
research.redhat.com

Bringing great research ideas
into open source communities

RH
RQ

An energy-aware, AI-ready
data space

Efficient, transparent GPU
scheduling

Yuga for Rust analysis

Closing the AI gap

Volume 7:2 | Fall 2025 | ISSN 2691-5278

Red Hat
Research Quarterly

Luke Hinds
"It's the wild frontier": security,

agentic AI, and open source

Learn more at ai.intel.com

© Intel Corporation. All rights reserved. Intel, the Intel logo, Xeon and other Intel marks are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries. Copyright © Intel Corporation 2020.

3

V O L U M E 7 : 2

RESEARCH
QUARTERLY

research.redhat.com

Table of Contents
Departments

Features

ABOUT RED HAT Red Hat is the
world’s leading provider of open
source software solutions, using a
community-powered approach to

provide reliable and high-performing cloud,
Linux®, middleware, storage, and virtualization
technologies. Red Hat also offers award-winning
support, training, and consulting services. As a
connective hub in a global network of enterprises,
partners, and open source communities, Red Hat
helps create relevant, innovative technologies
that liberate resources for growth and prepare
customers for the future of IT.

12

27

NORTH AMERICA
1 888 REDHAT1

EUROPE, MIDDLE EAST,
AND AFRICA
00800 7334 2835
europe@redhat.com

ASIA PACIFIC
+65 6490 4200
apac@redhat.com

LATIN AMERICA
+54 11 4329 7300
info-latam@redhat.com

facebook.com/redhatinc
@RedHat
linkedin.com/company/red-hat

06

21

27

35

12

Behind the cloud: the work
behind the MOC environment

GREEN.DAT.AI: an energy-
efficient, AI-ready data
space

Open Education Project
tackles GPU scheduling and
metrics visibility

Refined Yuga analysis
tool for detecting code
defects in Rust improves
usability

“It’s the wild frontier”:
security, agentic AI, and
open source—an interview
with Luke Hinds

04 From the director: closing
the AI gap

21

Publication highlights

The PQC transition:
researching a quantum-safe
future

08
40

Learn more at ai.intel.com

© Intel Corporation. All rights reserved. Intel, the Intel logo, Xeon and other Intel marks are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries. Copyright © Intel Corporation 2020.

https://twitter.com/redhatnews

4 research.redhat.com

RESEARCH
QUARTERLY

V O L U M E 7 : 2

Closing the AI gap: why we can’t
leave students—or Montana—
behind
by Heidi Dempsey

In the film The Hunt for Red October, a Soviet
submarine captain intends to defect to the
United States with his state-of-the-art nuclear

submarine, and he discusses plans with his senior
officers while underway. “I will live in Montana,”
one says, and I will marry a round American
woman and raise rabbits, and she will cook
them for me. And I will have a pickup truck...
maybe even a ‘recreational vehicle.’ And drive
from state to state. Do they let you do that?”

Montana gladly supports these freedoms, and
more. For some reason, however, it is the only
state in the US not currently participating in the
National AI Infrastructure Research Resource
(NAIRR) Pilot program (nairrpilot.org/map).
Sponsored by the National Science Foundation
(NSF), this program aims to connect people to
the resources they need to “advance AI research
and the research that employs AI.” No slight to
the great state of Montana—we don’t know why
Montana abstained or was overlooked in this
instance. But the gap points to a growing issue
with AI research and education: even though AI
will impact the lives of every person in the US,
we have no robust program for training all our
students to understand and be able to affect AI.

We also have very few efforts underway to make
clear to average citizens what AI does, how it

works, and why it makes decisions that affect
their lives. Even when an organization like the NSF
undertakes an expensive multi-year effort (540
projects!) to address some of the blockers that
researchers and students experience when trying
to better understand and control AI technology,
it is still very easy for large groups of people to
be overlooked. How much easier is it to overlook
the educational, social, regulatory, and political
work necessary to truly “democratize” AI? The
United States AI Action plan, published in July
2025, only begins to scratch the surface of these
areas. Just as the drive for an open operating
system powered the early days of Linux research,
creating an open and transparent way to use (or
not use) AI must drive the work that industry,
government, and ordinary people do as we
adopt AI in more and more places in society.

Red Hat and IBM are working together to support
NAIRR pilot projects (more on this in the next
issue) in the Mass Open Cloud. This work is
global, of course, even though I happen to be only
writing about US efforts in this article. A quick
look at research.redhat.com as well as the IBM
and Red Hat corporate blogs highlights many AI
infrastructure projects in EMEA, South America,
India, Australia, and the Far East. Red Hatters
in the Czech Republic are actively studying the
AI Act requirements for EU R&D as well as new

From the director

About the Author
Heidi Picher

Dempsey is the US
Research Director

for Red Hat. She
seeks and cultivates

research and open
source projects

with academic
and commercial

partners in operating
systems, hybrid

clouds, performance
optimization,

networking, security,
and distributed

system operations.

5

V O L U M E 7 : 2

RESEARCH
QUARTERLY

research.redhat.com

infrastructure and adapting our technical
goals to comply with new regulations.

This work also extends to projects
like TrustyAI, which provides tools
for responsible AI workflows, and
the AI Bill of Materials, or AI BOM.
This Bill of Materials for an AI system
could provide a common structure
and tools for recording details about
which model versions, datasets, and
tools are used to create AI that drives
applications like chatbots, no matter
who originally produces them. Think
of it like a standardized “Nutrition
Facts” label for AI instead of foods.

Basic information like this is important
for us to be able to understand
more about how a particular AI was
developed and trained to answer
our questions. The interview with
Sigstore founder Luke Hinds in this
issue of RHRQ also highlights new
efforts to equip AIs with explainable
and provable security, and to design
them to always consider energy
conservation and climate effects
as part of AI application design.

Finally, Red Hat Research has been
pursuing several efforts to optimize
the performance of AI engines by
tuning the many “knobs” in the full
stack for compute, networking and
storage sub-systems that must
work together efficiently in an AI
datacenter. Even when performance
optimization is the goal, there are
still many tradeoffs in options to
consider, from the BIOS all the way
up through the stack to controlling
the placement of nodes in clusters,
and the interactions of AI agents
through MCP. You’ll be hearing more
about these in future issues as well.

Of course I am only mentioning a tiny
fraction of the important work we all
must pursue here. Similarly, only a tiny
fraction of the people who need to be
brought in to do this work are currently
able to access it—only 0.01% of the
projects currently underway in NAIRR

have education and training as their
primary goals. Only 2.5% of colleges
and universities offer a BS degree in
AI. According to OpenMined, AI itself is
trained and evaluated on less than 0.01%
of the world’s data. We are overlooking
much more than just Montana.

Scan QR code to subscribe
to the Red Hat Research
Quarterly for free and keep
up to date with the latest
research in open source

red.ht/rhrq

NEVER MISS
AN ISSUE!

Available

in PDF and

printed

version

SUBSCRIBE NOW

6 research.redhat.com

RESEARCH
QUARTERLY

V O L U M E 7 : 2

The post-quantum cryptography
transition: researching a quantum-
safe future

by Martin Ukrop and Arthur Savage

The rise of large-scale quantum computers
presents a direct threat to the cryptographic
primitives that secure our most critical digital

infrastructure. As these machines advance, they
will be capable of breaking algorithms like RSA and
ECC, which form the bedrock of modern public-
key cryptography. Global regulatory momentum
has already driven a significant acceleration in
security research. The US National Institute of
Standards and Technology (NIST) finalized its
first set of post-quantum cryptography (PQC)
standards in August 2024, and the development
and drafting of RFCs for the Internet Engineering
Task Force (IETF) are now underway, with
federal agencies receiving mandates to begin
the migration process immediately. These
new standards will soon be required for use in
commercial and government systems, leading up
to meeting the target of a broader government-
wide transition to PQC no later than 2035—
although security experts suggest that Q-Day
may come closer to 2030. In either case, there is
a great deal of work to do in the next few years.

Engineers from Red Hat’s Office of the Chief
Technology Officer (OCTO) are collaborating
on two recently launched projects with the
aim of preparing for this transition: Quantum-
Resistant Cryptography in Practice in EMEA
and the introduction of frameworks to enable
future PQC software signing as part of the
upstream open source project Sigstore.

QUANTUM-RESISTANT
CRYPTOGRAPHY IN PRACTICE
The Quantum-Resistant Cryptography in Practice
(QARC) project is an initiative under the European
Union's Horizon Europe program*, coordinated
by the Brno University of Technology, set to run
for three years starting in early 2026. The project
aims to create a robust and practical framework
for the transition to PQC. It brings together a
diverse consortium of partners from 11 European
countries, representing three key sectors: industry,
academia, and governmental organizations. The
objective is to move beyond theoretical research
and develop real-world, secure implementations of

News

About the Author
Martin Ukrop is a
Principal Research
Software Engineer

with Red Hat
Research, focusing

on security research
and facilitating

industry-academia
cooperation in EMEA.

Collaborative research among industry, academia, open
source communities, and government is proactively
developing quantum-resistant solutions.

About the Author
Arthur Savage is a

software engineer
on OCTO Emerging

Tech's Security Team.
He has a Master's

degree in Electrical
and Computer

Engineering and
specializes in

cryptography,
data analytics, and

image forensics.

https://cordis.europa.eu/project/id/101225691

7

V O L U M E 7 : 2

RESEARCH
QUARTERLY

research.redhat.com

quantum-safe cryptographic algorithms
for complex, sensitive applications
like e-voting, cloud services, and
Linux authentication. Cryptographic
agility is a key element of the project,
enabling systems to adapt quickly
to new standards and threats.

Another impactful component
is hands-on application through
practical pilots. Pilots will test PQC
implementations in real-world
scenarios including e-government
services in Estonia, cloud services by
the Latvian company Tet, and Linux
authentication for enterprise. QARC
will also address the broader, non-
technical challenges of PQC transition
by establishing an international network
of National Cybersecurity Authorities
to coordinate national strategies and
provide harmonized recommendations.
The goal is to generate open
source software, hardware designs,
and best practices to help a wide
range of organizations navigate the
shift to a post-quantum world.

Red Hat is a major contributor in
the QARC consortium, leveraging
engineers’ experience in open
source software and standards.
Contributions center on the practical
implementation and standardization
of PQC in widely used open source
ecosystems, with a specific focus
on core open source cryptographic
libraries like OpenSSL, GnuTLS, and
NSS. Their work involves extending
the tlsfuzzer test suite to detect
vulnerabilities in these new algorithms,
ensuring the implementations are
robust and secure. Red Hat engineers
lead the PQC Linux Authentication
pilot, which aims to make the Kerberos
authentication protocol quantum-

safe, adapting existing protocols to
work with new PQC standards and
prototyping changes to MIT Kerberos
based on these updates. We will also
integrate post-quantum Public Key
Infrastructure into FreeIPA, its identity
and authentication solution for Linux,
allowing it to generate and manage PQC
certificates. The findings from this pilot
will provide crucial insights into how to
deploy quantum-safe cryptography
in existing enterprise workflows.

PQC SOFTWARE SIGNING
In early March, the Red Hat Emerging
Technology Security Team embarked
on a project to introduce PQC to
the secure software supply chain in
collaboration with the Red Hat Trusted
Artifact Signer (RHTAS) team. Currently,
the team works with Sigstore, an open
source project providing the tools to
sign software and artifacts then publish
proof of lineage to a transparency log
for simple, non-repudiable verification.
Though Sigstore is widely adopted by
industry and government entities—
those who need PQC most—it has
lagged behind on PQC adoption,
in part due to lack of signature
support in core upstream packages
like Go standard cryptographic
library, as well as delays in finalizing
worldwide cryptographic standards.

