E-WarP: A System-wide Framework for Memory Bandwidth Profiling and Management
The proliferation of multi-core, accelerator-enabled embedded systems has introduced new opportunities to consolidate real-time systems of increasing complexity. But the road to build confidence on the temporal behavior of co-running applications has presented formidable challenges. Most prominently, the main memory subsystem represents a performance bottleneck for both CPUs and accelerators. And industry-viable frameworks for full-system main memory management and performance analysis are past due. In this paper, we propose our Envelope-aWare Predictive model, or E-WarP for short. E-WarP is a methodology and technological framework to: (1) analyze the memory demand of applications following a profile-driven approach; (2) make realistic predictions on the temporal behavior of workload deployed on CPUs and accelerators; and (3) perform saturation-aware system consolidation. This work aims at providing the technological foundations as well as the theoretical grassroots for truly workload-aware analysis of real-time systems. We provide a full implementation of our techniques on a commercial platform (NXP S32V234) and make two key observations. First, we achieve, on average, a 6% overprediction on the runtime of bandwidth-regulated applications. Second, we experimentally validate that the calculated bounds hold if the main memory subsystem operates below saturation.
This paper won Best Student Paper Award at RTSS 2020. RTSS is the premier conference in the field of real-time systems, and is a venue for researchers and practitioners to showcase innovations covering all aspects of real-time systems, including theory, design, analysis, implementation, evaluation, and experience.