code structure. This is especially evident in the
case of CRC. AutoAnnotate applied to every code struc-
ture results in nearly identical performance improvement.
It is also evident in PME where AutoAnnotate applied
to the baseline and to code structure C give the same
performance improvement.

B. Intel HLS

1) Combining code restructuring with AutoAnnotate
For Intel HLS we combined strategies evaluated in Sec-

tions VI-A1 and VI-A3. Hand optimized versions as proposed
in Table III were first run on the tool. The results are
given in Figure 3. Out of these, the maximum performance
improvement possible using hand optimizations (source code
restructuring) for each workload is selected and its perfor-
mance advantage is displayed as green bar in Figure 7. Next,
the baseline codes for each workload are annotated using
AutoAnnotate and the performance improvement is given
by the red bars. Lastly, the best source code restructured
codes are run through AutoAnnotate and the performance
improvement possible is given by the yellow bars. We note that
in most cases, annotating the baseline codes gives performance
improvement either better than, or at least comparable to anno-
tating the best source code restructured codes. AutoAnnotate
improves the performance of baseline codes by a geomean of
3.42× and best source code restructured by 3.1×.

VII. CONCLUSION AND FUTURE DIRECTIONS

We have developed an automatic source code annotation
framework that replaces developer expertise and effort with

Reinforcement Learning. We found that there is a substantial
benefit to using AutoAnnotate, not only in automating the
challenging task of pragma insertion, but also in obtaining
performance that is generally better than that of applying
programmer-directed best practices. In fact, this performance
benefit (of AutoAnnotate on the baseline code) extended even
to the application of AutoAnnotate to the hand optimized code.
This last observation needs to be studied further. It could be
that these hand optimizations have somehow constrained the
degrees of freedom available to AutoAnnotate.

Going into this study we conjectured that a PPO agent could
give good performance. We found (see Sections V and VI) that
the agent does indeed learn, not only which annotations work
well together, but also the minimum set of annotations to give
that performance. In the future we will explore replacing it
with an even “smarter” agent.

Also in this work we passed the history of applied annota-
tions as a state for the agent. This works since FPGA work-
loads are generally application-specific. This is also important
since only a handful of pragmas work well in combination
with each other for each application. Hence the RL agent
learns the minimum number of annotations that work well for
that specific application. The information about code features
is captured during code profiling in order to generate code
specific pragmas for the application case. In the future we can
incorporate the code profiling block into the RL framework.
We can encode the state of the RL framework so as to include
code profiling information. This will drive the agent to learn
not only the best annotations but also the best insertion points
in the code.

Finally, in this work, we ran each training case for 300
iterations so as to limit the time in which we can output
a pragma inserted C code. In the future, the agent could
be trained to run over an optimal number of iterations until
performant pragma inserted code has been achieved.
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