We've had to get creative and stay
flexible. Much of our time was spent
just negotiating plans, and plans
made one week will be different the
next, depending on the wider PQC
ecosystem: changing government
regulations, industry needs, emerging
academic research and weaknesses, and
volatile APIs. It's a fascinating, exciting
space to work, and we're making real
progress. Portions of our software

design have already been merged
upstream with much more to come.

Towards the end of the year, the team
hopes to have a proof-of-concept
for PQC software signing with
Sigstore, functionality that will then
be expanded and incorporated into
RHTAS. Contributing these features
directly to the upstream community
accelerates industry-wide innovation
and ensures Red Hat continues its long
legacy of open source contributions
and collaboration, while keeping our
products at the bleeding edge of
mitigating one of the greatest existential
cybersecurity threats of the modern day.
In the future, the Emerging Tech team
will be investigating how to maintain the
hardware root of trust in a post-quantum
world—a matter critical for confidential
computing and zero-trust architecture.

STRENGTH THROUGH OPENNESS
The imperative to transition to post-
quantum cryptography is no longer
a distant concern but an immediate
necessity, driven by rapid advancements
in quantum computing and evolving
regulatory mandates. Collaborative
initiatives like the Quantum-Resistant
Cryptography in Practice (QARC)
project and the integration of PQC
into Sigstore for software signing
demonstrate the importance of
solving PQC problems in the open.
Engaging a diverse set of stakeholders
will fuel more rapid innovation, create
greater transparency, and ensure
wide access to security solutions.

*QARC is to be funded by the European Union
under Grant Agreement No. 101225691 from 2026.

8 research.redhat.com

RESEARCH
QUARTERLY

V O L U M E 7 : 2

Publication highlights

"Analysis of smart imaging runtime,"
Thomas Athey (Massachusetts Institute of
Technology), Shashata Sawmya (MIT), Yaron
Meirovitch (Harvard University), Richard
Schalek (Harvard), Pavel Potocek (Thermo
Fisher Scientific, Saarland University), Ishaan
Chandok (TFS, Harvard), Maurice Peemen
(TFS), Jeff Lichtman (Harvard), Aravinthan
Samuel (Harvard), Nir Shavit (MIT, Red Hat) In
(2025) Applied Microscopy, 55(1), art. no. 10.

“AnnotationGym: a generic framework
for automatic source code annotation,”
Hafsah Shahzad (BU), Ahmed Sanaullah
(Red Hat), Sanjay Arora (Red Hat), Ulrich
Drepper (Red Hat), Martin Herbordt (BU).
In (2025) IEEE Access 13, pp. 155321-339.

"Automating the detection of code
vulnerabilities by analyzing GitHub
issues," Daniele Cipollone (Delft University of
Technology), Changjie Wang (KTH Royal Institute
of Technology, Sweden) Mariano Scazzariello
(RISE AB), Simone Ferlin (Red Hat), Maliheh
Izadi (DUT), Dejan Kostic (KTH, RISE AB), Marco
Chiesa (KTH). In (2025) Proceedings of the
2025 IEEE ACM International Workshop on Large
Language Models for Code Llm4code, pp. 41-48.

"Best-effort power model serving for energy
quantification of cloud instances," Sunyanan
Choochotkaew (IBM Research), Tatsuhiro Chiba
(IBM Research), Marcelo Amaral (IBM Research),
Rina Nakazawa (IBM Research), Scott Trent
(IBM Research), Eun Kyung Lee (IBM Research),
Umamaheswari Devi (IBM Research), Tamar
Eilam (IBM Research), and Huamin Chen (Red
Hat). In (2024) 32nd International Conference on
Modeling, Analysis, and Simulation of Computer
and Telecommunication Systems (MASCOTS).

“Bridging clusters: a comparative look at
multicluster networking performance in
Kubernetes,” Sai Sindhur Malleni (Red Hat),
Raúl Sevilla (Red Hat), José Castillo Lema
(Red Hat), André Bauer (Illinois Institute of
Technology). In (2025) Proceedings of the
16th ACM/SPEC International Conference
on Performance Engineering, pp. 113-23.

"Efficient manipulation of control flow
models in evolving software," Tomáš
Fiedor (Brno University of Technology, Red
Hat), Jiří Pavela (BUT, Red Hat), Adam
Rogalewicz (BUT), Tomáš Vojnar (BUT,
Masaryk University). In (2025) Lecture Notes
in Computer Science 15172 LNCS, pp. 412-28.

News

Research collaborations between Red Hatters and key Red Hat industry and university partners
often produce peer-reviewed publications that bring open source contributions along with
them. These research artifacts illustrate the value that open industry-academia collaborations
hold not just for participants, but for technological advancement across the field of computer
engineering. This is a sampling of recent papers and conference presentations; to see more visit
the publications page of the Red Hat Research website (research.redhat.com/publications).

https://rdcu.be/eGKPd
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=11148243
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=11148243
https://arxiv.org/abs/2501.05258
https://arxiv.org/abs/2501.05258
https://arxiv.org/abs/2501.05258
https://ieeexplore.ieee.org/document/10786553
https://ieeexplore.ieee.org/document/10786553
https://dl.acm.org/doi/10.1145/3676151.3719352
https://dl.acm.org/doi/10.1145/3676151.3719352
https://dl.acm.org/doi/10.1145/3676151.3719352
https://www.fi.muni.cz/~vojnar/Publications/fprv-eurocast-24.pdf
https://www.fi.muni.cz/~vojnar/Publications/fprv-eurocast-24.pdf

9

V O L U M E 7 : 2

RESEARCH
QUARTERLY

research.redhat.com

"Fixing invalid CVE-CWE
mappings in threat databases,"
Şevval Şimşek (BU), Howell Xia
(BU), Jonah Gluck (BU), David
Sastre Medina (Red Hat), David
Starobinski (BU). In (2025) IEEE
49th Annual Computers, Software,
and Applications Conference
(COMPSAC), pp. 950-60.

"Generic multicast," José Augusto
Bolina (Red Hat), Pierre Sutra
(Télécom SudParis, INRIA, France),
Douglas Antunes Rocha (Federal
University of Uberlandia, Brazil),
Lasaro Camargos (FUU). In (2024)
ACM International Conference
Proceeding Series, pp. 81-90.

"A graph-based algorithm for
optimizing GCC compiler flag
settings," Reza Sajjadinasab
(Boston University), Sanjay Arora
(Red Hat), Ulrich Drepper (Red
Hat), Ahmed Sanaullah (Red Hat),
Martin Herbordt (BU). In (2024)
IEEE High Performance Extreme
Computing Conference (HPEC).

“Green.Dat.AI: a data spaces
architecture for enhancing
green AI services,” Ioannis
Chrysakis (Ghent University,
Belgium) , Evangelos Agorogiannis
(Netcompany-Intrasoft, Luxembourg),
Nikoleta Tsampanaki (Netcompany-
Intrasoft), Michalis Vourtzoumis
(Netcompany-Intrasoft), Eva
Chondrodima (University of Piraeus,
Greece), Yannis Theodoridis (Piraeus),
Domen Mongus (University of
Maribor, Slovenia), Ben Capper (Red
Hat), Martin Wagner (Eviden), Aris
Sotiropoulos (AEGIS IT Research),
et al. In (2025) Design, Automation &
Test in Europe Conference (DATE).

"A neural network based
GCC cost model for faster
compiler tuning," Hafsah
Shahzad (BU), Ahmed Sanaullah
(Red Hat), Sanjay Arora (Red
Hat), Ulrich Drepper (Red Hat),
Martin Herbordt (BU). In (2024)
IEEE High Performance Extreme
Computing Conference (HPEC).

"Performance comparison of
service mesh frameworks: the
MTLS test case," Anat Bremler Barr
(Tel Aviv University), Ofek Lavi (TAU),
Yaniv Naor (Reichman University),
Sanjeev Rampal (Red Hat), Jonathan
Tavori (TAU). In (2025) Proceedings
of IEEE IFIP Network Operations and
Management Symposium (NOMS).

"PraxiPaaS: a decomposable
machine learning system for
efficient container package
discovery," Zongshun Zhang
(BU), Rohan Kumar (BU), Jason Li
(BU), Lisa Korver (BU), Anthony
Byrne (Red Hat), Gianluca
Stringhini (BU), Ibrahim Matta
(BU), Ayse Coskun (BU). In (2024)
Proceedings of the 2024 IEEE
International Conference on Cloud
Engineering (IC2E), pp. 178-88.

“Scalable and distributed
processing of 3D astronomical
data cubes for galaxy evolution
studies using the AC3 framework,”
Mario Chamorro-Cazorla (Universidad
Complutense de Madrid, Spain),
Christina Catalán-Torrecilla (UCM),
Ray Carroll (Red Hat), Ben Capper
(Red Hat), Ryan Jenkins (Red Hat).
In (2025) 11th IEEE Conference on
Network Functions Virtualization
and Software-Defined Networking
(NFV-SDN’25), forthcoming.

"Timerlat: real-time Linux
scheduling latency measurements,
tracing, and analysis," Daniel
Bristot de Oliveira (Red Hat),
Daniel Casini (Scuola Superiore
Sant’Anna, Italy), Juri Lelli (Red
Hat), Tommaso Cucinotta (SSSA).
In (2025) IEEE Transactions on
Computers 74:8, pp. 2608-20.

"Understanding similarities and
differences between software
composition analysis tools,"
Pranet Sharma (BU), Zhenpeng Shi
(BU), Şevval Şimşek (BU), David
Starobinski (BU), David Sastre
Medina (Red Hat) In (2025) IEEE
Security and Privacy 23:1, pp. 53-63.

"VeBPF many-core architecture
for network functions in FPGA-
based SmartNICs and IoT,"
Zai Tahir (BU), Ahmed Sanaullah
(Red Hat), Sahal Bandara
(BU),Ulrich Drepper (Red Hat),
Martin Herbordt (BU). In (2024)
IEEE High Performance Extreme
Computing Conference (HPEC).

"Wasserstein distances, neuronal
entanglement, and sparsity,"
Shashata Sawmya (MIT), Linghao
Kong (MIT), Ilia Markov (IST Austria),
Dan Alistarh (IST Austria, Neural
Magic/Red Hat), Nir Shavit (MIT,
Neural Magic/Red Hat) In (2025)
13th International Conference
on Learning Representations
(ICLR), pp. 26244-274.

Open dissemination of research results
increases transparency, promotes replicability,
and acclerates innovation. Share with us by
reaching out to academic@redhat.com.

https://ieeexplore.ieee.org/document/11126673
https://ieeexplore.ieee.org/document/11126673
https://www.arxiv.org/pdf/2410.01901
https://ieeexplore.ieee.org/document/10938458
https://ieeexplore.ieee.org/document/10938458
https://ieeexplore.ieee.org/document/10938458
https://ieeexplore.ieee.org/abstract/document/10992729
https://ieeexplore.ieee.org/abstract/document/10992729
https://ieeexplore.ieee.org/abstract/document/10992729
https://ieeexplore.ieee.org/document/10938477
https://ieeexplore.ieee.org/document/10938477
https://ieeexplore.ieee.org/document/10938477
https://arxiv.org/pdf/2411.02267
https://arxiv.org/pdf/2411.02267
https://arxiv.org/pdf/2411.02267
https://seclab.bu.edu/people/gianluca/papers/praxipaas-ic2e2024.pdf
https://seclab.bu.edu/people/gianluca/papers/praxipaas-ic2e2024.pdf
https://seclab.bu.edu/people/gianluca/papers/praxipaas-ic2e2024.pdf
https://seclab.bu.edu/people/gianluca/papers/praxipaas-ic2e2024.pdf
https://nfvsdn2025.ieee-nfvsdn.org/
https://nfvsdn2025.ieee-nfvsdn.org/
https://nfvsdn2025.ieee-nfvsdn.org/
https://nfvsdn2025.ieee-nfvsdn.org/
https://ieeexplore.ieee.org/document/10985804
https://ieeexplore.ieee.org/document/10985804
https://ieeexplore.ieee.org/document/10985804
https://people.bu.edu/staro/Vulnerability-Scanner-Survey.pdf
https://people.bu.edu/staro/Vulnerability-Scanner-Survey.pdf
https://people.bu.edu/staro/Vulnerability-Scanner-Survey.pdf
https://ieeexplore.ieee.org/document/10938505
https://ieeexplore.ieee.org/document/10938505
https://ieeexplore.ieee.org/document/10938505
https://arxiv.org/pdf/2405.15756
https://arxiv.org/pdf/2405.15756
academic@redhat.com

Says who?
Clouds that
compete can’t
connect.

/Keep your options open
redhat.com/options

Copyright © 2023 Red Hat, Inc. Red Hat and the Red Hat logo are trademarks or registered trademarks of Red Hat, Inc., in the U.S. and other countries.

Says who?
Clouds that
compete can’t
connect.

/Keep your options open
redhat.com/options

Copyright © 2023 Red Hat, Inc. Red Hat and the Red Hat logo are trademarks or registered trademarks of Red Hat, Inc., in the U.S. and other countries.

AWS

Azure

Google Cloud

A

B

C

All of the aboveDD

/Keep your options open
redhat.com/options

Copyright © 2023 Red Hat, Inc. Red Hat and the Red Hat logo are trademarks or registered trademarks of Red Hat, Inc., in the U.S. and other countries.

An interview with Luke Hinds

conducted by Ryan Cook

Security, agentic AI, and
open source

 "It's
the wild
frontier"

13

V O L U M E 7 : 2

RESEARCH
QUARTERLY

research.redhat.com

The name Luke Hinds is well known in the open source security community. During

his time as Distinguished Engineer and Security Engineering Lead for the Office

of the CTO Red Hat, he acted as a security advisor to multiple open source

organizations, worked with MIT Lincoln Laboratory to build Keylime, and created

Sigstore, a wildly successful open source project for improving software supply

chain security that quickly became the standard for signing software components.

You don’t have to spend long with Luke to realize he has a restless mind and a

strong commitment to open source development and communities. Since Sigstore,

he’s channeled that passion into co-founding the open source startup Stacklok,

where he remained as CTO until May 2025, and launching AgentUp, an open source

framework to help developers build interoperable AI agents quickly, flexibly, and

securely. As he’ll explain below, you might think of it as Docker for agentic AI.

RHRQ asked Ryan Cook, the platform and Enterprise AI lead in the Red Hat Emerging

Technologies group, to lead a wide-ranging conversation with Luke. Together

they discuss the urgent need to develop security in AI, the importance of model

provenance and transparency, the essential role of the open source community,

and adapting authorization protocols for AI agents. —Shaun Strohmer, Ed.

Interview

That gets dangerous from a security angle.
There are prompt injection attacks, but people
can also weaponize these models such that the
weights and biases in the neural network are
heavily influenced to act a certain way. It could
behave in a different way from one group of
people to another, or one language to another.
That's one scary part of security in AI. For people
who’ve been working in security for years,
everything's been determined. If there's a bug,
you have an IDE with a breakpoint, and you can
inspect the stack trace and the variables, and
if you run it again, everything will be the same
every time. With AI, it's never like that. It has that
propensity to act differently every single time.

This is also where people are having problems
with agents, which I've been looking at for quite

About the
Interviewer
Ryan Cook
is the platform and
Enterprise AI lead
in the Emerging
Technologies group
at Red Hat.

Ryan Cook: Let’s be honest: security is often
the last thing developers think about. Now
add AI—it is a whole different world in terms of
speed, and it seems we're just now catching up
in the security space. What are you seeing?

Luke Hinds: Security is barely there at the
moment. Obviously some people are more
advanced than others, but it's very nascent.
There are these large frontier models coming
out of Anthropic, OpenAI, and Gemini. Some
models claim they're open, but they're not; the
datasets are not open. These are black boxes:
there's no way of measuring these things.
There's no way of testing them because they're
never determined. Input comes in and a variant
output will always come out, so there's no way of
understanding the true nature of these things.

14 research.redhat.com

RESEARCH
QUARTERLY

V O L U M E 7 : 2

a while. They never operate in the
same way every time. There'll always
be some slight variance— sometimes
it might be very wide variance and
a hallucination. That's the big thing
on the model security side, which is
where model provenance comes in.
That's where Sigstore’s got a second
wind recently, and Red Hat has been
working a lot on it as well. You want
to be able to look at a model and
know this dataset is what built this
model— the model's DNA, or genome
structure. Then you can see there's
obviously a bit of advertising thrown
in, or there's a little bit of something
leaning to the right or the left, or
there’s plain misinformation. Model
provenance is really important—
and this is getting into Red Hat
territory. Open models are massively

important, not just for transparency
and the community working together,
but for safety. Again, due to this
probabilistic nature, you can't rely on
them to perform or act a certain way,
especially when they're calling tools
and making their own decisions.

Ryan Cook: There's a lot of room
for it to go astray. Everybody has
been talking about the importance of
humans in the loop, but it also goes
back to open models and having the
insight into what actually generated
it to ensure you don't have a biased
model. I know there's a couple of
bigger communities that are fully,
absolutely transparent with their
models, and I hope we get to a point
where those are much more public
and used much more. The space is

In his off hours, Luke is a long-distance runner. "When I run, my brain goes into the default mode
network," Luke says. "I have a lot of ideas when I'm running—I'll pull over and rant into my dictaphone."

well on its way to getting better, but
there's still a lot of room to grow.

AGENTUP
Ryan Cook: Speaking of room to grow:
Agent Up. What sort of opportunities
have you seen in that space? What
were your goals when you started
coming up with that project?

Luke Hinds: I was building AI agents out
of curiosity: writing from the ground up,
thinking about what an agent would look
like. I spoke to other people about their
ideas of what a good agent looks like,
and the consensus was that there was
little guidance around how to do things
the right way, even for fundamentals
that are not necessarily AI-centric:
security, rate-limiting, persistence,
distributed scale, performance. They’ve
been using some of the existing
frameworks, and I heard this repeated
pattern of frustration with the lack of
a clean set of interfaces to work with.
It’s a nascent space—the wild frontier.

 So I had the idea to build something
where people could quickly bootstrap
an agent with good old essentials in
there. I started to play around, and I
realized that an interesting direction
would be to make something that's
portable. I’ve always looked at Docker
as a brilliant example of something
reproducible and portable, and you can
bring it up to a good standard quickly.
You have this contract you can pass
around—a Docker file—and it can go
into a GitHub repo. Then people can
pull it and run it and have exactly the
same environment as everybody else.
I thought that would be a nice thing
to have for agents. My attempt with
AgentUp was to build that and have
that config-driven type of experience.

15

V O L U M E 7 : 2

RESEARCH
QUARTERLY

research.redhat.com

With AgentUp, there's a framework,
but you don't build on top of an SDK
framework like you would normally—you
use entry points. You can write as much
customized code as you like, but it's all
managed as dependencies, which was
something else I came across by mistake
because I couldn't get something to
work. It's at an interesting place now,
figuring out where to take it next,
because it does have that portable,
reproducible, pinnable structure,
which is really resonating with folks,
because then you can have something
that runs the same on a developer's
laptop as it does in production.

So right now, Agent Up is at a similar
stage to where Sigstore was for a while.
I’d be talking to people about Sigstore
and you could tell they were looking
at the other monitor, pretending to
follow along while they’re thinking,
“I don't know what this guy's talking
about.” Although I think AgentUp’s a
bit further along, because I'm hearing
from folks like you who are clicking with
it, saying “I see where this is going.”

Ryan Cook: I definitely feel like you
won my heart from a sysadmin point
of view. You've been in the game long
enough and you remember the days
when you’d say, “Hey, it worked on my
laptop, but it doesn't work on the server
or it doesn't work on my friend's laptop.”

Luke Hinds: Absolutely. It was a
mess trying to have all these different
versions on your machine. That was
a great thing with containers: they
solved a real pain. That's another
thing I’ve learned about successful
open source projects. I will ask
myself, “Luke, is this a painkiller or
a supplement?” Supplements are

nice. They're a good idea. You take
a multivitamin and it's very easy. But
if you leave home and you forget to
take your vitamin D, you don't turn the
car around and race back home. You
think, "I can just take it tomorrow."

Whereas if you've got a migraine or
some real pain, you need a painkiller.
Everything else is on hold until you
get into Walmart or you turn the car
around. Even though you've gone
15 minutes down the road, you go
back and get it because you got
a pain to solve. I always try to find
projects that lean towards solving
a pain, but they’re still easy. You
throw them in your mouth and you
drink. If you have a project that's a
supplement, and it takes about a week
of trying to read horrible, obscure
documentation to get it to work,
your project's never going to get
anywhere. Your startup's going to die.

Open models are massively

important, not just for

transparency and the

community working

together, but for safety.

Luke Hinds: I was pretty similar.
There was a computer game at the
time called Elite, with all kinds of
vector graphics, and you'd go around
these universes and you’d mine rocks
and alloy. But it was only available
on the BBC Micro—the BBC had
their own computers that were in all
the schools. I really wanted to play,
but my single-parent mom couldn't
afford a computer. To get one I had
to join the school computer club, but
first I had to prove my worth. I wrote
my first program on paper! I tried to
write an adventure game, and it got
very out of hand quickly—my wrist
hurt from writing so much. I showed
it to the math teacher, and he was
impressed I'd even tried, so even
though it was a mess he let me in. I owe
that math teacher quite a lot really,
because that meant I got my hands
on a computer for the first time. From
there it just got out of control, really.

Ryan Cook: Where did you
want to go with it?

 Luke Hinds: I didn't really know. I
started off in hardware, initially doing
repairs on computer boards—a lot of
poking around with an oscilloscope
and soldering chips on and off. Then
a friend of mine joined a company
as a software engineer and then I
went there as a support engineer.
I was constantly like, “I want to do
what they're doing, writing the code.
That looks more interesting.” I think
if you have a passion about this
you're going to find a way. Coding
was the thing that really made me
home in on a particular area, because
I love the creativity of it. It's just
amazing: you can write stuff and
get a computer to do something.

“ANYTHING IS POSSIBLE”
Ryan Cook: How did you decide you
want to work with computers? For
example, I took apart the keyboard
of my computer and put it back
together, and a week later, my mom
said, "You're going to start early college
classes on computers." That was it.

16 research.redhat.com

RESEARCH
QUARTERLY

V O L U M E 7 : 2

Ryan Cook: I completely agree.
When I started actually writing code
it was like, “Oh my gosh anything is
possible.” So now that we’re seasoned
engineers, what do we tell the next
generation of folks, especially about
getting into open source or AI?

Luke Hinds: About open source,
I would say, first, it's very good for
your career, because you get public
exposure of what you’re doing. If I'm
in a position to be hiring engineers,
I'll want to find their GitHub and see
what they've done. I’m not expecting
perfect code, but if I see somebody
trying stuff, that's a really good signal.
Second, you can mingle with very
senior folks within a community. A lot
of communities are very accepting
of first-time contributors. I love it
when somebody new turns up. One of
the things I always do in my projects
is mentoring, even if that’s helping
someone do their first PR or figure out
how to use Git. They can watch the
project developing, see how problems
are addressed in open discussions, and
then see the code to address them.

I do fear for the younger folks,
because they are coming into a world
where coding assistants and AI tools
let you knock out a project in 20 or
30 minutes. The conditions are not
there to force people to learn. About
10 years ago I tried to write an OS
in Rust. It sounds impressive but it’s
really not—it didn’t go very far. But I
remember spending four days just
banging my head against the wall
trying to figure things out. It forced
me to learn something I wouldn’t have
learned about otherwise. If necessity
is the mother of invention, but people
have this instant knowledge available

with no need to work at it, where
will the inventions come from?

Another thing I've noticed being in the
agent space is an absolute tidal wave
of vibe-coded projects. You can tell
straight away because the READ ME is
full of emojis and rockets. You’ve got
these projects where the first commit
was six hours ago and there's a READ
ME talking about it being enterprise
grade and some of them even quoting
SLAs, and it's just an LLM just spitting
this stuff out. That also makes it a
challenge to get your stuff a bit more
to get noticed. For somebody younger
that's writing something genuinely
useful, being able to rise above the
slosh out there can be tough.

Ryan Cook: One of my big concerns is
whether it’s working in a best practice
way, security-wise or otherwise. What
do you think is the best way to utilize
those vibe-coding situations while
keeping best practices in mind? And
what is the best way for someone
younger in their career to utilize those
services and still learn something?

Luke Hinds: I would say turn off
auto-accept, read what it produces,
and ask it to explain what it’s doing.
It might reveal that it doesn't quite
understand. Ask, why did you do that—
why did you choose that dependency?
Why did you make that design choice?
I use Claude and similar tools a lot
because they are absolutely brilliant
for prototypes, and another thing
I've noticed is you’ll get some pretty
good code and it appears to work
really well. But when the system gets
above a certain level of complexity,
you get underneath and you realize,
this is so brittle. It’s like a toy train

Trying to get
developers to adopt
security is like trying

to get a toddler to eat
their greens. They may
agree that rationally it
makes sense, but they

just don't want to.

17

V O L U M E 7 : 2

RESEARCH
QUARTERLY

research.redhat.com

going around the track, but half the
track is missing. The train goes off
the track, along the baseboard of the
wall, then comes back on the rails. It
looks like it’s working, but it’s not.

Ryan Cook: You bring up an excellent
point. Tying that back to open source
and GitHub: somebody early in their
career could use vibe coding, question
everything, and learn their way up,
and also have that public GitHub
repository and demonstrate they know
how to use Git and write code and
understand it. You can build out your
knowledge set portfolio with these
two things together and come into an
interview and just absolutely rock it.

Luke Hinds: Absolutely. Otherwise,
you can build some impressive projects
with AI, but when you sit down with
a group of people and they start
asking about event-based systems,
distributed systems, and what did
you use for your queueing system,
it's going to become very clear you
don't know what you're talking about.
And don't feel you're going to be
replaced. I don't believe in this “AI is
going to replace all software engineers”
noise. There are things agents are
great at. They love open-ended stuff
where they get to choose the goal.
But if you want them to deliver the
same goal every time, they can’t.

Ryan Cook: I like to say that with
some agents and some of these LLMs,
I've never been more correct in my
life than when using them, and I've
never been more incorrectly correct.

THE POWER OF COMMUNITY
Ryan Cook: Moving forward in your
career, you built one of the biggest

supply chain securing projects
that exists—you created an entire
ecosystem. How did that come about?

Luke Hinds: So, I'd been thinking about
software supply chain security for some
time, being in security, and that term
“software supply chain security” was
starting to bubble up. I'd come across
transparency logs, which is something
they used for cryptographic guarantees
around who created a certificate for
whom. (CoreOS co-founder) Brandon
Phillips was digging around this area
as well, and I remember talking to
him and thinking, well, I'm just going
to try to write something. I'm going
to build a prototype: I’m going to get
this transparency log and try to start
putting signatures of artifacts in there.

I think for Sigstore it was a case of “right
project, right time.” I've developed
lots of right projects-wrong times and
I've developed lots of wrong projects-
right times, so I was quite lucky in
this case. There were a lot of people
looking to solve this problem, and they
just converged on what I was doing.
Something similar happened with Linus
(Torvalds, creator of Linux) originally.
I’m not comparing myself to Linus at
all, but it was similar. He popped up on
Usenet saying, "Hey, I got this thing, not
really quite sure where to go with it."
And then other people were like, "Well,
I would like to work on it.” It was very
much the same with Sigstore. What I
maybe brought to it was the vision of
where it could go, because it could have
just been people working on something
without having a long-term trajectory.

 I used to call it the Let's Encrypt
for software signing: it would be a
public-good, vendor-neutral service

so everybody could sign things: a
12-year-old kid in his bedroom or the
corporation with billions of dollars. I
realized if it was going to be successful,
first, it had to be a public-good, neutral
service and second, it had to be very
simple to use. One thing about security:
trying to get developers to adopt
security is like trying to get a toddler
to eat their greens. They may agree
that rationally it makes sense, but
they just don't want to. They’ve got all
these APIs and AI saying, “We'll make
you faster and better,” so it's hard to
get the security story to land unless
they really don't have to do anything.

Ryan Cook: You brought up getting
the community behind Sigstore. Even
with making this almost a free service,
how do you feel the community and
making those things available in the
open changed the project and made it
easily adoptable? There was probably
a possibility for us at Red Hat to just
put the lock on the door—even though
Red Hat doesn't do that—so did it
make a difference to start open?

Luke Hinds: Oh, it massively made
a difference. If Google had not got
involved and others, it likely wouldn't
have gone anywhere near as far as it
has, and Google is still heavily involved.
I remember going to (Red Hat CTO)
Chris Wright and saying, "Hey, I want
to put this in the Linux Foundation.
I have this idea of a public-good
service,” and he could see the picture.
It would not have been a success if we
hadn’t taken it to the community.

Ryan Cook: I completely agree. Even
with the newer projects, I appreciate
the community you helped build. For
example, Nina Bongartz, a Red Hat

18 research.redhat.com

RESEARCH
QUARTERLY

V O L U M E 7 : 2

I have a small celebration at my desk
and I’m dancing around the room,
because it gives you that validation
that you’re on the right path.

To wrap things up: what do you see
on the horizon for security? As we’ve
been saying, security is something
many of us think about after the
fact. What do you think is the next
big catalyst in security for AI?

Agent identity is a big

area people are starting to

approach, but so far we're

retrofitting old tools and old

protocols where we should

take the opportunity to

really rethink things.

developer on the Trusted Artifact Signer
Team, built an AI model verification
operator with Sigstore. The fact that
there is one community looking out in
so many different places is a testament
to what you helped produce.

THE NEXT BIG CATALYST
Ryan Cook: You see so many startup
projects in this space, and sometimes
they put a strange license in place
allowing you to partially use the
product but you can’t go enterprise
with it. With Stacklok and even on
your newest project AgentUp, why did
you decide to start as open source?
You could have locked those down
like some other projects out there
and tried to go for gold. Instead,
you're doing things to benefit the
greater community, developers,
and people getting started. How
did you make that decision?

Luke Hinds: Good question. First,
I'm doing what I've always done and
what I know. But I've always found that
open source comes with its benefits.
You have a big audience to validate
and test against, and you never come
across as spamming people to get
them to use your new product. You
get that early diversity in as well: other
people can tell you what they think,
and if it's good then generally other
people start to contribute and start
to use it more. It's a really good litmus
test for a new project. If it's not good,
it's not going to grow. I'd like to say
it was only for the good of humanity,
but it is a little bit of a selfish move
as well, because it's a great model.

Ryan Cook: There’s so much joy when
I get a first contribution outside of
my team or from another company.

Luke Hinds: An interesting one
is agent identity. We have a lot of
systems we're trying to retrofit for
AI and agents, and they are creaking
a bit with our current authorization
approaches and protocols. There is
going to be a world where an agent
will need to delegate a task to another
agent, with no human in the middle,
and so many of our authentication
systems are human-centric. They're
based on a human identity.

But what about when it's not really Luke
Hinds with the cute little avatar that's
writing the code; it’s Qwen or Claude.
Agent identity is a big area people are

starting to approach, but so far we're
retrofitting old tools and protocols where
we should probably take the opportunity
to really rethink things. That's one
area I’ve been playing around in.

Ryan Cook: I completely agree with
you. We can be retrofitting what
we know and trust, but doing it in
an efficient manner where we’re
not trying to square the circle.

Luke Hinds: Coincidentally, on Sigstore
we recently collaborated with someone
at Red Hat on an A2A (agent to agent)
store project, which was around agent
identity—or agent provenance, really, so
when an agent presents itself you know
the code it was built from. Sigstore is
quite good at retrofitting in that setting.

Ryan Cook: That is fantastic. With
Sigstore, there's a level of trust people
already have. You know if something
comes from that organization, people
approached it with the right thought
process, the right review process,
to make sure nobody introduces
any gaping hole. Having that open
community is almost a cheat code for
an organization to adopt some safety
mechanisms— you don’t have to come
up with them on your own because
there's an entire field of experts out
in the open helping to do that.

Luke Hinds: Absolutely. And there's
some way smarter people than
me active on the project now.

Ryan Cook: That's it for my
questions. Thank you for taking
the time—this was really fun.

Luke Hinds: Thank you,
Ryan. I had fun as well.

https://blog.sigstore.dev/model-validation-operator-v1.0.1/
https://blog.sigstore.dev/model-validation-operator-v1.0.1/

NEXT

Learn more at
next.redhat.com

What is Red Hat developing

?

20 research.redhat.com

RESEARCH
QUARTERLY

V O L U M E 7 : 2

The Mass Open Cloud Alliance (MOC Alliance) is a collaboration

of industry, the open-source community, and research IT staff

and system researchers from academic institutions across the

Northeast that is creating a production cloud for researchers.

Of course, a collaboration is only as good as its collaborators.

Follow the MOC Alliance as they
create the world’s first open cloud.

@mass-open-cloud

www.massopen.cloud

contact@massopen.cloud

MAKING THE CLOUD LESS , WELL , CLOUDY

21

V O L U M E 7 : 2

RESEARCH
QUARTERLY

research.redhat.com

GREEN.DAT.AI: an energy-efficient,
AI-ready data space

by Ben Capper

Feature

Data silos, regulatory compliance, and resource
consumption limit the collaboration needed to address
real-world challenges. A global consortium is working to
change that.

Significant challenges have hindered the
rapid integration of artificial intelligence (AI)
in key industries that drive economic and

social development such as agriculture, finance,
and energy. Shared data can provide substantial
efficiency benefits, enabling more effective and
sustainable processes. However, datasets isolated
due to privacy considerations, data interoperability
challenges from incompatible frameworks, and
data sovereignty principles under regulations like
GDPR create substantial barriers to collaboration.

AI also creates energy consumption challenges.
Large-scale model training is hampering efforts
to reduce emissions, in turn causing delays in
transitioning to green sources of energy, in
direct conflict with sustainability initiatives.
Compounding these issues is the absence of
consistent methods for measuring, let alone
reducing, the energy consumption of AI workloads.

The GREEN.DAT.AI project addresses these
challenges by applying its solutions to real-

world problems in four major industries,
across six distinct use cases (UC):

•	 In the energy sector, UC1 and UC2 provide
solutions to enhance efficiency and security in
the renewable energy market and in EV charging.

•	 In agriculture, UC3 and UC4 improve
resource management for farming
and water management.

•	 In the mobility sector, UC5 demonstrates
enhanced energy demand optimization and
refined data analytics for an e-bike network.

•	 In finance, UC6 provides robust fraud
detection solutions that ensure compliance.

A FRAMEWORK FOR SUSTAINABLE AI
As a solution to these challenges, the GREEN.
DAT.AI project, funded by the Horizon Europe
research grant program*, launched in January
2023. The project unites a consortium of 18
partner organizations from 10 EMEA countries
to design and develop an energy-efficient

About the Author
Ben Capper is a
Software Engineer
at Red Hat. He is
currently working on
the AC3 and GREEN.
DAT.AI EU Horizon
research projects
with a focus on green
energy, AI, and cloud-
edge computing.

The Mass Open Cloud Alliance (MOC Alliance) is a collaboration

of industry, the open-source community, and research IT staff

and system researchers from academic institutions across the

Northeast that is creating a production cloud for researchers.

Of course, a collaboration is only as good as its collaborators.

Follow the MOC Alliance as they
create the world’s first open cloud.

@mass-open-cloud

www.massopen.cloud

contact@massopen.cloud

MAKING THE CLOUD LESS , WELL , CLOUDY

https://greendatai.eu/

22 research.redhat.com

RESEARCH
QUARTERLY

V O L U M E 7 : 2

AI-ready data space supported
by a toolbox of AI services. These
services are leveraged across
various industry UCs to showcase
the project’s substantial benefits. By
drawing on the International Data
Space (IDS) framework, ecosystems
such as the GREEN.DAT.AI data
space ensure interoperable,
GDPR-compliant data sharing
that adheres to standardized
exchange protocols. This reinforces
data sovereignty by empowering
organizations to retain control over
their data within a trusted network.

The following section details the
project's reference architecture, a key
output of which illustrates the core
components and services that bring
this vision to life. We will explore how
common services, the AI toolbox, and
other key elements are integrated to
enable efficient and secure data sharing.

REFERENCE ARCHITECTURE
A data space (DS) is a decentralized
and secure data-sharing ecosystem
where multiple organizations can share
and access data while maintaining
control and sovereignty over their

own. The GREEN.DAT.AI Reference
Architecture, shown in Figure 1, details
an implementation of this project's AI-
ready data space that delineates roles:
Data Providers manage data ingestion;
Service Producers develop and deploy
optimized and energy-efficient AI tools
and services; and DS Common Services
facilitate data discovery, access,
and interoperability through defined
standards like DCAT-AP and RDF.

DS Common Services ensure
adherence to the FAIR principles
of data management (Findable,
Accessible, Interoperable,
Reusable) through a data catalog,
a component that makes datasets
discoverable and understandable.
The catalog, implemented by Red
Hat engineers, is Piveau. It provides
all three required components: a
data catalog with a user-friendly
interface for dataset discoverability
and understandability; a vocabulary
hub, which provides standardized
terminology for interoperability; and
a metadata broker, facilitating the
discovery and exchange of metadata
between different data sources. The
architecture also integrates secure
data transfer components, including
Eclipse Data Connectors (EDC) and
Apache Kafka, enabling privacy-
preserving exchanges and ensuring
GDPR compliance within a secure,
sovereign data-sharing environment.

This architecture is the foundation for
the project's core innovations, which
include a dedicated Energy-Efficiency
Testing Tool and a comprehensive
AI services toolbox. The toolbox
includes advanced capabilities such
as Federated Learning, Explainable AI,
and AutoML, all designed to support

Figure 1. Simplified GREEN.DAT.AI reference infrastructure

https://www.oecd.org/en/publications/access-to-public-research-data-toolkit_a12e8998-en/international-data-spaces-ids-framework_743e730d-en.html
https://www.oecd.org/en/publications/access-to-public-research-data-toolkit_a12e8998-en/international-data-spaces-ids-framework_743e730d-en.html

23

V O L U M E 7 : 2

RESEARCH
QUARTERLY

research.redhat.com

the development of sustainable
and transparent AI solutions. The
testing tool is incorporated to
validate the energy efficiency of
these services, ensuring they meet
the project's sustainability goals.

ENERGY-EFFICIENCY
TESTING TOOL
The Energy-Efficiency Testing Tool
is a key part of the project's strategy
to address the energy consumption
challenges of AI. It provides a
standardized way to measure the
performance of AI algorithms
from several perspectives: energy
consumption, model precision, data
volume, and time. By capturing
these metrics, the tool can establish
a baseline for an algorithm's initial
performance. Subsequent iterations
of the algorithm are then tested
against this baseline to measure
the impact of changes and validate
improvements in energy efficiency.

The testing tool also includes an
intelligent Co-pilot agent that uses
reinforcement learning to propose new,
optimized configurations to users. This
agent learns from the outcomes of
past tests and suggests configurations
that balance high performance
with low energy consumption. This
automated approach helps ensure
that the project's services consistently
meet or exceed the goal of reducing
energy consumption by 10+%.

ENERGY-EFFICIENT AI
SERVICES TOOLBOX
At the core of the project is a toolbox of
21 AI services. This includes generalized
services that support foundational
processes, such as data-enrichment
tools to improve data quality. The

toolbox also provides more advanced
services, such as Federated Learning
frameworks that enable collaborative
training on private data, Explainable AI
tools that bring transparency to complex
models, and AutoML services that
intelligently optimize the development
of new models. Collectively, these
services prioritize environmental
sustainability and regulatory adherence
while supporting a range of industry
requirements across the UCs.

Federated Learning
Federated Learning (FL) is an
innovative approach to AI that allows
multiple organizations or devices to
collaborate on building a powerful
AI model without ever sharing their
raw, private data. This approach
breaks down data silos and makes
models more accurate for a common
objective. It’s particularly useful for
industries with strict privacy regulations,
such as banking or healthcare, but
applicable for other industries as well.

For example, in Use Case 3 (UC3),
farms want to train a model to optimize
fertilization. Instead of sending sensitive
farm data, such as soil-health tensors
or nutrient sensor readings, to a central
server, each farm keeps its data local.
They train a version of the model on
their own data and then send only their
updated model, rather than the data
itself, to a central coordinator. This
coordinator aggregates the model
updates from various farms and sends
an improved global model back to
each. This enables the model to learn
from a massive, collective dataset
while preserving the privacy of each
farm’s information. The project also
applied FL to wind energy in UC1,
where different power plants improved

their energy production forecasts
by collaborating without revealing
their proprietary operational data.
This approach directly addresses
regulatory compliance rules like GDPR
by keeping sensitive data on-site.

The service also has significant
environmental and performance
advantages. Compared to centralized
model training, local model training
drastically reduces the need for
large-scale data transfers and energy
consumption by only sharing small
model updates. Results showed an
optimized federated approach could
consume 52% less energy than a
centralized one, as seen in Figure
2 (overleaf), demonstrating that
FL is not only a privacy-friendly
solution but also a key strategy for
making AI more sustainable.

Explainable AI
A major barrier to the adoption of
sophisticated AI models is their black-
box nature. As models become more
complex, it becomes nearly impossible
for humans to understand how they
arrive at a specific decision, which
erodes trust and makes it difficult to
comply with regulatory requirements.
The need for transparency is especially
critical in sectors like finance, where AI
decisions about fraud can have serious
consequences. This is the problem that
Explainable AI (XAI) is designed to solve.

XAI services are designed to make
complex AI models transparent and
understandable. For example, in
fraud detection for banking UC6, a
bank needs to know not just that a
transaction is fraudulent, but why the
AI flagged it. This service provides
tools like SHAP and LIME, which can

https://medium.com/@anshulgoel991/model-exploitability-using-shap-shapley-additive-explanations-and-lime-local-interpretable-cb4f5594fc1a

24 research.redhat.com

RESEARCH
QUARTERLY

V O L U M E 7 : 2

Figure 3. Comparison of energy consumption for the maximum number of
created features using feature learning (measured in Joules)

explain an AI's decision by showing
which data features had the biggest
impact on the outcome. These tools
build a simple, easy-to-understand
model around a specific prediction to
explain it, allowing users to trust the AI's
judgment and understand its reasoning.

The project's toolbox includes a
related service called Explainable
Feature Learning, which automatically
creates new, powerful features from
raw data to improve an AI model's
performance. Most importantly, it does
so while ensuring the features are still
interpretable, so experts can understand
how the new features relate to the
original data. This service is particularly
valuable for tackling data complexity
without sacrificing transparency.

The project demonstrated that these
tools are not just for explanation; they
can also be optimized for efficiency.
An experiment with the Explainable
Feature Learning service showed
that by adjusting the settings to limit
the number of features created, the
model could achieve the same level
of accuracy while consuming over
94% less energy (Figure 3). This
shows that the process of making
AI more transparent can be done in
a highly energy-efficient manner.

AutoML: algorithm selection
and hyperparameter tuning
Another obstacle to efficient
deployment of AI is the labor-
intensive, computationally expensive
process of algorithm selection and
hyperparameter tuning, or AutoML.
This task requires trying out many
different models and configurations
to find the one that performs best
for a specific dataset. This trial-and-

Figure 2. Total energy consumption of centralized model (blue) vs. optimized federated model (yellow)

25

V O L U M E 7 : 2

RESEARCH
QUARTERLY

research.redhat.com

error method is time-consuming for
developers, and it consumes a vast
amount of energy, directly conflicting
with the sustainability goals. To
automate and accelerate the process,
the project developed an AutoML
service that uses optimization and
meta-learning techniques. Instead of
searching every possible combination
of configurations, the service
intelligently narrows options and learns
from each trial to select the next most
promising configuration. This drastically
reduces the number of trials needed
to find a high-performing model,
which, in turn, saves considerable
amounts of energy and time.

The service is applied to the smart
mobility UC5 to address the challenge
of e-bike redistribution. The goal is
to predict bike demand at various
stations to prevent shortages or
surpluses. Using the AutoML service
to quickly and efficiently find the best
forecasting model for each station, the
system can provide an optimal plan for
moving bikes where they are needed.
In a head-to-head comparison with
a traditional exhaustive search (Grid
Search), the AutoML service achieved
a 64% decrease in energy consumption
(Figure 4), making it fundamentally
more energy-efficient and sustainable.

KEY TAKEAWAYS
Ultimately, the GREEN.DAT.AI project
is a holistic, open-source-driven vision
where AI is not only accurate but also
sustainable, transparent, and respectful
of data sovereignty. The project
successfully addresses the intertwined
challenges of data silos, regulatory
compliance, and energy consumption in
the AI era. Its holistic vision is realized
through an innovative toolbox that

enables sustainable and responsible AI
deployment. The project’s architecture,
built on principles of data sovereignty,
ensures interoperability and GDPR
compliance through services like the
EDC Connector and Data Catalog.

The Federated Learning framework
breaks down data silos and allows
organizations to train powerful models
collaboratively without ever sharing
sensitive data, an approach that
supports regulatory compliance while
achieving significant energy reductions.
The Explainable AI and AutoML
services further drive efficiency by
making complex models transparent,
while automating the optimization of
development processes, which reduces
computational waste. These services
are all validated by the project's Energy-
Efficiency Testing Framework, ensuring
that every advancement aligns with
the core objective of reducing AI's
environmental footprint by at least 10%.

Concluding in December 2025,
GREEN.DAT.AI project's final steps are
focused on validating the results of
the UCs and ensuring the technology
is fully interoperable. By exchanging
data with external systems and data
spaces through data connectors,
the project demonstrates that this
solution can scale and function within
a broad, interoperable ecosystem.

Red Hat engineers on the project
team are Ben Capper, Leigh Griffin,
Clodagh Walsh, Ant Carroll, and Ray
Carroll. For more information, including
documentation of all use cases, visit the
project homepage (greendatai.eu), and
find GREEN.DAT.AI on LinkedIn or X.

*GREEN.DAT.AI is funded by the European
Union under Grant Agreement No. 101070416.

Figure 4. Comparison of AutoML vs grid search in terms of energy consumption (measured in kilojoules)

greendatai.eu
https://www.linkedin.com/company/green-dat-ai/
https://x.com/green_dat_ai

26 research.redhat.com

RESEARCH
QUARTERLY

V O L U M E 7 : 2

THE UNIVERSAL AI SYSTEM FOR
HIGHER EDUCATION AND RESEARCH

NVIDIA DGX A100
Higher education and research institutions are the pioneers of innovation, entrusted to train future
academics, faculty, and researchers on emerging technologies like AI, data analytics, scientific
simulation, and visualization. These technologies require powerful compute infrastructure,
enabling the fastest time to scientific exploration and insights. NVIDIA® DGX™ A100 unifies all
workloads with top performance, simplifies infrastructure deployment, delivers cost savings,
and equips the next generation with a powerful, state-of-the art GPU infrastructure.

Learn More About DGX @ nvda.ws/dgx-pod
Learn More About DGX on OpenShift @ nvda.ws/dgx-openshift

© 2020 NVIDIA Corporation. All rights reserved. NVIDIA, the NVIDIA logo, and DGX are trademarks and/or registered trademarks
of NVIDIA Corporation in the U.S. and/or other countries. Other company and product names may be trademarks of the respective
companies with which they are associated.

partner-print-red-hat-ad-research-publication-1520004-r3.indd 1 12/7/20 10:24 AM

27

V O L U M E 7 : 2

RESEARCH
QUARTERLY

research.redhat.com

Feature

Open Education Project tackles GPU
scheduling and metrics visibility

Enhancements to the education project highlight how
research work on OPE drives advancements for many kinds
of multitenant environments.

by Danni Shi

The Open Education Project (OPE)
continues to develop solutions for
optimizing GPU resource usage in a

multitenant environment. OPE, a project of
Red Hat Collaboratory at Boston University,
has long been a pioneer in making high-
quality, open source education accessible to
all. The project was initiated by BU professor
Jonathan Appavoo, in partnership with
Red Hat Research, to break down resource
barriers by making scalable, cost-effective
infrastructure available for education.

Continued efforts to improve OPE don’t
benefit just students and faculty, however.
Advancements in telemetry, observability,
and GPU management also have potential
applications for non-class use cases, such
as academic research and multitenant
environments more generally. Among the most
exciting developments is the added ability to
manage requests for processing resources.
The scheduler in multitenant environments is

often a black box hidden from most individual
users, which means jobs won’t necessarily
be scheduled to keep down costs, maintain
performance, or ensure that all users have
fair access. By contrast, OPE-developed
GPU scheduling builds in transparency and
puts more control in the hands of users.

LAUNCHING GPU-ACCELERATED LEARNING
Over time, OPE has grown from an experimental
class platform into a robust service supporting
thousands of students. One of its biggest
milestones this year has been the migration from
a shared teaching and research environment to
a dedicated, independent Red Hat OpenShift
academic cluster on the New England Research
Cloud (NERC), more widely known as the
production environment of the Mass Open
Cloud (MOC). This move provides the project
for a sustainable, large-scale educational model.

This semester, OPE is supporting one of its
most advanced courses to date: a graduate-

About the Author
Danni Shi is a senior
software engineer
at Red Hat leading
the development
effort for the
Open Education
(OPE project).
She is dedicated
to advancing open
source education
and improving the
accessibility of
technology for all.

28 research.redhat.com

RESEARCH
QUARTERLY

V O L U M E 7 : 2

level course on GPU programming,
Programming Massively Parallel
Multiprocessors and Heterogeneous
Systems (Understanding and
programming the devices powering
AI), taught by Professor Appavoo.
The course introduces students to the
world of GPU programming. Using
NVIDIA’s CUDA programming model,
students learn the fundamentals
of parallel programming, GPU
architecture, and high-performance
computing on heterogeneous
systems. The course culminates in
an exploration of student’s research
and career interests through a group
project that tackles a challenge
they are interested in. With interests
that range from cryptographic
systems to kernel engineering to
RAG, students see how they can use

CUDA programming to imagine more
effective, performant systems.

To support this course, the team
prepared a Jupyter notebook image
embedded with CUDA tools. The
image was specifically aligned with
the NVIDIA GPU driver versions
available on the academic cluster. This
eliminates one of the most common
pain points in computer science and
AI courses—setup and installation
headaches—and lets students
begin experimenting with CUDA
kernels, performance tuning, and
architectural analysis from day one.

GPU METRICS OBSERVABILITY
Managing GPUs in an academic
setting requires not just access,
but also visibility. The academic

cluster is connected to the NERC
Observability Dashboard developed
by Thorsten Schwesig. This dashboard
integrates with NVIDIA’s DCGM
(Data Center GPU Manager) to
expose essential metrics such as
GPU utilization, memory usage,
temperature, power draw, and per-
process statistics. The dashboard
also includes OpenShift metrics
such as Jupyter workbench and
GPU pods running per namespace,
requests.storage in % per
namespace, and limits.memory in
% per namespace. These metrics are
critical for admins to track resource
consumption, not only for students
but also for shared research resources.

For the GPU programming class,
however, observability extends

From the observability dashboard: memory usage per student namespace

https://research.redhat.com/blog/article/observability-cluster-added-to-the-moc-alliances-new-england-research-cloud/
https://research.redhat.com/blog/article/observability-cluster-added-to-the-moc-alliances-new-england-research-cloud/

29

V O L U M E 7 : 2

RESEARCH
QUARTERLY

research.redhat.com

beyond operational health and
aggregate datacenter resource
usage. Because students are
expected to evaluate the micro-
architectural features of GPUs
experimentally, the cluster is
configured to provide access to
NVIDIA Nsight Systems profiling
metrics. These include deeper
counters like warp execution
efficiency and shared memory
transactions, allowing students to
connect coding decisions directly to
hardware behavior. Understanding
hardware-software co-design will be
essential for students later working
in disciplines from high-performance
computing and data science to
AI/ML engineering. Having the
opportunity to get access to this
deeper level of measurement and

analysis is something that typically
is not available to programmers in
a shared GPU environment, much
less to students in a production
datacenter. It is absolutely critical,
however, in order to match the
demands of an application to a
resource profile for a project that
doesn’t over-provision or under-
provision compute, storage and
network bandwidth as needs
vary dynamically over time.

KUEUE: FAIR AND EFFICIENT
GPU SCHEDULING
In the previous OPE teaching model,
every student received a dedicated
CPU-based Jupyter notebook.
This is now a standard tool for
data scientists, and the software
developers who work with them. But

it is also excellent for teaching most
classes: CPU resources are plentiful,
inexpensive, and can be allocated
on a per-user or per-workload basis
without significant cost or inefficiency.
However, the same approach cannot
be applied to GPUs. While simple, this
model has significant drawbacks:

Costly idle time: GPUs are a
premium resource, and when a student
isn't actively running a computation,
the GPU sits idle on a project, draining
resources from the datacenter
as a whole, and money from the
individual project budget. This is a
massive inefficiency for any academic
institution or industry collaborator.

Limited control: This model offers
less control for instructors and

From the observability dashboard: pods running in student namespaces

30 research.redhat.com

RESEARCH
QUARTERLY

V O L U M E 7 : 2

admins. Without a centralized way to
manage and monitor resource usage,
it's hard to ensure fair access for
everyone, especially when a project
has a limited number of high-end
GPUs, such as Nvidia H100s.

To solve this conundrum, the OPE
team adopted a queue-based
scheduling model using Kueue, a
Kubernetes-native job management
system. Instead of tying GPUs directly
to student notebooks, students
now use a lightweight, CPU-based
Jupyter notebook for coding and
development. When they need to run
their GPU code, they simply submit it
as a batch job from their notebook's
terminal, using simple commands.

This is where Kueue comes
in. Here’s how it works:

Job Queues: Each student
namespace has a LocalQueue that
points to a ClusterQueue, which
represents the overall pool of
GPUs (Nvidia V100, A100, H100)
available in the academic cluster.

Job Execution: When a GPU
becomes free, Kueue assigns it
to the next pending job from the
LocalQueue, triggering the creation
of a pod on the GPU node. The
job securely copies the necessary
code files and data from the
student's development notebook
to the newly created GPU pod.

This creates a seamless process
for coding and experimentation.

Termination and Release: Once the
job completes, or if it runs for a set
maximum time, the pod is automatically
terminated. This releases the GPU,
making it immediately available for
the next student's job in the queue.

Visibility: Students can track
job status directly from their
notebooks (Pending -> Running ->
Completed), giving them visibility
and independence without requiring
dedicated GPU containers.

This model ensures that GPUs are
continuously utilized, fairly shared

From the observability dashboard: pods running on V100 GPUs

https://kueue.sigs.k8s.io/

31

V O L U M E 7 : 2

RESEARCH
QUARTERLY

research.redhat.com

across students, and centrally managed,
making resource-intensive classes
both scalable and cost-effective.

EXPANDING USE CASES
BEYOND THE CLASSROOM
Beyond its use in the classroom, the
Kueue system for GPU batch job
scheduling offers a powerful solution
for a wide range of developer use
cases in multitenant environments:

Research workloads: Graduate
students and faculty running long
experiments can share the same GPU
pool without blocking each other. A
bioinformatics lab could use this to run
multiple simulations simultaneously,
or a physics department could
manage large-scale data analysis for
different research groups efficiently.
The same applies to different
workloads in a consulting company
with many individual ML projects to
complete for different applications.

Multitenant usage: Different
projects can each have their own
LocalQueue while still pulling from
the same ClusterQueue. This benefits
large organizations with various
departments or external clients,
such as a cloud provider offering
GPU access to multiple customers
or a university managing resources
for different research centers.

Policy flexibility: Admins can set
different quotas or priorities. For
example, a research project might
be allocated more A100s, while a
class queue is optimized for quick
turnaround. This allows for fine-
grained control over resource
distribution, ensuring critical projects
receive the necessary resources while
maintaining fair access for all users.

Fine-grained access control to
telemetry and detailed hardware
profiling: Because measurement

and data analysis are an essential
part of the developer’s environment,
the dashboards and collected views
of telemetry provided in the OPE
environment naturally support data
analysis for multiple tenants or
multiple projects with different access
requirements sharing resources
in an industry setting as well.

ADDITIONAL OPE ENHANCEMENTS
In addition to GPU management,
the OPE team has made other
key enhancements to the Mass
Open Cloud environment:

Preloaded Notebooks: To
streamline the learning experience,
students’ development notebooks
are now pre-generated rather than
launched manually through the UI.
Meera Malhotra developed this
feature to enable each notebook
to be provisioned with the required
LocalQueue configuration and

Kueue metrics example: kueue_local_queue_admitted_workloads_total

32 research.redhat.com

RESEARCH
QUARTERLY

V O L U M E 7 : 2

associated RBAC permissions,
ensuring it is immediately ready for
assignments and labs. Students
simply log in and run their notebook
without needing to perform any
additional setup. This way, students
can focus on experiments instead of
troubleshooting environments. The
same advantage can also be available
for developers in other MOC projects.

Gatekeeper policies: In other
courses where students launch
notebooks manually through
the RHOAI UI without Kueue, a
software Gatekeeper steps in to
enforce defined resource limits.
These policies, developed by Isaiah
Stapleton, provide the following
specific protections in OPE:

•	 Restricting students to use only
the class container image.

•	 Limiting container size selection
to instructor-defined options, so
students can’t overspend resources.

•	 Blocking student notebooks from
directly consuming GPUs through
the usual RHOAI interface. Instead,
student developers must submit
requests for computing cycles
through Kueue to claim their GPU.

Notebook labeling via mutating
webhook: OPE uses a custom
assign-class-label mutating
webhook to automatically add
labels to each notebook pod,
denoting which class a student
belongs to (e.g., class="classname").
This serves several purposes:

•	 Billing Transparency: Labels
allow admins of the cluster to
differentiate between students
from different classes running in

the same namespace, enabling
accurate, class-specific billing.

•	 Policy Enforcement: The same labels
can also be used by Gatekeeper for
validating policies to enforce rules at
the class level, for example, restricting
images, container sizes, or GPU
count differently for each course.
This automated labeling webhook
ensures fine-grained governance in
a multi-class academic environment,
but can also be used for a multi-
project shared industry environment.

By moving to a dedicated Academic
OpenShift cluster in the Mass
Open Cloud to explore new ways
of conducting classes in a stable
OpenShift and RHOAI environment,
while introducing GPU batch scheduling
with Kueue, the Open Education Project
has built a smarter way to handle
expensive high-performance resources.
This approach allows for students to
learn on hardware otherwise closed off
to most classroom settings. Students
learn how to write and optimize
their CUDA code, how to coalesce
memory accesses, and how to handle
parallel programming on a scale most
students don’t get to experience.

The class culminates with an
exploration of how GPU programming
can intersect with students' research
interests, equipping a new generation
of future engineers and researchers
with a deeper understanding of
the hardware behind AI. OPE gives
student developers the chance to
think critically about improving the
software that runs in datacenters,
both for their classroom exercises
and for their future responsibilities
as developers in a resource-
and energy-limited world.

Boston University Professor Jonathan Appavoo teaching Programming Massively Parallel Multiprocessors
and Heterogeneous Systems (Understanding and programming the devices powering AI)

UMass Lowell is proud to
collaborate with Red Hat,
a Select Preferred Partner,
and celebrate more than

a decade of working together
on research, philanthropy and
building the next generation of

Red Hat’s workforce.

UMass Lowell is proud to
collaborate with Red Hat,
a Select Preferred Partner,
and celebrate more than

a decade of working together
on research, philanthropy and
building the next generation of

Red Hat’s workforce.

34 research.redhat.com

RESEARCH
QUARTERLY

V O L U M E 7 : 2

35

V O L U M E 7 : 2

RESEARCH
QUARTERLY

research.redhat.com

Refined Yuga analysis tool for detecting
code defects in Rust improves usability

by Anne Mulhern

Yuga is a static software analysis tool
for identifying lifetime annotation code
defects in Rust code. At the time it was

first presented in a previous article in the Red
Hat Research Quarterly, Yuga’s analysis yielded
an unacceptably high number of false positives
in the experiments conducted. Since then,
the analysis has been refined. Yuga is able to
detect code defects that are not detected
by competing tools, and the precision and
recall of its analysis are much improved.1

STATIC ANALYSIS TOOLS
Just about every software developer these
days makes use of some static analysis tool.
(A static analysis is an analysis that is done
solely by inspecting a program’s source and
never by actually running the program.)

1. “Yuga: Automatically detecting lifetime annotation bugs in the

Rust language,” Vikram Nitin (Columbia University), Anne Mulhern

(Red Hat Research), Sanjay Arora (Red Hat Research), Baishakhi Ray

(Columbia University). In (2025) ACM International Conference on

the Foundations of Software Engineering (FSE) (Trondheim, Norway);

(2024) IEEE Transactions on Software Engineering 50(10), pp. 2602-13.

Feature

Improvements to the research-developed tool for
analyzing unsafe Rust have rendered it much more precise.

I suppose that the first static analysis tool invented
was a type checker. Like all type checkers after
it, it occasionally rejected correct programs;
that is, it was incomplete, because its static
analysis could not determine the correctness
of all correct programs. It was supposed to be
sound, however; in other words, it would reject
any program that could encounter a type error.
Incompleteness is a mathematical necessity for
the type checker of any but the simplest language,
but unsoundness in a type checker is a bug.

We can put these properties of soundness and
completeness in terms of precision and recall if
we think of the type checker as simply a finder
of a certain class of code defects: those that
can result in type errors. Recall is the ratio of
true positives to all code defects in a program.
Since the type checker is required to be sound,
it must find all the defects, so that number is the
maximum possible value, 1. Precision is the ratio
of true positives to all code defects identified
by the type checker. Since the type checker is
incomplete, that value is less than 1: it identifies
more code defects than there actually are.

About the Author
Dr. Mulhern, Red Hat
Principal Software
Engineer, is the
technical lead of
the Stratis project,
which is written
primarily in Rust.

https://research.redhat.com/blog/article/yuga-a-tool-to-help-rust-developers-write-unsafe-code-more-safe
https://research.redhat.com/blog/article/yuga-a-tool-to-help-rust-developers-write-unsafe-code-more-safe
https://conf.researchr.org/details/fse-2025/fse-2025-journal-first/40/ Yuga-Automatically-Detecting-Lifetime-Annotation-Bugs-in-the-Rust-Language
https://conf.researchr.org/details/fse-2025/fse-2025-journal-first/40/ Yuga-Automatically-Detecting-Lifetime-Annotation-Bugs-in-the-Rust-Language

36 research.redhat.com

RESEARCH
QUARTERLY

V O L U M E 7 : 2

Type checkers are not the only static
analysis tool. Many static analysis
algorithms for many languages
exist. Most are not part of the
compiler, but many make use of
compiler infrastructure to provide
data for their analyses. Most do
not guarantee that either precision
or recall is 1, and generally neither
is. Recall can be maximized by a
strategy of declaring that there are

errors everywhere, but this strategy
comes at the expense of precision.

In general, a good static analysis tool
should have high recall: in any given
program it should find most of the kind
of code defects that it is designed to
find. It should also have high precision:
it should not identify many errors
incorrectly. If a static analysis tool
has low precision, a developer may

spend a lot of time examining code
that is not actually defective. If a static
analysis tool has low recall, the code
defects will persist in the program
and, sooner or later, this will result
in bug reports, unless the developer
finds the problem by other means.

Recently, code review tools that use
large language models (LLMs) to
check proposed code changes for
code defects have become available.
In principle, recall and precision metrics
for these tools could be obtained.
However, unlike traditional static analysis
tools, these LLM-based tools are non-
deterministic. Typically, a traditional
static analysis tool, for example Rust’s
Clippy, consists of many separate
analyses that run independently and can
be turned on or off as desired. Given a
dataset, recall and precision values for
any particular analysis can be calculated.
It is the nature of LLM-based tools that
their analysis is indiscriminate; they
do not check for anything, they just
respond. The recall and precision values
will vary, even for the same dataset.

RUST
The Rust language has a flexible
and expressive type system. Its type
checker is conditionally sound and
incomplete. There are certain Rust
functions, explicitly labeled unsafe
(e.g., std::mem::transmute), that
allow the developer to change the
type of a region of memory. If the user
uses these functions in a correct way,
the type checker is sound; otherwise
it is not. Due to the flexibility of its
type system, the Rust type checker’s
precision is higher than that of many
other languages. Its recall value is 1 if the
developer does not make incorrect use
of unsafe functions that affect types.

#[allow(dead_code)]

#[derive(Debug)]

struct Foo<’a> {

 x: *const String,

 y: &’a u32, // dummy value, so that code uses ’a

}

fn bar<’a, ’b>(arg1: &’a String, arg2: &’b String) -> Foo<’a> {

 println!("in bar, this is arg1: {}", arg1);

 Foo {

 x: arg2 as *const String,

 y: &32u32,

 }

}

fn main() {

 let v1 = "Hello1".to_string();

 let v2 = "Hello2".to_string();

 let obj = bar(&v1, &v2);

 // Uncomment the line below to force the bug to occur.

 // drop(v2);

 let v3 = "Goodbye To All That".to_string();

 println!("obj: {:?}", obj);

 unsafe {

 println!("*obj.x: {}", *obj.x);

 }

 println!(“v3: {}”, v3);

}

Figure 1. Program listing

37

V O L U M E 7 : 2

RESEARCH
QUARTERLY

research.redhat.com

The compiler also provides an
ownership checker. This tool identifies
a different kind of code defect and
prevents a different kind of bug
than the type checker. The bugs
that the ownership checker must
prevent are memory-related bugs.

Unlike, for example, Java, Rust has no
garbage collection; unlike C, it does not
rely on explicit memory management.
Instead, it avoids common problems,
like use-after-free, that plague C
programs by enforcing its ownership
rules. Every region of memory being
used by a Rust program has just one
owner. After that owner is no longer
live, but never before, the region can
be freed. It is the job of the compiler
to emit code that will free the memory
once it is unused, so that it can be
reused. This must be done perfectly,
in order to avoid “memory leaks.”

Although a region of memory may
have only one owner, there can be
many borrowers. These borrowers can
also access the region of memory. It is
vital that no borrower access memory
after the owner has ceased to be
live; if it ever does that, the memory
may have already been freed and
reused for another purpose during
program execution. If that happens,
the reference will read a garbage value,
which will result in undefined behavior.
So, there are rules that ensure that no
borrower can be live after the owner
has ceased to be live. The Rust borrow
checker exists to enforce these rules.

To enforce its rule that borrowers must
not live longer than the owner of a
region of memory, the borrow checker
has a concept of lifetimes. It uses
sophisticated analyses to determine

whether the lifetime of a reference to
some region of memory may extend
beyond the lifetime of the owner. Since
that could result in undefined behavior,
its job is to prevent this from happening.

The Rust compiler can infer a large
proportion of lifetimes without
assistance, just as it can infer most types
in a program. In some cases, however,
the developer must use lifetime
annotations to inform the compiler
what lifetimes it should assume. This
is something the developer can get
wrong, and the consequences of an error
can be a memory safety bug. Like the
type checker, the borrow checker is only
conditionally sound. If the developer is
able to add all the lifetime annotations
correctly, the borrow checker will
not allow any of the memory-safety
violations it is designed to prevent. But
if the developer adds certain lifetime
annotations incorrectly, the borrow
checker may allow a memory violation.

Few developers, when they first
encounter Rust, have experience
developing in a language that
enforces ownership rules. The errors
from the borrow checker are rather
confusing. Sometimes it is quite a
struggle just to get the program to
compile. The likelihood that a novice
or even an experienced developer
will fall into an error when adding
lifetime annotations is high.

YUGA
Yuga is a static analysis tool to
detect code defects that arise due
to incorrect lifetime annotations
inserted by a developer.

Incorrect lifetime annotations
Figure 1 shows a complete and buggy

program where lifetime annotations
have been inserted incorrectly.

Figure 2 shows one possible outcome
of running the program. obj.x is
supposed to point at the string “Hello2”,
but when the program prints out the
value at obj.x, it is the string “Goodby”.
What happened is that v2 owned the
memory containing the string “Hello2”.
Because of the incorrect lifetime
annotation on the function bar(), the
borrow checker was unable to detect
the code defect in main() and the
compiler calculated that v2 had no live
borrowers after the invocation of bar().
Hence the invocation of drop(), which
consumed v2 and caused the release of
the memory on the heap belonging to
v2, was allowed by the borrow checker.

Invoking the drop() function
resulted in the memory on the heap
containing “Hello2” being released
and then immediately re-used for the
string “Goodbye To All That”. But the
pointer at obj.x, the invisible to the
compiler borrow of v2, remained. So
when the string pointed to by obj.x
was printed out, it was “Goodby”,
the first six characters of “Goodbye
To All That”, rather than “Hello2” as
one would have expected just from
looking at the source of main().

in bar, this is arg1: Hello1

obj: Foo { x: 0x7ffcc3617cc8, y: 32 }

*obj.x: Goodby

v3: Goodbye To All That

Figure 2. Possible outcome of
running the program in Figure 1

38 research.redhat.com

RESEARCH
QUARTERLY

V O L U M E 7 : 2

Several things make this example even more complex than
it would otherwise be. First, while the bug could happen
without the call to the drop() method, it likely will not. The
borrow checker allows the drop() invocation at that point,
because v2 is unused after that point and it is not aware of
the invisible borrow through the pointer. It would not allow a
drop() invocation immediately after the assignment to v2
and before the invocation of bar() because v2 is still live at
that point, since it must be passed as an argument to bar().

Second, v2’s header is kept on the stack, not the heap. v2’s
header, like the headers of all Strings, contains a pointer to an
object on the heap that holds the characters in the string, a
field indicating the size of the string, and another field irrelevant
to this problem. obj.x points at the header on the stack.

Third, all that we have described so far would not have
resulted in a bug without obj.x being dereferenced. Any
dereference of a pointer is considered unsafe, and it must
always be designated unsafe. Here, the dereference is
inside an unsafe block in main(). This kind of complex
reasoning is usually required with lifetime annotation bugs.

What made this bug possible was a mistake in the declaration
of the function bar(). Specifically bar()’s return type is
Foo<’a>, but it should be Foo<’b>. The type, Foo, is correct,
but the wrong lifetime annotation was selected, and the return
value’s lifetime is connected to the lifetime of arg1, not of
arg2. As far as the borrow checker can tell, there is nothing
about bar() that requires the second parameter, arg2, to
live past the print statement in bar() itself. Thus it concludes
that v2’s lifetime ends with the invocation of bar().

How could the borrow checker analyze that simple function
and fail to identify the incorrect lifetime annotation? The
type of x is that of a pointer to a String. The borrow checker
simply ignores pointers when doing its analysis, because they
are really just values, or addresses in memory. For this reason,
the prudent Rust developer will avoid using pointers unless
necessary. Sometimes it is absolutely necessary; Yuga could
help the Rust developer go wrong less often in that case.

How does Yuga work?
Recall that the borrow checker ignores pointers when
performing its analysis. Yuga’s foundational principle is to
pretend that the pointers are references of the kind that the Figure 3. The first five lines of the code example shown in Figure 1

39

V O L U M E 7 : 2

RESEARCH
QUARTERLY

research.redhat.com

borrow checker does not ignore and to
analyze the code with pointers as if the
pointers were references. One rule the
borrow checker uses is that if a struct
contains a field that is a reference, then
that field must outlive the struct that
contains it. Yuga will conceptualize
a pointer in a struct as if it were a
reference and deduce the same rule
for a pointer in its analysis, that it has
an outlives relationship with its struct.
Then Yuga will examine functions,
using a type-based algorithm to match
argument types with return types.

For the code example in Figure 1, Yuga
can discover that it is possible that one
of the parameters of bar() could end
up in the returned value of Foo, simply
because a value of type *String can
be constructed from a reference to a
String. Thus, just reasoning by types,
arg1 or arg2 could end up in the return
value; therefore Yuga reasons that to
be safe, both should have lifetimes
that exceed that of the return value.
The borrow checker will only ensure
that holds for arg1, since Foo’s lifetime
parameter is the same as that of arg1.
Therefore, if arg2’s value becomes part
of the Foo return value, there is a bug.

Such a simple, type-based approach
is bound to yield far too many possibly
buggy functions that are not actually
buggy. It is a high-recall, low-precision
analysis that would seriously waste a
programmer’s time. Yuga refines the
analysis and improves its precision
by a points-to analysis on individual
function bodies. The points-to
analysis increases the precision, but
does not reduce the recall. Yuga has
experimented with several additional
ways of reducing the number of false
positives, with some success.

RESULTS
Yuga’s performance was tested
under several scenarios. First, it was
tested against a well-known set of
Rust lifetime annotation bugs in nine
crates identified by searching the Rust
Security Advisory database (rustsec.
org). Second, a dataset of synthetic
bugs was prepared. And finally, Yuga
was run on a dataset of 375 crates on
crates.io. These crates were selected
from the top 2,000 crates. Crates that
did not use unsafe code or lifetime
annotations were removed, leaving just
375 popular crates that might have
lifetime-annotation bugs. Yuga found
three completely new bugs, as well as
many instances of suspicious code.

Three new bugs may seem like just a
few, but it is important to remember
that these bugs were in crates that see
a lot of use and, hopefully, get a lot of
scrutiny. Less well used and examined
crates would be likely to contain a
greater proportion of such bugs

CONCLUSION
Yuga is a research prototype, not a
production-ready tool. Yuga searches
only for one kind of very difficult-
to-reason-about code defect which
other bug finders generally do not
detect at all. We should not overlook
the benefit of novelty in a bug-finding
tool. By using a tool that reports a kind
of defect other tools can not detect,
the developer learns to understand
this kind of defect and to avoid it in
future, even if the tool is not always
available. Most developers will put up
with a high rate of false positives, so
long as they are learning something
new and permanently useful. That is
largely the appeal of the LLM-based
code review tools at this time.

The prudent Rust
developer will avoid

using pointers
unless necessary.
Sometimes it is

absolutely necessary;
Yuga could help the
Rust developer go
wrong less often in

that case.

40 research.redhat.com

RESEARCH
QUARTERLY

V O L U M E 7 : 2

Behind the cloud: the engineering
work powering the Mass Open Cloud
research environment

Engineers on the Mass Open Cloud are continually
developing new capabilities for the research resource.
Here’s how.

Column

by Taj Salawu

About the Author
Taj Salawu is a

software engineer
at Red Hat Research
working on the Mass

Open Cloud. Prior
to that, he was an

intern with Red Hat
Research, working on
another open source

cloud development
project (Operate

First). He graduated
from The College of

The Holy Cross in
2023, where he also

played D1 soccer.

For many people, “the cloud” is a very abstract
entity. It’s a place to store their photos and
data, and they don’t expect to have control
over it beyond setting a password for access. In
the world of academia and research, however,
the cloud is not just a digital archive, it's a
fundamental environment for their work. The
Mass Open Cloud (MOC), which I work on, is a
powerful example. The MOC gives researchers in
computing, healthcare, science, and other fields
access to compute resources that were previously
inaccessible. Collaborating with students, faculty,
and MOC staff, I’ve seen the needs and challenges
they face and worked directly with them to
develop new solutions—often solutions that give
us better tools and insights to benefit all users.

One thing I’ve observed working with these
groups is that while it is easy to develop locally
on a laptop, it’s not always sufficient. It’s hard
to test scaling, projects may not have enough
resources (e.g., GPUs, CPUs, or memory),

and dependency issues may arise with people
running different OSes. Developing in the
final staging environment instead of a laptop
also allows for an easier transition from
development to production. By using the MOC's
Red Hat OpenShift environment for container
orchestration and its OpenStack environment
for virtual machines, users are empowered to
do a lot more at a fraction of the cost of other
infrastructure providers. Students and researchers
can run compute-intensive workloads, deploy
applications to a production environment,
and collaborate seamlessly with not only their
fellow students but also with Red Hat engineers
sharing their real-world expertise—all without the
need to own their own expensive hardware or
match complex software/driver requirements.

Currently, the MOC provides access to FC430 and
830s for CPUs and A100s, V100s, and H100s for
GPUs. All of those machines have large compute
power and are used to build production OpenShift

engineering.ucsc.edu

41

V O L U M E 7 : 2

RESEARCH
QUARTERLY

research.redhat.com engineering.ucsc.edu

42 research.redhat.com

RESEARCH
QUARTERLY

V O L U M E 7 : 2

and OpenStack environments. They
are also available to be leased as bare
metal machines, where users can install
their own operating systems. This is
invaluable not just for researchers, but
for industry engineers. For example, Red
Hat’s Emerging Technology (ET) team
has also used it for distributed model
training development and other AI
initiatives. The MOC also provides users
with preconfigured telemetry to give
helpful insight into what is going on on
the hardware level, for example, in terms
of performance, usage, and system
health. To maintain this environment,
ensure adherence to best practices,
and—most important—continue

upgrading to stay relevant and useful, a
lot of work goes on behind the cloud.

MEETING DIVERSE RESEARCH
REQUIREMENTS
When I started as an intern at Red Hat
Research, I was assigned to work on
Operate First, which, according to its
GitHub page, was focused on “open
sourcing operations on community-
managed clusters.” Its goal was to create
an environment for engineers to develop
and deploy applications. Sounds awfully
familiar: from my internship to coming
back to Red Hat full time, there was
a natural progression from a project
creating community-managed clusters

to working on the MOC, a collection
of managed clusters for research.

As an engineer with Red Hat
Research, part of my job is to explore
new capabilities for the MOC. This
includes efforts to improve the
process of deploying new clusters,
creating templates, writing runbooks
for processes, and testing the use of
Hypershift (Host control planes) to
lower resource usage when deploying
multiple clusters. This work is pivotal
to many users, as their development
work cannot be done in a large
shared cluster, for example because
of access level or specific network

The author as a college student playing for Holy Cross (Worcester, Massachusetts), where he was team captain.

43

V O L U M E 7 : 2

RESEARCH
QUARTERLY

research.redhat.com

configuration requirements. I’m often
tasked with getting new use cases
working in the current environment.
For instance, we were recently
asked by the Red Hat Openshift AI
business unit to integrate an MOC
cluster into the vLLM CI pipeline
as an environment where we could
deploy machine learning workloads
for developers. While I was able to
get it running, the users employed a
platform that had not previously been
deployed and tested on the MOC.

When I joined the MOC team, the
environment had three clusters:
Production, where most users run their
workloads in dedicated namespaces
with specific resource allocations; Infra,
an ACM hub that manages the other
clusters; and Test, an environment
to test upgrades and new operators
before adding them to production.
Over time, we have added an
observability cluster, which aggregates
metrics from all managed clusters
and displays them using Grafana
dashboards. The observability cluster,
coupled with fine-grained access
control, empowers users to examine
bare metal metrics, information that is
often integral to their development.

We also established several bespoke
test clusters, providing crucial
environments for groups whose
development work demands full
admin privileges or specific network
configurations. This summer we built
an academic cluster for classes taught
using the Open Education Project
(OPE). This cluster is upgraded less
frequently so as not to interrupt
classes. These additions represent a
substantial enhancement to the MOC's
capabilities. They also provide a good

example of how we work to address
diverse user needs while enriching the
research and development ecosystem.

Apart from the bespoke clusters,
where the users of the cluster are given
full admin access, all other clusters
are managed by Openshift GitOps
running on the infra cluster. This allows
for the repo on GitHub to be used as
the main source of truth. Outside of
very minor testing on the test cluster,
all changes to resources happen by
creating or amending a YAML manifest
in the OCP-on-NERC GitHub repo.

Much like coordinating

a team on the field,

addressing the challenges

of engineering for the

MOC requires constant

communication,

collaboration, and a shared

effort to overcome issues

and achieve a working

solution.

When I first started, this was a very
daunting repo to look at; however,
as I got a greater understanding of
OpenShift, the structure of the repo
made a lot more sense. Not only
does it allow tracking changes, it
also permits reproducibility for the

clusters themselves. With the correct
infrastructure and Secrets in place,
applying Kustomize for a specific
cluster to a fresh OpenShift install
should re-create that cluster. This also
meant that post configuration of new
MOC clusters could be templated,
speeding up the process of deploying
new clusters. Building templates was
one of the first issues I worked on, and
it resulted in this cluster-templating
repo containing several Ansible files
to create an overlay for a new cluster
when provided with the correct
variables. Applying the generated
Kustomize file installs all the common
operators and configurations
shared across all MOC clusters.

COLLABORATIVE ENGINEERING
TO EMPOWER MORE USERS
When I was in college, I wasn’t just a
computer science major, I was also
a soccer captain, which has proven
surprisingly useful. In my current role,
I've had the opportunity to work with
the MOC staff, students and teachers,
and various groups within Red Hat,
and each group has presented a
unique set of challenges. They have
different sets of requirements,
from specific software versions to
unique network setups, which can
make a single solution for everyone
impossible. Furthermore, deploying
applications to OpenShift often
requires extensive debugging to
resolve any issues that may arise.

Fortunately, I find these challenges
exciting. Much like coordinating a team
on the field, addressing the challenges
of engineering for the MOC requires
constant communication, collaboration,
and a shared effort to overcome issues
and achieve a working solution.

https://research.redhat.com/blog/research_project/foundations-in-open-source-education/
https://research.redhat.com/blog/research_project/foundations-in-open-source-education/
https://github.com/OCP-on-NERC/nerc-ocp-config
https://github.com/tssala23/nerc-cluster-templating
https://github.com/tssala23/nerc-cluster-templating

